JPS62133831A - Transmission power controller for satellite communication earth station - Google Patents

Transmission power controller for satellite communication earth station

Info

Publication number
JPS62133831A
JPS62133831A JP27336585A JP27336585A JPS62133831A JP S62133831 A JPS62133831 A JP S62133831A JP 27336585 A JP27336585 A JP 27336585A JP 27336585 A JP27336585 A JP 27336585A JP S62133831 A JPS62133831 A JP S62133831A
Authority
JP
Japan
Prior art keywords
control
mode
signal
satellite
transmission power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27336585A
Other languages
Japanese (ja)
Other versions
JPH0666719B2 (en
Inventor
Yuji Goto
祐二 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27336585A priority Critical patent/JPH0666719B2/en
Publication of JPS62133831A publication Critical patent/JPS62133831A/en
Publication of JPH0666719B2 publication Critical patent/JPH0666719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radio Relay Systems (AREA)

Abstract

PURPOSE:To make the EIRP of a satellite constant at the switching of a master station and substation without increasing the operating power of the satellite by repeating the estimation mode and then calibration mode at a proper period in the substation equipment so as to apply the transmission power control. CONSTITUTION:The substation equipment acts like a master station equipment in the calibration mode in the control mode and acts like the substation equipment in the switching between the estimation mode and the calibration mode. In case of the substation equipment, the estimation mode is switched to the calibration mode at a proper time interval. A logical device 22 in the calibration mode controls a pilot signal oscillator 11 at a preset proper time interval to send a test signal and a holding device 19 is passed and the output of a pilot receiver 9 tuned to the test signal is inputted to a comparator 20 via a detector 18 and the holding device 19. The closed loop control is applied in this state so as to compensate an error caused by the gain fluctuation of an earth station transmission system by a sufficient control accuracy. Then the mode is restored again to the estimation mode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は衛星通信地球局の送信電力制御!!置に係り、
特に衛星出力の実効等方放射電力(E、I。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is for controlling the transmission power of a satellite communication earth station! ! Regarding the location,
In particular, the effective isotropic radiated power (E, I) of the satellite output.

R,P、)を一定にする制御手段を備え次地球局に適用
される送信電力制御装置に関するものである。
This invention relates to a transmission power control device that is equipped with a control means for keeping R, P, ) constant and is applied to a next earth station.

〔従来の技術〕[Conventional technology]

衛旦通(L特に準ミIJ波帯などの高い周波数を用いる
衛星通信では降雨に上る電波の減衰が大きく、これに対
する適当な対策が必要である。
In satellite communications that use high frequencies such as the Edan-dori (L) wave band, especially the quasi-mi-IJ wave band, radio waves are greatly attenuated by rain, and appropriate countermeasures are required to deal with this.

そして、衛星から地球局へ向うダウンリンクに対する対
策としては、地球局受信装置に減衰を補うだけのマージ
ンを持たせるか、あるいはサイトダイパーシティ方式を
用いて降雨による影響金除去する方どの方法が適切であ
る。
As a countermeasure for the downlink from the satellite to the earth station, which method is more appropriate: provide the earth station receiver with a margin to compensate for attenuation, or use the site diversity method to remove the effects of rain. It is.

一方、地球局から衛星へ向うアップリンクに対しては、
サイトダイパーシティ方式をとる場合は別として、降雨
減衰に対して予め足めた%足のマージンを持つ送信電カ
ケ用いることに、晴天時に衛星の送信電力をその分だけ
不必要に消費することとなり、衛星送信電力の有効利用
の観点から非常に不利でめる。そこで、このアップリン
クの降雨減衰に応じて地球局からの送信電力を制御する
方式が考えられ、これ全一般に地球局の送信電力制御方
式と呼称している。
On the other hand, for the uplink from the earth station to the satellite,
Apart from the case of using the site diversity method, using a transmission power cut with a margin of % for rain attenuation requires unnecessary consumption of the satellite's transmission power during clear skies. This is extremely disadvantageous from the standpoint of effective use of satellite transmission power. Therefore, a method of controlling the transmission power from the earth station according to the rain attenuation of the uplink has been considered, and this is generally referred to as an earth station transmission power control method.

そして、この送信電力制御方式では、複数の地球局のう
ちの少なくとも1つの特定地球局が、通信用周波数帯域
内のパイロット信号や通信用信号の衛星における突効等
方放射電力を降雨減衰にかかわらず一足とする制御手段
を備えている。
In this transmission power control method, at least one specific earth station among the plurality of earth stations controls the isotropic radiation power of pilot signals and communication signals within the communication frequency band at the satellite, regardless of rainfall attenuation. It is equipped with one control means.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

衛星出力の実効等方放射電力(E、1.R,P、)を一
定にする制御手段を備えた地球間装ft’に主局および
この主局に代り得る副局の構成にする際、主局および副
局の装置が同一地球局内にある場合には、主局装置の制
御信号などを副局装置に送ることにJ、夕、主局・副局
装置の切り替え時に上記衛星出力のE、1.R,P−を
一定に保つことは可能でるるか、主局装置のめる地球局
と副局装置のめる地球局とに一般に異なるので、主局装
置の制御信号などを副局装置に送っても、地球局の降雨
条件や装置の特性の1ばらつき″などにエフ主局・副局
装置の切り替え時に衛星出力のE、1.R。
When constructing a main station and a sub-station that can replace the main station in the inter-Earth space ft' which is equipped with a control means to keep the effective isotropic radiated power (E, 1.R, P,) of the satellite output constant, If the main station and sub-station devices are in the same earth station, control signals from the main station device will be sent to the sub-station device. , 1. Is it possible to keep R and P- constant?Since there are generally differences between the earth station where the main station device is installed and the earth station where the sub station device is installed, even if control signals etc. from the main station device are sent to the sub station device, E, 1.R of the satellite output when switching between the F main station and sub station equipment due to rainfall conditions of the earth station or variations in equipment characteristics.

P、が一定になるとは限らないという問題点がめり之。The problem is that P is not necessarily constant.

また、副局装置金持つ地球局が、自局から送信し衛星で
折り返された通信用信号のうちの1つまたは通信用回線
に送信された試験用信号と、ビーコン信号筒7tに衛星
において一定となるようK T;(制御されたパイロッ
ト信号trri試験用信号もしくIa、過信用信号とを
受偏し、両者のレベルまたは搬送波対雑音電力比全比較
して送信電力を制御する方式では、制御精度としては満
足できる程度でるり、主局・副局装置の切り替え時も衛
星出力のE、1.R,P、 は一定となるが、副局装置
が自局折り返しの信号を常時必要とし、衛星での使用電
力が多くなるという欠点がめる。
In addition, the earth station with the secondary station equipment transmits one of the communication signals transmitted from its own station and looped back by the satellite, or the test signal transmitted to the communication line, and the beacon signal tube 7t. (In a method in which the controlled pilot signal (TRI) test signal or Ia is biased with the over-reliable signal and the level or carrier-to-noise power ratio of both is completely compared to control the transmission power, The control accuracy is satisfactory, and the satellite outputs E, 1.R, and P remain constant even when switching between the main station and the sub-station equipment, but the sub-station equipment always needs a return signal to its own station. However, the drawback is that the satellite uses more power.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の衛星通信地球局の送信電力全御装fItは、衛
星力)ら放射されるビーコン信号を受信するビーコン受
信手段と、パイロット信号2’fr:、は試験用信号も
しくは通信用信号またにその両方を上記衛星に向けて送
出する送信電力制御の可能な送信手段と、」:記パイロ
ット信号または通信用信号が上記衛星を介して折返され
た折返しN号全受+=する折返し受信手段と、上記ビー
コン信号お工び上記折返し受信信号のレベルま友は搬送
波対雑音電力比を比較して上記送信手段の制御信号を発
生する比較制御手段と、制御モードを所足の時間間隔で
較正モードと推定モードとに切り替える切替え手段とを
備え、上記較正モード時には、上記比較制御手段により
自局の送信電力上制御せしめ、上記推定モード時には、
上記比較制御手段にエフ検出されたレベルまたは搬送波
対雑音電力比の変動からアップリンクの経雨磨衰′ft
4ft定換笠して自局の送信電力を制御できるように構
成され、上記パイロット信号と上記試験用信号の切り替
えができる=うにしたものでるる。
The transmission power control fIt of the satellite communication earth station of the present invention includes a beacon receiving means for receiving a beacon signal emitted from a satellite, and a pilot signal 2'fr:, a test signal or a communication signal or A transmission means capable of transmitting power control that sends both of them toward the satellite; and a return reception means for receiving all of the pilot signals or communication signals returned via the satellite. , a comparison control means for generating a control signal for the transmission means by comparing the carrier-to-noise power ratio of the beacon signal and the level of the return received signal; and a control mode for calibrating the control mode at predetermined time intervals. and a switching means for switching between the calibration mode and the estimation mode, and when in the calibration mode, the comparison control means controls the transmission power of the own station, and when in the estimation mode,
From the level detected by the comparison control means or the fluctuation of the carrier-to-noise power ratio, the uplink wear-out 'ft
It is configured to be able to control the transmission power of its own station using a 4-ft fixed-shade, and is capable of switching between the pilot signal and the test signal.

〔作 用〕[For production]

本発明においては、主局の較正モード時にはビーコン信
号とパイロット信号の比較制御手段により、ま友副局の
較正モード時にはビーコン信号と試験用信号の比較制御
手段により自局の送信電力?制御し、推定モード時には
比較制御手段により検出されたレペ/I/’2友は搬送
波対雑音電力比の変動からアップリンクの降雨減衰を推
定換算して自局の送信電力全制御でき、主局・副局切り
替え時にはそれまでの副局からパイロンt’ (W号音
送出でき、−!たそれ萱での主局1為らは試験用信号を
送出でき、副局装置において、推定モードと較正モード
とを適描な周期で繰り返(7て送信電力制御を行う。
In the present invention, when the main station is in the calibration mode, the beacon signal and the pilot signal comparison control means are used, and when the Mayu sub-station is in the calibration mode, the beacon signal and the test signal are compared and controlled by the transmission power of the own station. In the estimation mode, the Rep/I/'2 friend detected by the comparison control means can estimate and convert the uplink rain attenuation from the fluctuation of the carrier-to-noise power ratio, and can fully control the transmission power of its own station. When switching between stations and sub-stations, the previous sub-station can send out the pylon t' (W sound), and the main station 1 at Sorekaya can send out test signals, and the sub-station equipment can switch between estimation mode and Calibration mode is repeated at an appropriate cycle (7) and transmit power control is performed.

〔実施例〕〔Example〕

以下、図面に基づき本発明の実施例全詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図は本発明の一笑施例を示すブロック図で、シングル拳
チャネル・パー・キャリア(5CPC) 方式を用いた
場合を示している。
The figure is a block diagram showing a simple embodiment of the present invention, and shows a case where a single channel per carrier (5CPC) method is used.

図において、受信系に、送受信共用空中線1と、この送
受信共用空中線1に接続され几低雑音増幅器2と、この
低雑音増幅器2の出力を入力とし信号を電力分配する分
配器3と、この分配器3の分配出力を所要の周波数に変
換する受信周波数変換器4と、ビーコン信号を受けてア
ンテナ制御信号AC8お工びビーコンレベル出力を発生
するビーコン受信器5と、分配器3に接続され高周波の
受信信号を中間周波数に変換する受信周波数変換器6と
、この受信周波数変換器6の出力を増幅し自動利得制御
(AGC)動作をする中間周波増幅器Tと、この中間周
波増幅器7で共通増幅された信号を電力分配する分配器
8と、この分配器8の出力端に接続されパイロット信号
または試験用信号を検出して自動周波数制御(AFC)
信号、自動利得制御(AGC)信号および送信電力制御
(TPO)用の信号を出力するパイロット受信器9お工
び分配器8に接続され相手局からの通信用信号を受信復
調してチャネル受信出力(RX 0UT)′f:、送出
する受(qナヤネルユニット群101〜10mK−含み
構成されている。
In the figure, the receiving system includes a transmitting/receiving antenna 1, a low noise amplifier 2 connected to the transmitting/receiving antenna 1, a divider 3 that takes the output of the low noise amplifier 2 as input and distributes the power of the signal, and this distribution a receiving frequency converter 4 that converts the distributed output of the distributor 3 to a required frequency; a beacon receiver 5 that receives the beacon signal and generates an antenna control signal AC8 and a beacon level output; A receiving frequency converter 6 that converts the received signal into an intermediate frequency, an intermediate frequency amplifier T that amplifies the output of this receiving frequency converter 6 and performs automatic gain control (AGC) operation, and this intermediate frequency amplifier 7 are used for common amplification. A divider 8 that distributes the power of the received signal, and an automatic frequency control (AFC) that is connected to the output end of the divider 8 and detects a pilot signal or test signal.
A pilot receiver 9 that outputs signals, automatic gain control (AGC) signals, and transmission power control (TPO) signals is connected to a splitter 8, receives and demodulates communication signals from the other station, and outputs channel reception signals. (RX 0UT)'f: Contains sending receiver (q Nayanel unit group 101 to 10mK).

一方、送信系は、5cpc方式の基準同波数となるパイ
ロット信号または試験用信号を出力するパイロット信号
発振器11と、チャネル送信人力(TX IN) t−
変調し、各チャネル1句波数に対応己た中間量波信号を
発生する送信チャネルユニット群121〜12mと、こ
nら送信チャネルユニット群12.〜12mの各出力と
パイロット(g号発振器11の出力全電力合成する合成
器13と、この合成@13の出力全入力としチ1j御信
号により利得が制御される送信用中間周波増幅器14と
、この中間周波増幅器14で増幅され友中間周波数信号
全送信用の高周波信号に変換する送信周波数変換器15
お工びこの送信周波数変換器15の出力を必要な送信電
力にまで増幅し送受イぎ共用空中線1に供給する送信電
力増幅器16に含み構成され、これら送信系と前述の受
信系とで主な伝送路を構成している。
On the other hand, the transmission system includes a pilot signal oscillator 11 that outputs a pilot signal or a test signal that has the same reference wave number of the 5 cpc method, and a channel transmitter (TX IN) t-
Transmission channel unit groups 121 to 12m that modulate and generate intermediate quantity wave signals corresponding to the frequency of each channel, and these transmission channel unit groups 12. A combiner 13 that combines the outputs of ~12m and the pilot (output total power of the g oscillator 11), a transmitting intermediate frequency amplifier 14 whose gain is controlled by a control signal, A transmission frequency converter 15 that converts the intermediate frequency signal amplified by the intermediate frequency amplifier 14 into a high frequency signal for all transmissions.
It is included in a transmission power amplifier 16 that amplifies the output of the artificial transmission frequency converter 15 to the required transmission power and supplies it to the transmitting and receiving antenna 1. It constitutes a transmission path.

さらに、送信電力制御系に、ビーコン受信器5の出力レ
ベルもしくは搬送波対雑音電力比を検出する検出器17
と、パイロット受イa器9の出力レベルもしくは搬送波
対雑音電力比を検出する検出器18との二つの検出器1
7.18を備え、また、この検出器18の出力を外部制
御信号により通過もしくは保持状態に切f)替える保持
器19と、これら各検出器17.18の検波出力の差分
ケ取り出す比較器20と、その比較器20の出力を中間
周波増幅器14の制御信号として適当となる工うに信号
処理を行う送信電力制御用の送信電力(TPC)制御器
21お工び制御モードの切替えなどを行う論理器22に
エフ構成される。
Furthermore, a detector 17 for detecting the output level of the beacon receiver 5 or the carrier-to-noise power ratio is included in the transmission power control system.
and a detector 18 for detecting the output level of the pilot receiver 9 or the carrier-to-noise power ratio.
7.18, and a holder 19 that switches the output of this detector 18 to a pass or hold state f) by an external control signal, and a comparator 20 that extracts the difference between the detected outputs of each of these detectors 17.18. and a transmission power (TPC) controller 21 for controlling transmission power, which processes the output of the comparator 20 as a control signal for the intermediate frequency amplifier 14 and performs appropriate signal processing, and logic for switching control modes, etc. F is configured in the container 22.

つぎにこの図に示す実施例の動作全説明する。Next, the entire operation of the embodiment shown in this figure will be explained.

“まず、この図に示−t″実施例における衛星通信地球
局の送信電力制御方式の制御モードには、較正モードと
推定モードの二つがある。そして、主局装置の場合には
、常に較正モードで動作し、副局装置の場合には、適当
な時間間隔で制御モードを推定モードη為ら較正モード
に切り替えて動作する。
First, there are two control modes for the transmission power control method of the satellite communication earth station in the embodiment shown in this figure: a calibration mode and an estimation mode. The main station device always operates in the calibration mode, and the sub station device operates by switching the control mode from the estimation mode η to the calibration mode at appropriate time intervals.

つぎに、主局装置の較正モードでは論理器22がパイロ
ット信号発振器11を制御してパイロット信号を送出す
る工うにすると共に、保持器19を通過状態に制御する
ことにエフ、先の送出されたパイロット信号に同調され
ているパイロット受(1器9の出力が検出器18と保持
器19とを経由して比較器20に入力される。そして、
この状態では閉ループ制御の動作となるため、地球局送
信系の利得変動などで生じる誤差を十分な制御精度で補
償できることになる。
Next, in the calibration mode of the main station device, the logic unit 22 controls the pilot signal oscillator 11 to send out the pilot signal, and also controls the holder 19 to pass the signal. The output of the pilot receiver (1 unit 9) tuned to the pilot signal is input to the comparator 20 via the detector 18 and the holder 19.
In this state, closed-loop control operation is performed, so errors caused by gain fluctuations in the earth station transmission system can be compensated with sufficient control accuracy.

一方、副局装置においては、推定モードの場合には、論
理器22の制御によって、保持器19が保持状態となり
、検出器18の信号が切9離されるため、検出7器17
の信号のみが比較器20と送信電力制御器21を経由す
ることとなり、動作としては受信信号の情報から送信利
得を制御する推定制御を行う。し〃・シ、この場合には
制御誤差の精度に問題がろる友め、ろまり長期に亘って
推定モードで制御することは好ましくない。
On the other hand, in the sub-station device, in the estimation mode, the holder 19 enters the holding state under the control of the logic unit 22, and the signal of the detector 18 is disconnected.
Only the signal passes through the comparator 20 and the transmission power controller 21, and in operation, estimation control is performed to control the transmission gain from the information of the received signal. However, in this case, there is a problem with the accuracy of the control error, so it is not preferable to control in the estimation mode for a long period of time.

そこで、適当な時間間隔で制御モード全推定モードから
較正モードに切り替える。そして、この較正モードでは
論理器22が予め設足された適当な時間間隔でパイロッ
ト信号発振器11t−制御して試験用信号を送出する工
うにするとともに、保持器19を通過状態にすることに
より、先の送出された試験用信号に同調されているパイ
ロット受信器9の出力が検出器18と保持器19とを経
由して比較器20に入力される。この状態では閉ループ
制御の動作となる九め、地球局送信系の利得変!IEI
+などで生じる誤差を十分な制御精度で補償できること
になる。その後再び制御モードを推定モードに戻す工う
にする。そして、この二つのモード切替えは、手動操作
によってもよく、めるいはタイマによる自動制御によっ
てもよい。
Therefore, the control mode is switched from the total estimation mode to the calibration mode at appropriate time intervals. In this calibration mode, the logic circuit 22 controls the pilot signal oscillator 11t at predetermined appropriate time intervals to send out a test signal, and also puts the holder 19 in a passing state. The output of the pilot receiver 9, which is tuned to the previously transmitted test signal, is input to the comparator 20 via the detector 18 and the holder 19. In this state, the operation is closed loop control.Ninth, the gain of the earth station transmission system is changed! IEI
This means that errors caused by +, etc. can be compensated with sufficient control accuracy. Thereafter, the control mode is returned to the estimation mode again. Switching between these two modes may be performed by manual operation or by automatic control using a timer.

そして、その同期は、通信に影響のない範囲で、〃)つ
装置の性能に照らして定められる。ま九、較正モードの
間隔としては1日”59数回程度、1回轟9の時間ij
1分以下で十分と考えられる几め、地球局設備や衛星で
の電力使用に対する影響はほとんど無視できる程度に小
さい。
The synchronization is determined based on the performance of the two devices within a range that does not affect communication. The interval between calibration modes is about 59 times a day, once every 9 hours.
It takes less than one minute, and the impact on power usage by earth station equipment and satellites is so small that it can be ignored.

一方、副局の較正モード時にパイロット信号発生器やパ
イロット受信器の代わ9に通信用信号の送受信チャネル
・ユニツH−使用して制御を行い、通常の呼処理に対し
て何らの影響がないエラに構成しても、以上の説明と本
質的に変わりがないことは明らかである。
On the other hand, when the substation is in calibration mode, control is performed using the communication signal transmission/reception channel Unit H instead of the pilot signal generator or pilot receiver, and errors that have no effect on normal call processing are eliminated. It is clear that even if the configuration is configured as follows, there is essentially no difference from the above explanation.

筐た、副局からパイロット信号を出すことができるので
主局に代り得るものとなる。
Since the pilot signal can be output from the sub-station, it can replace the main station.

〔発明の効果〕〔Effect of the invention〕

以上説明しfcように、本発明によれば、副局装置にお
いて、推定モードと較正モードとを適当な周期で繰り返
して送信電力制御を行うものでろるから、衛星での消費
電力の増大を招くことなく十分な制御精度を得ることが
でき、また、副局からもパイロット信号を出すことがで
きるので、主局・副局装置の切り替えができ、その切り
替え時衛星での実効等方放射電力(E、1.R,P、)
を一定に制御することができるので、実用上の効果は極
めて大である。
As explained above, according to the present invention, the sub-station device performs transmission power control by repeating the estimation mode and the calibration mode at appropriate intervals, which leads to an increase in power consumption in the satellite. In addition, since the pilot signal can be output from the sub-station, it is possible to switch between the main station and sub-station equipment, and when switching, the effective isotropically radiated power ( E, 1. R, P,)
can be controlled to a constant value, so the practical effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示すブロック図でるる。 1・・・・送受信共用空中線、2・・・・低雑音増幅器
、3・・・・分配器、4・・・・受信局波数変換器、5
・・・・ビーコン受信器、6・・・・受信周波数変換器
、T・・・・中間周波増幅器、8・・・・分波器、9・
・・・パイロット受。 信01101〜10m・・・・受信チャネルユニット群
、11・尋・・パイロット信号発振器、121〜12m
・・−・送信チャネルユニット群、13・・・・合成器
、14・・・・中間周波増幅器、15・・・・送信周波
数変換器、16・・・・送信電力増幅器、17.18・
・・・検出器、19・・・・保持器、20・・・・比較
器、21・・・・送信電力制御器、22・・・・論理器
The figure is a block diagram showing one embodiment of the present invention. 1...Antenna for transmitting and receiving, 2...Low noise amplifier, 3...Distributor, 4...Receiving station wave number converter, 5
... Beacon receiver, 6... Reception frequency converter, T... Intermediate frequency amplifier, 8... Duplexer, 9...
...Pilot reception. Communication 01101~10m...Receiving channel unit group, 11...Pilot signal oscillator, 121~12m
... Transmission channel unit group, 13... Combiner, 14... Intermediate frequency amplifier, 15... Transmission frequency converter, 16... Transmission power amplifier, 17.18.
...Detector, 19...Holder, 20...Comparator, 21...Transmission power controller, 22...Logic unit.

Claims (1)

【特許請求の範囲】[Claims] 衛星を介して通信を行う衛星通信地球局において、前記
衛星から放射されるビーコン信号を受信するビーコン受
信手段と、パイロツト信号または試験用信号、もしくは
通信用信号またはその両方を前記衛星に向けて送出する
送信電力制御の可能な送信手段と、前記パイロツト信号
または通信用信号が前記衛星を介して折返された折返し
信号を受信する折返し受信手段と、前記ビーコン信号お
よび前記折返し受信信号のレベルまたは搬送波対雑音電
力比を比較して前記送信手段の制御信号を発生する比較
制御手段と、制御モードを所定の時間間隔で較正モード
と推定モードとに切り替える切替え手段とを備え、前記
較正モード時には前記比較制御手段により自局の送信電
力を制御せしめ、前記推定モード時には前記比較制御手
段により検出されたレベルまたは搬送波対雑音電力比の
変動からアツプリンクの降雨減衰を推定換算して自局の
送信電力を制御できるように構成され、前記パイロツト
信号と前記試験用信号の切り替えができるようにしたこ
とを特徴とする衛星通信地球局の送信電力制御装置。
In a satellite communication earth station that communicates via a satellite, beacon receiving means receives a beacon signal emitted from the satellite, and transmits a pilot signal, a test signal, a communication signal, or both toward the satellite. a transmitting means capable of controlling transmission power; a return receiving means for receiving a return signal obtained by returning the pilot signal or the communication signal via the satellite; Comparison control means for generating a control signal for the transmitting means by comparing noise power ratios, and switching means for switching the control mode between a calibration mode and an estimation mode at predetermined time intervals, and when in the calibration mode, the comparison control means to control the transmission power of the own station, and in the estimation mode, control the transmission power of the own station by estimating and converting uplink rain attenuation from fluctuations in the level or carrier-to-noise power ratio detected by the comparison control means. 1. A transmission power control device for a satellite communication earth station, characterized in that the transmission power control device is configured to enable switching between the pilot signal and the test signal.
JP27336585A 1985-12-06 1985-12-06 Transmission power control device for satellite communication earth station Expired - Lifetime JPH0666719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27336585A JPH0666719B2 (en) 1985-12-06 1985-12-06 Transmission power control device for satellite communication earth station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27336585A JPH0666719B2 (en) 1985-12-06 1985-12-06 Transmission power control device for satellite communication earth station

Publications (2)

Publication Number Publication Date
JPS62133831A true JPS62133831A (en) 1987-06-17
JPH0666719B2 JPH0666719B2 (en) 1994-08-24

Family

ID=17526883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27336585A Expired - Lifetime JPH0666719B2 (en) 1985-12-06 1985-12-06 Transmission power control device for satellite communication earth station

Country Status (1)

Country Link
JP (1) JPH0666719B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170227A (en) * 1987-12-25 1989-07-05 Hitachi Ltd Transmission power control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170227A (en) * 1987-12-25 1989-07-05 Hitachi Ltd Transmission power control system

Also Published As

Publication number Publication date
JPH0666719B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
KR100215947B1 (en) Transmitting power control method in cdma
RU2127948C1 (en) Method and device for indicating quality of communication channels
US4004224A (en) Method for fade correction of communication transmission over directional radio paths
US3315164A (en) Control of ground station transmitter power to supply suitable signal level to satellite repeater
EP1511193A2 (en) System and method for boosting and monitoring
MY110864A (en) Dynamic control of transmitting power at a transmitter and attenuation at a receiver
BG98704A (en) System of controlling the power of a transmitter
RU93058305A (en) METHOD AND DEVICE FOR MANAGING TRANSMISSION POWER IN A CELLULAR SYSTEM OF MOBILE RADIOTELEPHONE COMMUNICATION WITH A CODE CHANNEL OF CHANNELS
JPH04372234A (en) Transmission power control system
US4934983A (en) Data communication system having level control means
JPS62133831A (en) Transmission power controller for satellite communication earth station
JPS5992635A (en) Transmit electric power controller of satellite communication earth station
JPH0356021B2 (en)
JP3025918B2 (en) Program switching method
JP2842596B2 (en) Earth station transmission power control method
JPH03117037A (en) Transmitter/receiver for satellite communication
JPS61195028A (en) Repeater for communication satellite
JPS63173426A (en) Transmission power control equipment
JPS62188436A (en) Switching system for satellite communication earth station
JPH01168128A (en) Transmission power control system
JPS5884544A (en) Transmission power control system for satellite communication
JPH0767092B2 (en) Transmission power control device for satellite communication earth station
JPS62188438A (en) Transmission power control system
CN110913509A (en) Single antenna system of foundation base station and foundation base station
JPS5884545A (en) Transmission power control system for satellite communication