JPS5957537A - System for controlling transmission power of earth station - Google Patents

System for controlling transmission power of earth station

Info

Publication number
JPS5957537A
JPS5957537A JP16790082A JP16790082A JPS5957537A JP S5957537 A JPS5957537 A JP S5957537A JP 16790082 A JP16790082 A JP 16790082A JP 16790082 A JP16790082 A JP 16790082A JP S5957537 A JPS5957537 A JP S5957537A
Authority
JP
Japan
Prior art keywords
satellite
repeater
earth station
level
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16790082A
Other languages
Japanese (ja)
Inventor
Shunkichi Isobe
磯部 俊吉
Shunsuke Hayashi
俊介 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RADIO RES LAB
Mitsubishi Electric Corp
Original Assignee
RADIO RES LAB
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RADIO RES LAB, Mitsubishi Electric Corp filed Critical RADIO RES LAB
Priority to JP16790082A priority Critical patent/JPS5957537A/en
Publication of JPS5957537A publication Critical patent/JPS5957537A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Radio Relay Systems (AREA)

Abstract

PURPOSE:To keep the quality of a satellite communication line excellent, by fetching a data of intermodulation product appeared on the outgoing line of the satellite to the computer of a line monitor station on ground, grasping an accurate operating level of a satellite repeater so as to control the transmission power of an earth station. CONSTITUTION:A line monitor control station 3 on ground fetches a data of the intermodulation product in the spectrum of the output of a satellite repeater displayed on a spectrum analyzer 12 to a computer 13 and calculates the all input level to the repeater in a satellite 1 with the software processing, and further, discriminates whether or not the operating level of the repeater mounted on the satellite is suitable based on the calculated level values. If the operating level of the repeater mounted on the satellite is discriminated that it is not suitable, the amount of increase/decrease in the output of each earth station output required for the operation of the optimum operating level is calculated and determined. As a result, the calculated increase/decrease amount is supplied to a pilot signal transmitter 14 of the line monitor station, where a shallow phase modulation is applied to the pilot signal, and the result is transmitted to each station.

Description

【発明の詳細な説明】 この発明は、#止軌道上の衛星を介した衛星通信を行な
う場合に計算機ソフトウェア処理を用いて衛星搭載中継
器出力に現われる相互変調積レベルに対応して地球局の
送信電力のレベル副側j全自動的に行なう方式に関する
DETAILED DESCRIPTION OF THE INVENTION This invention uses computer software processing to respond to the intermodulation product level appearing in the output of a satellite onboard repeater when performing satellite communication via a satellite in a geosynchronous orbit. This relates to a system in which transmission power levels are fully automatically determined.

第1図は従来の衛星を介した通信回屍システムの構成を
示すもので9図において山は衛星、(2)は地球局アン
テナ、(C)はキャリア波である。
FIG. 1 shows the configuration of a conventional communication system using a satellite. In FIG. 9, the peak is a satellite, (2) is an earth station antenna, and (C) is a carrier wave.

一方第2図は従来の衛星:tlt1信に使用されている
地球局の典型的なアンテナ系、送受信系の構成を示すも
ので図において山は衛星、(4)は地球局のアンテナ、
(51は給電部、(6jは低雑音増幅器。
On the other hand, Figure 2 shows the configuration of a typical antenna system and transmitting/receiving system of a conventional satellite: an earth station used for TLT1 transmission.
(51 is a power supply unit, (6j is a low noise amplifier.

(7)は衛星ビーコン信号を検出するだめの自!14I
I追尾受信機、(81はアンテナ駆動装置、 tll)
は下り回線信号周阪数を受信中間周波数に変換するだめ
のダウンコンバータ、(9)は送信申出1周?)X数を
上り回線周波数に変換するためのアップコンバータ、 
UO+は大電力増幅器である。
(7) is a failure to detect satellite beacon signals! 14I
I tracking receiver, (81 is antenna drive device, tll)
Is the down converter used to convert the downlink signal frequency to the reception intermediate frequency, and (9) is the transmission offer for one cycle? ) an upconverter for converting the X number to the uplink frequency;
UO+ is a high power amplifier.

次に動作について説明する。まず、地球局アンテナ(4
)を衛星山に自動追尾させるために、衛星(1)から発
射埒れるビーコン信号を地球局のアンテナ(4)で受イ
ぎし、給電部151を通ったビーコン信号は、低雑音増
幅器(6)で増鴨妊れた後、自動では、ビーコン信号を
検出し、衛星ビーコン信号が到来した方向に地球局アン
テナ(4)を向ける(3) ように制御信号をアンテナ駆動装置答に送る。
Next, the operation will be explained. First, the earth station antenna (4
) to automatically track the satellite mountain, a beacon signal emitted from the satellite (1) is received by the antenna (4) of the earth station, and the beacon signal that has passed through the power supply section 151 is sent to the low noise amplifier (6). After getting pregnant, the satellite automatically detects the beacon signal and sends a control signal to the antenna driver to direct the earth station antenna (4) in the direction in which the satellite beacon signal arrived (3).

アンテナ駆動装置t81は、このi町1・11信号に従
って地球局アンテナ(4)を駆動する。また1通信系の
送受信の動作について説明すると、送信中間周波数はア
ップコンバータ(9)で上り回線信号の搬送波周波数に
に換され、太電力増幅器σO)で増幅された後、給亀部
(5)を通り地球局アンテナ(4)から上り回稼信号と
して衛星(1)に回けて送信される。衛星(1)からの
下り回線信号は、地球局アンテナ(4)で受信きれ、給
屯部t51 ff通り低雑音増幅器(61で受信された
後ダウンコンバータ(illで受信中間周波数に変換さ
れる。
The antenna driving device t81 drives the earth station antenna (4) according to this i-cho 1/11 signal. In addition, to explain the transmission and reception operation of one communication system, the transmission intermediate frequency is converted to the carrier frequency of the uplink signal by the up converter (9), and after being amplified by the thick power amplifier σO), The signal is transmitted from the earth station antenna (4) to the satellite (1) as an uplink signal. The downlink signal from the satellite (1) can be received by the earth station antenna (4), received by the low noise amplifier (61) at the feeder section t51ff, and then converted to a reception intermediate frequency by the down converter (ill).

ところで通常の衛星通信においては、地球局る衛星入力
レベルになるように設定される。衛星の1台の中継器全
周波数分割して複数の地球出力のバランスがくずれる 
     =  ゛設定さ才りると各地球局の送信電力
は−だにして衛星送信出力のバランスをくずさないよう
に衛星入力レベルがほぼ一定になるようにして運用され
る。
By the way, in normal satellite communication, the input level is set to the satellite input level of the earth station. The balance of multiple earth outputs is disrupted by dividing all frequencies of one satellite repeater.
= ゛Once set, the transmission power of each earth station will be maintained so that the satellite input level remains approximately constant so as not to upset the balance of the satellite transmission output.

しかし、衛星と地球局の間の市波伝娘路で降雨が発生す
ると帥雨減涙※を生じる。一般に降雨減衰量は、信号周
波数に依存し1周波数が商い阪ど降爾減箕皇は増加する
ので高い周波数を使用する爾星進信では鮮肉減賃が、大
きな問題となる。
However, when rain occurs on the Ichinami Denmu route between the satellite and the earth station, a drastic rain drop* occurs. In general, the amount of rainfall attenuation depends on the signal frequency, and as each frequency increases, the amount of rainfall attenuation increases, so the reduction in fresh meat becomes a big problem in Ersei Shinshin, which uses high frequencies.

降雨減衰量が9通常運用1時に設定した場合の回線マー
ジン量を越えると通信品質が者しく劣化する。地球局の
上り回縁で1坤雨減試が発生した場合には、地球局送1
g亀カケ増力口することで降雨減衰量を補償することが
できるが、他局の回線状態に大きな変動全人はさないよ
うにするためには、 降1i1j前の衛星入力レベルに
なるように込信屯力全増〃口することが必要である。し
かしながら1周波数分割多元接続方式では、衛星入力レ
ベルを示す衛星テレメ) IJデータは、複数局からの
上り回線のi′41j星人力伯号の合信号電力を示して
いるために、特定の地球局の上り回線伯−号の<Iii
 &人力レベルをテレメトリデータからは、知ることが
できないという欠点があった。
If the amount of rain attenuation exceeds the line margin amount when the setting is 9:00 and 1:00 during normal operation, the communication quality will noticeably deteriorate. If a 1-kun rain reduction test occurs at the upstream edge of the earth station, the earth station transmission 1
It is possible to compensate for the amount of rain attenuation by using a power booster, but in order to avoid large fluctuations in the line conditions of other stations, it is necessary to set the satellite input level to the level before the rain. It is necessary to fully increase the communication force. However, in the 1 frequency division multiple access system, the satellite telemetry (IJ) data that indicates the satellite input level indicates the combined signal power of the uplink i'41j Seijinrikihaku from multiple stations, so <Iiii of the uplink line Haku-go
& The drawback was that it was not possible to know the level of manpower from telemetry data.

また、下り回線信号のスペクトラムのレベルをスペクト
ルアナライザ号によりモニタしながら。
Also, while monitoring the level of the spectrum of the downlink signal using a spectrum analyzer.

手動操作で上り目測の送4g 電力を制御ト1する方法
では、V4雨減設蓋の変動に追従できないという欠点が
あった。地球周込イぎ出力の制御rr4jが呻爾誠技賞
の変動に追従できないと、 1iil:山減収が始まっ
てから、神雨/A涙量に対する地球ノ・り込信亀刀増加
の設定まで、長時間安するとその間で1回線マージン以
上の降雨減衰量がつc生する」局舎には通信品質が者し
く劣化する不具合ケ生じる人また。地球局送信電力を増
加して降雨減殺量を補償している状態から急に降雨が止
み、降雨減衰量が無くなると、地球局送信電力を元に戻
すまでの期間、地球局送信電力の増加分が9通常状態の
衛星入力レベルに加わることになるので。
The method of controlling the upstream visually measured power by manual operation had the disadvantage that it could not follow the fluctuations of the V4 rain reduction cover. If the control rr4j of the Earth's orbit power output cannot follow the fluctuations of the Ouer Seigi Award, 1iil: From the beginning of the decline in mountain yield to the setting of the Earth's Rikome Shinkametto increase for the amount of divine rain/A tears. However, if the power level remains low for a long period of time, a rainfall attenuation of more than one line margin will occur during that time. If the earth station transmission power is increased to compensate for the amount of rainfall attenuation, then the rain suddenly stops and the amount of rainfall attenuation disappears, the increase in the earth station transmission power will be increased until the earth station transmission power is restored to its original value. 9 will be added to the satellite input level in the normal state.

衛星への過大入力となったり1周波数分割多元接続方式
では、他局の信号の衛星送信出力を者しく低下させる不
具合を発生することがあるという欠点がめった。
The disadvantages are that excessive input to the satellite can occur, and in the single frequency division multiple access system, problems can occur that can significantly reduce the satellite transmission output of signals from other stations.

この発明はこれらの欠点を改善するためVCなされたも
ので、衛星と地球局間の電波伝搬路で降雨が発生した場
合でも、降雨減衣量の変動に追従して、衛星人力レベル
が一定となるように計算機ソフトウェア処理?用いて衛
星搭載中継器の出力に現われる相互変v1貢に対応して
地球局送信奄刀ケ制(it’llする方式を提供するも
のである。
This invention was developed by VC in order to improve these shortcomings, and even if rain occurs on the radio wave propagation path between the satellite and the earth station, the satellite manpower level can be kept constant by following the fluctuations in the amount of rain. Computer software processing? The present invention provides a method for transmitting signals from an earth station in response to the mutual variation v1 that appears in the output of a satellite-mounted repeater.

一般に衛星の1台の中継器を周波数分割して複数の地球
局で使用する周波数分割多元接続方式においてに、中継
器内の運行波′t≠鷹日増1陥で動作させることが要求
される。出力飽和点付近にてTWTを動作させた場合、
  TWTAの入力電圧対出力電圧の非直線性と、  
AM/PM変換による位相の非直線性より、衛星搭載中
継器出力に相互変調積による不要波が表れる。そこで衛
星下り回線における相互変調積レベルを地上の回線監視
制御局でモニタし、この相互変調積レベルから計算機ソ
フトウェア処理を用いることにより衛星搭載中継器にお
ける動作レベルの正確な把握を行ない、これを元に地球
局送信電力制御の必要性の有・無、および地球局送信電
力の増減量が決定できる。
In general, in the frequency division multiple access method in which one repeater on a satellite is frequency-divided and used by multiple earth stations, it is required to operate with the operating wave 't in the repeater ≠ 1 fault per day. . When the TWT is operated near the output saturation point,
Non-linearity of input voltage vs. output voltage of TWTA,
Due to phase nonlinearity due to AM/PM conversion, unnecessary waves due to intermodulation products appear in the output of the satellite onboard repeater. Therefore, the intermodulation product level in the satellite downlink is monitored by a line monitoring and control station on the ground, and by using computer software processing from this intermodulation product level, the operating level of the satellite onboard repeater can be accurately determined. It is possible to determine whether or not earth station transmission power control is necessary, and whether to increase or decrease the earth station transmission power.

衛星搭載中継器における動作レベルの正確な把握の方法
を以下に詳細に述べる。#星に搭載される1台の中継器
に入力される各信号vヲ1つの狭帯域信号と表わした場
合、入力信号u(1)は次式で表される。
The method for accurately determining the operating level of a satellite repeater is described in detail below. #If each signal v input to one repeater mounted on a star is expressed as one narrowband signal, the input signal u(1) is expressed by the following equation.

z(t) :振幅値 φ(t):キャリア角周波数 ここで2 (1)は、複素関数であり、  u(1)と
以下の関係を持つ。
z(t): amplitude value φ(t): carrier angular frequency where 2 (1) is a complex function and has the following relationship with u(1).

z (t) = u(t)u”(t)       ・
・・・聞・曲・・(2)なお、入力信号、 (1)の複
素自己相関関数Ru(τ)は以下のように示される。
z (t) = u(t) u”(t) ・
...listening/song... (2) Note that the input signal, the complex autocorrelation function Ru(τ) in (1) is expressed as follows.

=7″−−Hu(t)u(t+τ)dt・・・・曲・・
曲・(3)(11式で表される入力信号に対する中継器
出力信号v(1)は次式で表される。
=7″−-Hu(t)u(t+τ)dt...song...
(3) (The repeater output signal v(1) for the input signal expressed by equation 11 is expressed by the following equation.

v(t) = Gp (z(t) ) ejφ    
・・・・曲・曲・・(4)ここでGpは包絡線振幅の人
出刃関数であり。
v(t) = Gp (z(t)) ejφ
...Song, song... (4) Here, Gp is the envelope amplitude function.

次式で表される。It is expressed by the following formula.

Gp(x)= a、x+a3x3+a5x5+a7x’
−・・曲151(4)式を展開すると v(t)= al z(t)ejφ+、z3(t)ej
φ+as z5(t)ejφ→−a7z7(t)ejφ
= atu(t)+a3(u(t)u”(t))u(t
)+ a5(u(t)u”(t)) u(t)+”7 
(u(t) u (t) ) u(t)     ・・
・・・・・・・・・・・・・(61゛  となる。この
出力信号の複素自己相関関数を求めると、以下のとおり
となる。
Gp(x) = a, x+a3x3+a5x5+a7x'
-...Song 151 Expanding equation (4), v(t) = al z(t)ejφ+, z3(t)ej
φ+as z5(t)ejφ→-a7z7(t)ejφ
= atu(t)+a3(u(t)u”(t))u(t
)+ a5(u(t)u”(t)) u(t)+”7
(u(t) u(t) ) u(t) ・・
・・・・・・・・・・・・(61゛) The complex autocorrelation function of this output signal is calculated as follows.

= kIRu(τ)+に2(Ru(r) )  Ru”
(す+ k 3(Ru(τ))(Ru(τ))・・・・
・・・・・・・・・・・(7)ところで、入力信号の複
素自己相関関数Ru(τ)とエネルギー密度スペクトラ
ムWu(ハとは一般に次のように対応している。
= kIRu(τ)+2(Ru(r)) Ru”
(S+k 3(Ru(τ))(Ru(τ))...
(7) By the way, the complex autocorrelation function Ru (τ) of the input signal and the energy density spectrum Wu (W) generally correspond as follows.

Ru(r) <−>Wu(f)     Ru (−r
)<+ Wu (f)したがって出力信号のエネルギー
密度スペクトラムWv(f)は次のように表される。
Ru(r) <->Wu(f) Ru(-r
)<+Wu (f) Therefore, the energy density spectrum Wv(f) of the output signal is expressed as follows.

Wv(f)二に1Wu(ハ+に2Wu(カ■Wu(−f
)■Wu (力+ k 3Wu(f)■Wu (−f 
)■Wu(力■wu< f)■Wu (ハ・・・・・・
・・・・・・・・・(81ここで  Wu(力= W、
  Wu (−f) = ’vV  とおくとWv(f
h k1W+に2rw3)W’(515W+に、VKg
)W袖W■W’(DW−+9)と表される。
Wv(f) 2 to 1Wu (ha+ to 2Wu(ka ■Wu(-f
)■Wu (force + k 3Wu(f)■Wu (-f
)■Wu (force■wu< f)■Wu (ha...
・・・・・・・・・(81 Here Wu (force = W,
If we set Wu (-f) = 'vV, then Wv(f
h k1W+ to 2rw3) W'(515W+ to VKg
)W sleeve W■W' (DW-+9).

(9)式における3次(W■W■W)、5次(W■W■
W■W′■W)のたたみ込み積分は、  5cpc各チ
ャネル4g号のスペクトルが離散的な値をとるので、Σ
によって求められる。
The third order (W■W■W) and the fifth order (W■W■
The convolution integral of W■W'■W) is Σ
It is determined by

W、W■W、W■W■W、・・・のそノ]、ぞれの各チ
ャ坏ル信号の振幅をai + ki * C1(+・・
・で表す。Wのチ、Y洋ル信号の振幅をSi″′c表す
。添字’I  In kはそれぞれチャイ・ルNO0で
基準同波数のチャネルNo、を0とする。
W, W■W, W■W■W, ...], the amplitude of each channel signal is ai + ki * C1 (+...
・Represented by The amplitude of the CH and Y signals of W is represented by Si'''c.The subscript 'I In k is CHILE NO0 and the channel number of the reference same wave number is 0, respectively.

W、 W■W−W■w槍w、・・・は以下の式で表され
る。
W, W■W−W■wspear w, . . . are expressed by the following formula.

W                 \ここでΣは波
の存在する範囲のみについて行なえば良い。
W \Here, Σ need only be performed for the range where waves exist.

00)式によって得られたW■w壊w、w■W協W■w
ow 2+9+式に代入することによりエネルギー密度
スペクトラムが求められる。
00) W■w destruction w, w■W cooperation W■w obtained by the formula
The energy density spectrum is obtained by substituting into the ow 2+9+ formula.

Wの項が信号チャネル、W■W笥Wの項が3次相互変調
槓、W■w’Qw■W笥Wの項が5次相互変調積に相当
し、それらが重なったものが受信スペクトラムとして観
測される。したがって中継器出力に表れる3次相互変調
積(工3)および5次相互変調積(工、)は次式で与え
られる。
The term W corresponds to the signal channel, the term W■W笥W corresponds to the third-order intermodulation product, the term W■w'Qw■W corresponds to the fifth-order intermodulation product, and their overlap is the reception spectrum. It is observed as Therefore, the third-order intermodulation product (k3) and the fifth-order intermodulation product (k, ) appearing in the repeater output are given by the following equations.

I、 = K2W■W輸W      ・・・・・・・
・・・・・・・・(11)X5=に3W■W等W■W[
有]W  ・・・四・・・・・・・・f121ここで3
次のたたみ込み積分W■W’に9W、5次のたたみ込み
積分W■W[有]W■W[有]WrW−出する時。
I, = K2W ■W import W ・・・・・・・・・
・・・・・・・・・(11)X5=to 3W■W etc.W■W[
]W...4...f121 here 3
When the next convolution integral W■W' is 9W, the fifth-order convolution integral W■W [with] W■W [with] WrW-.

次の2段階にて算出するものとする。It shall be calculated in the following two steps.

(イ)各信号の相対入力レベルより(全入力レベルで)
正規化された3次のたたみ込み積分(W2B)および5
次のたたみ込み積分(ws n)全算出 (ロ)正規化されたたたみ込み積分W3 n 、 W5
 nと。
(a) From the relative input level of each signal (at all input levels)
Normalized cubic convolution integral (W2B) and 5
Next convolution integral (ws n) Full calculation (b) Normalized convolution integral W3 n, W5
With n.

中継器全入力レベルRu(0)より、3次たたみ込み積
分W■w箸w、 5次たたみ込み積分W■W[有]W■
W笥Wを算出 この場合、3次・5次たたみ込み積分と正規化された3
次・5次たたみ込み積分との1ご下の関1糸がある。
From the repeater total input level Ru (0), the third-order convolution integral W■w chopsticks w, the fifth-order convolution integral W■W [Yes] W■
Calculating W
There is one line between the next and fifth-order convolution integrals.

W■W箸W=W3n X Ru3(0)    ・・・
・・・・・・・・・・・・(13)W■w’ow■w’
@w = W5B X Ru ”(0) −−・−・・
・・・(141したがって+Il+、 +121式は以
下のように書き表される。
W■W chopsticks W=W3n X Ru3(0)...
・・・・・・・・・・・・(13) W■w'ow■w'
@w = W5B X Ru”(0) --・-・・
...(141 Therefore, +Il+, +121 Formula is written as follows.

工3= 16588887” X W5B X Ru5
(0)+27648’5a7X W2B X Ru (
0)+ (2304f’31L7 + 1152a5 
)XW3nX Ru5(0)+1g2a3as X W
2B X Ru’(0)+ 8’32X Ru3(0)
         ・・曲曲・曲fl!1fI5 = 
110592”7’ XW5n X Ru7(0)+ 
9216asa7XW5nx Ru6(0)+ 192
ks2X W5B x Ru5(0) −−・= (1
6)上の2式を用いて、ある時刻における中継器全入力
レベルを求める場合 W2B、 ws nは定数とみな
すことができる。
Work 3 = 16588887” x W5B x Ru5
(0)+27648'5a7X W2B X Ru (
0) + (2304f'31L7 + 1152a5
)XW3nX Ru5(0)+1g2a3as X W
2B X Ru'(0)+8'32X Ru3(0)
・Songs/songs fl! 1fI5=
110592"7' XW5n X Ru7(0)+
9216asa7XW5nx Ru6(0)+192
ks2X W5B x Ru5(0) --・= (1
6) When calculating the total input level of the repeater at a certain time using the above two equations W2B, ws n can be regarded as constants.

ると、全入力レベルRu(0)は下記の式を解くことに
より得られる。
Then, the total input level Ru(0) can be obtained by solving the following equation.

ARu7(0) 十B Ru6(0) 十CRu5(0
’) 十D Ru ’(0)+ ERu 3(0) =
−C3・・・・・・・・・・・・・・・(171FRu
7(0)+ GRu6(0)+HRu5(0)    
       =ζ5・・・・・・・・・・・・・・・
08)ここで スペクトラムアナライザを用いて、 41さLM−Fり
回線情報全測定する場合、相互変fJ!a ntについ
て3次IMのみ、また17j’ 5次IMのみが〆古ち
込む6111定チヤネルを設定することは非常に困難で
ある。
ARu7(0) 10B Ru6(0) 10CRu5(0
') 10D Ru' (0) + ERu 3 (0) =
-C3・・・・・・・・・・・・・・・(171FRu
7(0)+GRu6(0)+HRu5(0)
=ζ5・・・・・・・・・・・・・・・
08) If you use a spectrum analyzer to measure all of the 41 LM-F line information, the mutual variation fJ! It is very difficult to set up a 6111 constant channel in which only the 3rd-order IM and only the 17j' 5th-order IM age out for ant.

したがって中継器全入力レベルRu(0)は、設定され
た測定チャネルに落ち込む3次と5次のIMを足し合せ
たIMレベルより求めねばならない。
Therefore, the repeater total input level Ru(0) must be determined from the IM level that is the sum of the 3rd and 5th order IMs falling into the set measurement channel.

よって計算式は下記のとおりとなる。Therefore, the calculation formula is as follows.

(A+F)Ru7(0)+(B+G)Ru6(0)+(
C+H) Ru5(0)+DRu’(0)+ERu”(
0) =ζ3+ζ5          ・・・・・・・・・
・・・・・・09)3次IMと5次IMケ足し合せたI
Mレベルより全入力レベル推定値Ru(0) f求める
には(19)式%式%(0) ) (201 とおき1式の形態より適当な値を荒い近似根として、ニ
ュートン法を用いることにより、上式全満足するRu(
0)が求められる。
(A+F)Ru7(0)+(B+G)Ru6(0)+(
C+H) Ru5(0)+DRu'(0)+ERu"(
0) =ζ3+ζ5 ・・・・・・・・・
...09) I that is the sum of the 3rd IM and 5th IM
To find the total input level estimate Ru (0) f from the M level, use the formula (19) (% formula % (0) ) (201) Use Newton's method using an appropriate value from the form of formula 1 as a rough approximation root. Therefore, Ru(
0) is required.

以上述べた方法にて衛星搭載中継器のjllHll代作
を正trarに把握することができる。
By the method described above, it is possible to accurately grasp the jlllhll substitute of the satellite-mounted repeater.

以■、第3図に示すこの発明の一実施例について説明す
る。
Hereinafter, one embodiment of the present invention shown in FIG. 3 will be described.

図中(31に示す回線監視制御局が第1図に示した縦来
の衛星通信回線の構成に付加される部分である。回線監
視制御1li1局(31は各地球局における送信出力の
基準レベルを示すパイロフト41号の送信を行ない、ま
た術星下り回線を受信し、スペクトラムアナライザt1
21 ’を用いてfイiM悟載中g器出力のスペクトラ
ムのモニタケ行なう。すなわちスペクトラムアナライザ
(12)に写し出でれた1考星中継器出カスペクトラム
に表れる相互変調積のデータを計n機(13)に取り込
み、前述した算出手法にてソフトウェア処理により中継
器全入力レベルの算出を行なう。この′算出されたレベ
ル値より衛星搭載中継器の動作レベルが最適であるか否
かの判断を行なう。衛星搭載中継器の動作レベルが最適
でないと判断した場合は、最適動作レベルでの連用に必
要とされる各地球局送信出力の増減量を算出・決定する
。算出された各地球局における送信出力の増減量は9回
線監する。
In the figure, the line monitoring and control station (31) is a part added to the configuration of the vertical satellite communication line shown in Figure 1. It transmits Pyroft No. 41 indicating the
21' is used to monitor the spectrum of the output of the fiiM controller. In other words, the data of the intermodulation product appearing in the output spectrum of the first repeater reflected on the spectrum analyzer (12) is imported into the total number of repeaters (13), and all inputs of the repeater are processed by software using the calculation method described above. Calculate the level. Based on this calculated level value, it is determined whether the operating level of the satellite-mounted repeater is optimal. If it is determined that the operating level of the satellite repeater is not optimal, calculate and determine the increase or decrease in the transmission output of each earth station required for continuous operation at the optimal operating level. The calculated increase or decrease in transmission output at each earth station is monitored over 9 lines.

以上のように、この発明に係る酎−轄威ソフトウエア処
理を用いた衛星搭載中継器に表われる相互に調積による
地球局送信電力制御1111方式を用いることにより、
降雨の有7i1 、回課稼11す1率等に係わらず衛星
通信回線での回線品質を常に所要レベル以上に保持する
ことがIJ北となる。またこの衛星通信回線制御システ
ムは今までの衛星?介した通信回線システムに回線rt
L視制御11局を附加するだけで構成できるのでその実
用的効果は極めて太きい。
As described above, by using the earth station transmission power control 1111 method based on mutual adjustment that appears in the satellite on-board repeater using the Chu-Geui software processing according to the present invention,
IJ North is to maintain the line quality of the satellite communication line at a required level or higher at all times, regardless of the presence of rain, the operating rate, etc. Also, is this satellite communication line control system a conventional satellite? line rt to the communication line system via
Since it can be constructed by simply adding 11 L viewing control stations, its practical effects are extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の典型的な衛星を介した通信回線システム
の概略構成図、第2図は従来の衛星通信に使用されてい
る地球局の典型的なアンテナ糸、送受信系の概略構成図
、第3図はこの発明による佑星通信回線制御システムの
顧1略構成図である。1ン1中、(11は俯星、(2)
は地球局、(C)はキャリア波、(3)は回線監視制御
局、(4)は地球局アンテナ、(5)は給電部、(6]
は低雑音増幅器、(7)は自動追尾受信機、(81はア
ンテナ駆動装置、(9)はアップコンバータ、(川)は
大電力増幅器、 tillはダウンコンバータ、 t1
21はスペクトラムアナライザ、 t131は計算機、
 t141はパイロット信号送信1−9゜(15)はパ
イロットイ言号を示す。なお、1ンI中同−あるいは相
当部分には同一符号を付して示しである。 代理人 葛 野 信 −
Figure 1 is a schematic configuration diagram of a typical conventional communication line system via a satellite, and Figure 2 is a schematic configuration diagram of a typical antenna string and transmission/reception system of an earth station used in conventional satellite communications. FIG. 3 is a schematic diagram of the first aspect of the Yusei communication line control system according to the present invention. 1 in 1, (11 is the star, (2)
is the earth station, (C) is the carrier wave, (3) is the line monitoring control station, (4) is the earth station antenna, (5) is the power supply unit, (6)
is a low noise amplifier, (7) is an automatic tracking receiver, (81 is an antenna driver, (9) is an up converter, (river) is a high power amplifier, till is a down converter, t1
21 is a spectrum analyzer, t131 is a calculator,
t141 indicates pilot signal transmission 1-9° (15) indicates pilot number. It should be noted that the same or equivalent parts in the first part are indicated by the same reference numerals. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】[Claims] 衛星通信回線に、アンテナと、給電部と、低雛音増IV
M 5と、ダウンコンバータと、スペクトラムアナライ
ザと、計算機と、パイロット信号送信機と、アップコン
バータと、大電力増幅器とからなる回線監視制御局を設
け、循星下り回線(衛星から地球局へ送信される侶号波
)に現れる相互変調績のデータを上記計JAX機に取り
込み、計算機のソフトウェア処理を用いて、衛星搭載中
継器の正確な動作レベルを把握し、その把握したデータ
にもとづき地球局送信電力を制御して衛星通信回線の回
線品質を常に所費レベル以上に保持することを特徴とす
る地球局送信電力制御方式。
Satellite communication line, antenna, power supply unit, low hina sound increase IV
A line monitoring and control station consisting of M5, a down converter, a spectrum analyzer, a computer, a pilot signal transmitter, an up converter, and a high power amplifier is installed, and The data of the intermodulation result appearing in the satellite wave) is imported into the above-mentioned JAX machine, and using computer software processing, the accurate operating level of the satellite onboard repeater is determined, and the earth station transmits based on the determined data. An earth station transmission power control method that is characterized by controlling power to maintain line quality of satellite communication lines at or above the cost level.
JP16790082A 1982-09-27 1982-09-27 System for controlling transmission power of earth station Pending JPS5957537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16790082A JPS5957537A (en) 1982-09-27 1982-09-27 System for controlling transmission power of earth station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16790082A JPS5957537A (en) 1982-09-27 1982-09-27 System for controlling transmission power of earth station

Publications (1)

Publication Number Publication Date
JPS5957537A true JPS5957537A (en) 1984-04-03

Family

ID=15858129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16790082A Pending JPS5957537A (en) 1982-09-27 1982-09-27 System for controlling transmission power of earth station

Country Status (1)

Country Link
JP (1) JPS5957537A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100811A (en) * 1976-02-17 1977-08-24 Westinghouse Electric Corp Power control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100811A (en) * 1976-02-17 1977-08-24 Westinghouse Electric Corp Power control device

Similar Documents

Publication Publication Date Title
US7983635B2 (en) System and method for controlling intermodulation interference
US4637017A (en) Monitoring of input backoff in time division multiple access communication satellites
EP0929164B1 (en) Method and apparatus for determining an operating point of a non-linear amplifier of a communication channel
CN101207428B (en) Method for anti-self excitation of straight amplification station system
CN109597098A (en) Spread Spectrum TT&amp;C ground installation ranging zero method of real-time
CN104469952A (en) Transmitting method based on optimal power division in wireless information and energy synchronous transmission relay network
CN1327637C (en) Method and apparatus for determining characteristics of components of a communication channel under load
CN101795247B (en) Method for improving power efficiency of TDRSS transponder
CN103236997A (en) Long term evolution-interference cancellation system (LTE-ICS) and method
JPH04372234A (en) Transmission power control system
JPS5957537A (en) System for controlling transmission power of earth station
KR20120052715A (en) System and method for testing performance of transponder
JP2776506B2 (en) Communication device for TDMA satellite communication system
JPS583613B2 (en) Satellite communication method
Kourogiorgas et al. Time diversity prediction modeling using Copula functions for satellite communication systems operating above 10GHz
JPH05218924A (en) Transmission power control system
JPS637062B2 (en)
JP2004224183A (en) Flight voice recorder
JPH01176125A (en) Earth station transmission power control system
JPH03139027A (en) Transmission power control system in satellite communication
JPH0129453B2 (en)
SU485393A1 (en) Device for measuring the operating coefficient of the protective action of antennas of radio relay lines
JPS6338896B2 (en)
JPS63199525A (en) Control system for earth station transmission power
JPS62133831A (en) Transmission power controller for satellite communication earth station