JPS5957147A - Method and apparatus for inspection utilizing nuclear magnetic resonance - Google Patents

Method and apparatus for inspection utilizing nuclear magnetic resonance

Info

Publication number
JPS5957147A
JPS5957147A JP57168180A JP16818082A JPS5957147A JP S5957147 A JPS5957147 A JP S5957147A JP 57168180 A JP57168180 A JP 57168180A JP 16818082 A JP16818082 A JP 16818082A JP S5957147 A JPS5957147 A JP S5957147A
Authority
JP
Japan
Prior art keywords
signal
magnetic field
subject
magnetic resonance
nuclear magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57168180A
Other languages
Japanese (ja)
Inventor
Hideto Iwaoka
秀人 岩岡
Kenji Fujino
健治 藤野
Sunao Sugiyama
直 杉山
Hiroyuki Matsuura
裕之 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP57168180A priority Critical patent/JPS5957147A/en
Publication of JPS5957147A publication Critical patent/JPS5957147A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4818MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
    • G01R33/482MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space using a Cartesian trajectory

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To forcibly bring magnetization to thermal equlibrium, by a method wherein an object to be inspected is excited by a specific angle pulse at the beginging of repeated inspection sequence and the specific angle pulse is again applied at the point of time when the echo signal at the end of sequence becomes max. CONSTITUTION:Gradient magnetic fields in three axis directions crossed at right angles, that is, in an x-, a y- and a z-axes are controlled through a gradient magnetic field control circuit 4 and the applications of various kinds of pulses for exciting an object to be inspected through a gate circuit 61 are controlled by a controller 60. In this case, after an object to be inspected is excited by a 90 deg. pulse at the begining of repeated inspection sequence, an echo signal due to nuclear magnetic resonance is formed by a predetermined gradient magnetic field and an exciting pulse. When the 90 deg. pulse is again applied at the point of time when the echo signal becomes max., the direction of magnetization is forcibly directed to the direction for bring said direction to thermal equilibrium state and rapidly returned to the good initial state for starting the next sequence to form a tomographic image having high S/N and high resolving power.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は入核磁91づ!゛鴫(++uclear ma
g++eLicresonance )(り下これをr
 N M It 、1と略称する)現S1を第11用し
て、被検体内における特定原子核分布等をネル検体外部
より知るようにした核磁気共鳴による検査方法及び検査
装置に関するものである。 本発明の説明に先ブ、Jって、けじめにNMRの原理に
ついて概略を説明する。 原子核は、陽子と中に1子とからプ、cっでおり、これ
らは全体として、核スピン角運動量■で回転1゜て、い
るとみプCされる。 第1図1.−t 、水素の原子核(’n )を示したも
ので、(イ)K示すよへに1個の陽子Pからなり、スピ
ン量子数1/2で表わされる回転をしている。ここで陽
子I)は、(ロ)に示すように正σ)電荷1・をも1、
ているので、原子核の回転に従い、磁気モーメントフが
生ずる。すなわち、一つ一つの水素の原子核ハ、ソれぞ
れ−り一つの小さな磁石とみブjせる。 第2図は、この点を模式的に示した説明図で、鉄のよう
な強磁性体では、この微小磁石の方向が(イ)に示すよ
うに揃へており、全体として磁化が観測さ第1る。こ第
1に対して、水素等の場合、微小磁石の方向(9包モー
メントの向を)は回に示すようfランダムであって、全
体として磁化は見られない。 ここで、このような物質に、Z方向の静磁場++。 を印加すると、各原子核がI−Ioの方向に揃う(核の
エネルギ学位がZ方向にM磁化される)、。 第3(Atイ)は、水素J3ij、−r杉についてこの
打子を示したものである。水累原イ核のスピン量子数は
/2であるから、第5図(ロ)に示−1ように、−ンと
+1/!02つの準位に分か矛]る、2つのエネルギー
準位間のエネルギー差ΔEは、(1)式で表わさ第1ろ
。 Δ1弓=rk+10           ・・・・・
・(1)ただし、γ:磁気回転比 1; = h/2π 11ニブランク定数 ここで各JJに子核には、静磁場+10によ。て、ブ・
・吊 1、る力が加わるので、原子核はZ軸のまわりを、(2
)式で示す」ごつな角速度ωで歳差運動する。 ω−γIIn (ラーモア角速度)   ・・・・・・
(2)この状態σ)早に角速度ωに対応する周波数の電
磁#(通常う、;オ波)を印加すると、共鳴がおこり、
原イ核は(1)式で示されるエネルギー差ΔEに相当す
イ)エネルギーを吸収して、高い方のエネルギー準位に
遷移する。核スピン角運動量を持つ原子核が数fm類混
在して〜・ても、各原子核〜によって磁気回転比γが異
なイ)ため、共鳴する周波数が異なり、したがって特定
の原子核の共鳴のみをとりだすことがで六る。また、そ
の共鳴の強さを測定すれば、原子核の存在相も知ること
ができる、また、共嶋徒、緩和時間と呼げれる時定斂で
定士る時間の後に、高い準位へ励起された原子核は、低
い準位へもどる。この緩和時間のうち、特に1゛1と呼
ばれろスピン−格子間緩和時間(W緩和時間)は、各化
合物の結合の仕方に依存している時定数であり、正常組
織と悪件腫瘍とでは、値が大きく異なることが知られて
いる。 ここでは、水素原子核(1■)について説明したが、こ
の他にも核スピン角運動171をもつ原子核で同様の測
定を行なうことが可能であり、水素原子核以外に、リン
原子核(B I p )、炭素原子核(15C)、ナ)
 IJウム原子核(25Na)、フッ素原子核(F)、
酸素原子核(170)等に適用可能である。   □こ
のように、NMRによって、特定原子核σ)存往年およ
び子の緩和時間をg+足−することがで鍍るので、物/
il、j内の4!I定原子核に′)いての種々ノ化学的
情報′?X−Ji去ることにより、被検体内のf重々の
検をを行なうことができろ。 bt来より、このようブ<N Mnを利用した検論二装
市として、X紳C1】1“と同様な原理で、被検体の仮
想輪切り部分σ】701ンを励起し、各プロン□り/−
IンにX・」応するNMI’を共鳴信号を、被検体の裏
り多くの方向について求め、被検体の各位置におけろN
MrL共Q’% (δ号強度を再構成法によって求める
ものがある。 第4図は、このような従来装置12VCおける検査手法
の一例を説明するための動作波形図であるつ被検体に、
はじめに第4図(ロ)に示すようにZ勾配磁場()2と
、(イ)に示すように細い周波数スペクトル(f)のI
t Fパルス(qu’パルス)’c印加する。この場合
、ラーモア角速度ω=γ(11o+Δ0.)となる面だ
けσ)プロトンが励起され、磁化Mを第5図(イ)に示
すよりなωで回転する回転座標系−にに示せば、y′軸
方向に9
The present invention is 91 pieces of nuclear magnetism!゛clear ma
g++eLicresonance) (Rishita this r
The present invention relates to an inspection method and an inspection apparatus using nuclear magnetic resonance, in which the current S1 (abbreviated as N M It , 1) is used as the 11th to know the distribution of specific atomic nuclei in the subject from outside the sample. Before explaining the present invention, the principles of NMR will be briefly explained in Sections B and J. The atomic nucleus consists of a proton and one child inside, and these as a whole are considered to be rotating 1 degree with nuclear spin angular momentum ■. Figure 11. -t, shows the hydrogen nucleus ('n), which consists of one proton P as shown in (a) K, and rotates as expressed by the spin quantum number 1/2. Here, the proton I) also has a positive σ) charge of 1, as shown in (b),
Therefore, as the nucleus rotates, a magnetic moment is generated. In other words, each hydrogen nucleus can be seen as a small magnet. Figure 2 is an explanatory diagram schematically showing this point. In a ferromagnetic material such as iron, the directions of these micromagnets are aligned as shown in (a), and magnetization is observed as a whole. First. On the other hand, in the case of hydrogen, etc., the direction of the micromagnets (the direction of the 9-shell moment) is f random as shown in the diagram, and no magnetization is observed as a whole. Here, a static magnetic field ++ in the Z direction is applied to such a substance. When is applied, each atomic nucleus is aligned in the I-Io direction (the energy level of the nucleus is magnetized by M in the Z direction). The third (At) shows this hammer for hydrogen J3ij, -r cedar. Since the spin quantum number of the water nucleus is /2, as shown in Figure 5 (b), -1 and +1/! The energy difference ΔE between two energy levels, which is divided into two energy levels, is expressed by equation (1). Δ1 bow = rk+10...
・(1) However, γ: gyromagnetic ratio 1; = h/2π 11 Nyblank constant Here, the static magnetic field +10 is applied to each JJ child nucleus. T-b-
・Since a suspension force of 1 is applied, the atomic nucleus rotates around the Z axis (2
) precesses at a steep angular velocity ω, as shown by the equation. ω−γIIn (Larmor angular velocity) ・・・・・・
(2) In this state σ), when an electromagnetic wave of a frequency corresponding to the angular velocity ω (usually ω, ω) is applied, resonance occurs,
The proto-I nucleus absorbs energy corresponding to the energy difference ΔE shown in equation (1) and transitions to a higher energy level. Even if several fm nuclei with nuclear spin angular momentum coexist, each nucleus has a different gyromagnetic ratio γ, so the resonant frequencies differ, and therefore it is difficult to extract only the resonance of a specific nucleus. It's six. In addition, by measuring the strength of the resonance, it is possible to know the existence phase of the atomic nucleus.Also, after a time period called relaxation time, which is determined by time convergence, the nucleus is excited to a higher level. The atomic nucleus returns to a lower level. Among these relaxation times, the spin-interstitial relaxation time (W relaxation time), which is called 1゛1, is a time constant that depends on the way each compound binds, and is different between normal tissues and malignant tumors. , it is known that the values differ greatly. Here, we have explained the hydrogen nucleus (1■), but it is possible to perform similar measurements with other atomic nuclei with nuclear spin angular motion 171, and in addition to hydrogen nuclei, phosphorus nuclei (B I p ) , carbon nucleus (15C), na)
IJium nucleus (25Na), fluorine nucleus (F),
It is applicable to oxygen nuclei (170), etc. □In this way, by NMR, the past and past existence of a specific atomic nucleus σ) and the relaxation time of the child are determined by g + + -, so the material /
il, 4 in j! Various chemical information' in the I-determined atomic nucleus? By leaving X-Ji, we will be able to conduct multiple tests inside the subject. bt Since then, as a medical examination using such a block <N /-
Resonance signals are obtained in many directions behind the object, and the NMI' corresponding to the
MrL Q'% (There is a method in which the δ intensity is determined by a reconstruction method. Fig. 4 is an operation waveform diagram for explaining an example of an inspection method in such a conventional device 12VC.
First, as shown in Figure 4 (b), there is a Z gradient magnetic field (2) and a thin frequency spectrum (f) as shown in (a).
Apply tF pulse (qu'pulse)'c. In this case, protons are excited only on the surface where the Larmor angular velocity ω = γ (11o + Δ0.), and the magnetization M is expressed as y in a rotating coordinate system rotating at ω as shown in Figure 5 (a). '9 in the axial direction

【J°向きを変えたものとt【る。続いて、第
4図(ハ)に示すようにX勾配磁場0□を所定の時間+
1だけ加え、これによって磁化Mの位相を(5)式に示
すようにX軸方向に目盛付する。 γL工f+□d+・0.=2π11         
  ・・・・・(3)ただし、r:磁気回転比 ■、工:X方向の被検体長さ げ N−N n:整数(n =−7−7+1 、・・、−1,[1,
+1.・・・、H−+)N:Z方向の分割数 続いて、第4図(=)に示すようにV勾配磁場G、を印
加し、この下で第4図(j→に示すようにNMR・共鳴
信号を検出する。y軸方向け、ラーモア角速度で目盛付
けを行なう1、ここで、磁化Mけ、第5図(ロ)に示す
ように磁場の不均一性によって、r:、v/面内で生卵
方向に次第に分散してゆくので、やがて、NMR,共鳴
信号は減少し、第4V作)に示すように7時間経過して
無くなる。 以下、熱平衡状態に戻るまで1時間待って、次のシーケ
ンスをlV=り返す、この際、x勾配磁場(J。 を印加する所定時間らは、(5)式で決まる値でN回繰
り返される。そして、N回の7−ケンスでイI!られた
N M 11共鳴信号を2次元フーリエ変換することに
よ。て、面内のプロトン密度画像を得ることがで)3゜ このFうIZ動作をなす従来装置においては、第4図に
おいて、NMIl、共鳴信号が無くなるまでの時間τけ
、10〜211+ηSて’Aろが、次のシーケンスに移
ろま予の所5を時間τ′は、緩和時間1゛、のため1 
sec稈度は必要となる。それ故に、X軸方向の分割防
Nを例えば100程度とすれば、その測定に少なくとも
2分以」二の長い時間を必要とする。 ここにおいて、本発明は、従来の手法及び装置における
このようフ、(欠点を除去することを目的にかさfまた
もσ)であ2)。 本発明に係る方法は、90°パルスのil!磁波で被検
体を励起後、勾配磁場の反転、反街によってエコー信号
を作り、このエコー信号が最大の時点で、再び90°パ
ルスの電磁波を印加し、磁化Mを熱平衡状態へ戻す、1
:5にした点に特徴がある。 第6図は本発明の手法を実現するための装置の一実施例
の相数を示すフロ、り図である。図において、1は一移
靜1NJ4)TO(こび)磁場σ)方向をZ方向とする
)を発生させるたN)σ)静磁坦用コイル、2けこのl
1iTI磁場月1コイル1の割病1回路で、例え番イ直
流安定化11:源を含んでいろ一1n枦場用コイル1に
よって発生+1)磁束の密度Haけ、0.IT稈度で)
)す、また灼−昨け1n−4以トであZ)ことが望才し
+11つ 5け勾配?i+7堤用コイルを総括的に示(−たもσ)
、4はこの勾配磁場用コイル5の制御回路である。 TJ’、 7 [9:I (イ)にi、勾配磁場用コイ
ル5の一例を示す構成図で、Z勾配磁場ハSコイルΔ1
. 3/勾配磁場11+コイル32.53、図示してブ
rいがy 11.l配磁場用コイル32.53と同じ形
であ て、90°回転して設置′?e−オするX勾配磁
場用コイルを含んでいる7、こσ)/I−配eτ場用コ
イル3は、一様静磁場110と同一方向磁場で1、f、
 V、 X軸方向にそれぞれ「f般勾配をシ、つ磁場を
発生する。60は制御回路4のコントローラであZ)。 5は#Jr *体に細い周波数スペクトルfのR,F 
/ζζスス11.磁波として力え7.、)励磁コイルで
、矛σ)構成を第7図(r′I)vC示す 6は測定しようとする原子核のNMR共鳴条件に幻応寸
ろ周波τヶ(例えばプロトンでは、42.6Ml+、/
’I’ )のイご会を発生する発振器で、矛の出力は、
コントローラ60からの信号によって開閉が制御される
ゲート回路61  パワーアンプ62を介して励磁コイ
ル5に印加されている。7は初検体におけるNMR共p
(l (i号な検出するための検出コイルで、モの構D
V、は第7図(ロ)に示す励磁コイルと同じで、励磁コ
イル5に対して90°回転して設置されているうなお、
この(の化コイルは、被検体にでλるだけ近接して設置
f’i″さJlろことか望ましいが、必要に応じ”C、
lff1i V?′lコイルと前月]さ一疹てもよい。 71は検出コイル7から得られるNMR共鳴信号(F 
I D : frceir+rlucjion dec
ay )を増巾する増「1】器、72は位相検波回路、
73は位相検波された増lJ器71からの波形信号を記
1.Ffするウェーブメモリ回路で、A/D変換器を含
んでいる−8はウェーブメモリ回路73からの信号を例
えば光ファイバで構成さねる伝送路74を介して入力し
、所定の信号処理を施して断層像を得るコンピュータ、
9は得られた断層像を表示するテレビジ4ン壬二ターの
ようtr表示器である。 このようにl’ Dψした装置゛りσ)動作を、次に第
8図及び第9図を参1iQ L i、rがら説明する。 才イ、はじめに、制御回路2は静磁場用コイル1に電流
を流し、ネ皮検体C枦検体は各コイルの円筒内に設置さ
れろ)に静磁場I1.を与えた状態とする。この状態に
おいて、コントローラ60は、はじめに制御回路4を介
してX勾配磁場用コイル31に電流を流し、第8図(ロ
)に示すようにZ/I:J配磁場(1z+11i4える
。十だ、O1+が与えられている下で、ゲート回路61
を開とし、発振器6からの信号を増巾器62を介して励
磁コイル5に印加し、第8図(イ)に示すように細いス
ペクトルを持。た90パルスで、被検体の1面を励起す
る。なお、第8図(ロ)において、G21に絖(0□、
は、SlN比を良好にするためであって、公知の手法で
ある。 この時A11においては、磁化Mは第9図(イ)の回転
座標系に示すように、l′軸方向に906向きを変えろ
、続いて、X勾配磁場用コイル52に電流を流し、第8
図(ハ)に示すよ5 VC7)r定の大般さのP炉i 
0.を所定時間電アがけ印加する Hいて、7次1配磁
場コイル3己にけじめに例えば正極性の電流を流し、■
勾配磁1+−>、−1−rlyを所定+1ν間+vだけ
印加し、この下で検出ぞ、イル7からイnられイ)第8
図(ホ)に示すようブr N Mn・4]・ql!信号
データE1として検出す乙、このNMII共III”、
信号が検出六ねている時点(例えば璽、の時点)では、
磁化Mは第9図(ロ)に示すように、x′I  X/面
内で破線矢印方向に次第に分散していく途中にt)る。 検出コイル7で杉)出されるN M R,共l′lli
′、信号は、時間とともに次第に減衰し、やがて無くな
ろうこの信号は、増TI]器71で増[1]さね、位相
検波回路72で位相検波され、ウェーブメモリ回路73
を介してコンピュータBvc印加される。ここで、NM
R共11β信号はフーリエ変換され、1ブロジエクシ。 ンの信号となる。これまでの動作は従来装置と同様であ
る。 90パルスの電磁波を印加してからτ時間経過後(N 
M rt共nl:j信号が無<1、(るまでの時間)、
コントローラ60け、y勾配磁場コイル33に流す雷渡
の向きを反転させ、f+極慴の11;箭を流し、逆方向
のV列配磁場−OJを第8図(1;)に示すようにDt
定時間lyだけ印加すイ)。そして、この下で、検出コ
イル7から得られる第8図G1−)に示すよう?CN 
M IN−Iに暗信号(こ第1をエコー信号と呼、ζ)
をデータト】fとして検出する、このエコー信号が検出
さflている時点(例えば第2の時点)では、磁化Mは
、第9図(ハ)に示すようにj、、%1′面内で破線矢
印方向に次第に1i巴合していく途中にある。紛゛いて
、第8図(ハ)に示すように15「定時11JI I、
だけX勾配磁場 G工を印加し、続いて第8図(ロ)に
示すようにX勾配磁場−G22、−(第7.。 を印加し、−02,を印加している下で、今度は第8図
(イ)に示すように90°−rパルスの電磁波を印加す
る。 最初ノqO°パルスσ)電磁波を印加してからτ時間軽
過した後のシーケンス(エコー信号が待られるシーケン
ス)は、前のシーケンス(データEIを検出するシーケ
ンス)を逆11i序で反復させた本のである。したがっ
て、2i時間の間、ネル検体の状態が変らないものとす
れば、前のシーケンスで得られ7−データ■・;1と、
j−%σ)シーケンスでイnられたエコー信号のデータ
E(とは、時間軸に幻して対称な信号波形とプrろ。 後)7−ケンスにおいて、I3の時点(エコー信号が最
大とtCろ■、lr盾)で、90°−τ′パルスの正磁
波を印加すると1.第9図し)に示すように磁化Mがi
軸方向にφ;制的に向けられる。ここで、磁化Mは、図
示するように緩和時間ゴ2のために、7;軸に完全に一
致せず、少し分散した状態にある。 この状態から少しの時間τ′紅過後、緩和によって磁化
Mけi軸に一致する。15の時点から、磁化) Mがi軸に一致する才での回復時間τ′は、130時点
では磁化Mが7.′軸から僅かに分散しているだけであ
るところから、緩和時間′1”1に比較して十分短かく
、例えば4τ程度でよい。 回街時間τ′経過した時点で、第1回目のシーケンスが
終了し、以後、同様のシーケンスを繰り返+0各シーケ
ンスでは、神−検体に力えるX勾配磁場Oiの印加時間
1.を(5)式の条件に従ってグセ、そttソj+σ)
シーケンスについて、検出コイル7からN M n J
l: n!”+信−β及びエコー信号を得ろ。 コンビ1.−夕8は、各シー・ケンスにおいて、例えば
けl−めに出力されるN M n共’v” (i号のデ
ータ1’i1. E2・・・σ)N個なγトとりのグル
ープとして、2次元7−リ、寄換演算を行t【い、画像
を得、これを表示器9に表示−動ろつ なオd1」−記ではコンピュータ8は、エコー信号を利
用しないことを層圧したものであるが、各シーケンスに
おいて、はじめに出力さf1ルN M R,JI:鳴信
号(これを単にN M 11.信号と略す)の各データ
M1. !’、2・・よと、続いて出力されるエコー信
号の各データE H+ M2・・の両方を利用してもよ
いうこの場合、利用の41方とし【は例えば次のようプ
cものがある。 +IINMTL信号とエコー信号の時間軸を反転した信
号との平均値を演幻し、これをひとつのデータとして、
2次元フーリエ変換演算を行ない、ひとつの断層像を得
ろ。 (II+NM几信号を利用してプロトン密度画像を得る
とともに、NM几倍信号エコー信号の時間軸を反転した
信号との差信号を演算し、これをひとっσ)データとし
7てフーリエ変換演算を行t「い、T2と呼ばJする横
緩和時間(T2は近傍の電イ核同志のスピンの相互作用
に起因している) Vci−; 6 (′r2画像の両
方の画像を得る。 fllil  前記(11)に松いて、プロトン密度1
iTi像と′1゛フ両像とシ合成1、て他の別の画像を
得る。 6v)  lr tRσ)シーケンスのN M It倍
信号エコー信号をいくつか平均シ1、これをひとつのデ
ータとする。 これらの手法をとることによって、slN比を良好にし
、良り11の画像を得ることができる。lまだ、診断の
目的に応じて、これらの手法を選択することにより、目
的に適した断層像を得ることができろ。 第10図及び第11し1は本発明に係る手法の他の例を
示す動作波形図である。 第10図に示す手法は、本発明を投影復元法(1’rn
jec+ion rccnn+Nrt+cLion )
に適用したものである。 第10図(イ)、(ロ)に示すように、はじめに、Z勾
配磁場G2を印加している下で 90″パルスの電磁波
を印加し、Uにいて、第10図(ハ)、に)に示すよへ
に、X勾配磁SaよとV勾配磁場(1,を同時に加え、
これによって2?′に元勾配磁場を作り、この下で(ホ
)に示すようL N M It共口自信号を検出する。 #彎いて(9n′パルスを印加してからτlr、’?間
経禍後)、(ハ)、に)に示すように禅方向のX勾配P
)J%−01及びy勾配磁場−Gyを同時に加え、この
下で、(ホ)に示すようにNM几共鳴信号(これをエコ
ー信号という)をデータ1シ;として検出する。その後
、(9o°パルスを印加してから2τ経過した時点、す
なわち、エコー信号が最大になった時点)、逆方向のZ
勾配磁場〜()、Iを印加し、この1で、900.パル
スの電磁波を印加する。 以下、回復時間τ′だけ待って、同l:よ5に次のシー
ケンスを繰り返す。各シーケンスにおいては、(1ア、
(1,を少しづつ変身、これによって各プロジェクショ
ンに対応するNM几共鳴信号及びエコー信号を被検体の
数多くの方向について求めろことができる。 第11図に示す手法は、本発明を5elec+1vee
xciJRjinnI inr+法に適用したイ、ので
力)ろ。 第11図(イ)、(ロ)に示すように、けじめに、Z勾
配磁μ2(12を印加している下で、90’パルスの電
磁波を印IJl+ L、、第121xl (イ)iτ示
+被検体ITn17ffis、面をFJ!l起−1ろ。 番Aいて、第11図(ハ)、(イ)に示すように、X勾
配磁場(1□も・印加してぃZ)下で、180′パルス
を印加111、これに」:って第11図手法) VC示
すように87.面上のラインΔyだけを励起する。IN
いで、第j1図に)、 f+で)に示すようにN M 
IL J1H鳴信暗灯スピンエコー)が最大とな7)A
でy勾配磁場oyを印加し、どの下でスピンエコーをデ
ータト:1として検出する。その後(qo″パルスを印
加してから1時間経過後)、逆方向の勾配磁炉+ −o
、 、 ゴ’!l−G!を順次印加し、−G2を印“加
して℃・る下で90″′−Jeパルスの電磁波を印加す
るっそして、(’]、 、−O,を印加している下で得
られる各データI’:I T Mlをフーリエ変換する
ことによって、第12図(ロ)に示すラインΔν上のX
軸方向のプロトン密度分布を(+Jろことかでとる。以
後は、o!/ + ”!/の大きさを少しづつ夕え、前
記のシーケンスを繰返し、Sz面全全面2次Tデー々を
得ることがで知る。 以J: 、i32す1したように、本発明に係る手法は
、少frくとも2種のパルy、 (qo6パルス、qi
aerパルス)の茅列によって、磁化Mの向六を強制的
に変え、短時間で磁化MfX−−平衡状態へ戻すように
したもので、短時間で、枝棒体内のIr¥輩原子核分布
等に関連する断層像をイ!1ろことがで袴る。 また、被検振からはNM几倍信号びエコー信号を#J’
することかでとろので、これらの各信号を利用すること
によって、S/N比が良好で、分解能の良い断層像を得
ることができる。
[J°It is the same as the one whose direction has been changed. Next, as shown in Figure 4 (c), the X gradient magnetic field 0□ is applied for a predetermined time +
1 is added, thereby grading the phase of magnetization M in the X-axis direction as shown in equation (5). γL engineering f+□d+・0. =2π11
・・・・・・(3) However, r: Magnetic rotation ratio ■, d: Length of object in X direction N-N n: Integer (n = -7-7+1, . . . , -1, [1,
+1. ..., H-+) N: Number of divisions in the Z direction Next, as shown in Figure 4 (=), a V gradient magnetic field G is applied, and under this, as shown in Figure 4 (j → Detect the NMR resonance signal.Graduation is performed in the y-axis direction using the Larmor angular velocity. As it gradually disperses in the direction of the raw egg within the / plane, the NMR and resonance signals eventually decrease and disappear after 7 hours as shown in Section 4V). Hereafter, wait one hour until the state returns to thermal equilibrium, and then repeat the next sequence lV = 1V. At this time, the predetermined time for applying the x gradient magnetic field (J) is repeated N times with the value determined by equation (5). .Then, by performing two-dimensional Fourier transformation on the N M 11 resonance signal obtained by N times of 7 times, an in-plane proton density image can be obtained). In the conventional device that operates, in Fig. 4, NMIl, the time τ until the resonance signal disappears is 10~211+ηS, and the time τ' is 10~211+ηS. Relaxation time 1゛, due to 1
sec culmness is required. Therefore, if the division ratio N in the X-axis direction is, for example, about 100, a long time of at least 2 minutes or more is required for the measurement. Here, the present invention aims to eliminate such disadvantages (also σ) in conventional methods and devices. The method according to the invention comprises a 90° pulse of il! After exciting the subject with magnetic waves, an echo signal is created by reversing the gradient magnetic field and anti-gauge, and when this echo signal is at its maximum, a 90° pulse of electromagnetic waves is applied again to return the magnetization M to a thermal equilibrium state, 1
:The feature is that it is set to 5. FIG. 6 is a flowchart showing the number of phases of an embodiment of an apparatus for implementing the method of the present invention. In the figure, 1 is a static magnetic field coil that generates a static 1 NJ4) TO (complicated) magnetic field σ) direction is the Z direction), and 2-digit l
1 i TI magnetic field 1 coil 1 distribution 1 circuit, including the source DC stabilization 11: source + 1) magnetic flux density Ha, 0. at IT culm)
) Su, also - yesterday's 1n-4 was more than Z) is a wishful thinking + 11 and 5 slope? A comprehensive view of the i+7 embankment coil (-Tamoσ)
, 4 is a control circuit for this gradient magnetic field coil 5. TJ', 7 [9: I (A) is a configuration diagram showing an example of the gradient magnetic field coil 5, where the Z gradient magnetic field C S coil Δ1
.. 3/Gradient magnetic field 11 + coil 32.53, shown in the figure 11. Is it the same shape as the magnetic field coil 32.53, rotated 90 degrees and installed? The coil 3 for the X gradient magnetic field, which contains the coil for the X gradient magnetic field 7, this σ)/I, for the eτ field, has a magnetic field of 1, f, in the same direction as the uniform static magnetic field 110.
60 is the controller of the control circuit 4 (Z). 5 is #Jr *R, F of the narrow frequency spectrum f on the body
/ζζsus 11. Force as magnetic waves7. ,) excitation coil, σ) configuration is shown in Figure 7 (r'I)vC.
'I') is an oscillator that generates an electric shock, and the output of the spear is
A gate circuit 61 whose opening/closing is controlled by a signal from a controller 60 is applied to the excitation coil 5 via a power amplifier 62. 7 is the NMR co-p of the first sample
(L (Detection coil for i detection, structure D
V is the same as the excitation coil shown in FIG.
It is desirable to install this coil as close as λ to the subject, but if necessary,
lff1i V? 'l Coil and the previous month] You can also get a rash. 71 is an NMR resonance signal (F
ID: frceir+rlucjion dec
ay); 72 is a phase detection circuit;
73 indicates a phase-detected waveform signal from the amplifier 71.1. Ff wave memory circuit 8, which includes an A/D converter, inputs the signal from the wave memory circuit 73 via a transmission line 74 made of, for example, an optical fiber, and performs predetermined signal processing. A computer that obtains tomographic images,
Reference numeral 9 denotes a tr display, like a television set, which displays the obtained tomographic image. The operation of the device (σ) with l'Dψ in this manner will now be described with reference to FIGS. 8 and 9. First, the control circuit 2 applies a current to the static magnetic field coil 1, and applies a static magnetic field I1. Assume that the state is given. In this state, the controller 60 first sends a current to the X gradient magnetic field coil 31 via the control circuit 4 to generate a Z/I:J magnetic field (1z+11i4) as shown in FIG. Under O1+, the gate circuit 61
is opened, and the signal from the oscillator 6 is applied to the excitation coil 5 via the amplifier 62, resulting in a narrow spectrum as shown in FIG. 8(a). One side of the subject is excited with 90 pulses. In addition, in Figure 8 (b), G21 has a thread (0□,
This is a known method for improving the SIN ratio. At this time, at A11, the magnetization M changes its direction 906 in the l' axis direction as shown in the rotating coordinate system of FIG.
As shown in Figure (c), 5 VC7) P furnace i with constant r
0. A current is applied for a predetermined period of time, and then a current of, for example, positive polarity is carefully applied to the 7th order 1st distribution coil 3, and
Apply gradient magnetism 1+->, -1-rly for a predetermined +1ν period of +v, and detect under this.
As shown in figure (E), Br N Mn・4]・ql! Detected as signal data E1, this NMII and III”,
At the time when the signal is detected (for example, at the time of the seal),
As shown in FIG. 9(b), the magnetization M is in the process of gradually dispersing in the direction of the dashed arrow in the x'IX/ plane. NMR outputted by the detection coil 7, both l'lli
', the signal gradually attenuates over time and eventually disappears. This signal is multiplied by the intensifier 71, phase detected by the phase detection circuit 72, and then detected by the wave memory circuit 73.
The computer Bvc is applied via. Here, NM
Both R and 11β signals are Fourier transformed and have 1 brogiex. signal. The operation up to now is the same as that of the conventional device. After τ time elapses after applying 90 pulses of electromagnetic waves (N
M rt and nl: j signal is absent < 1, (time until it occurs),
The controller 60 reverses the direction of the voltage applied to the y-gradient magnetic field coil 33, flows the 11; Dt
Apply only for a fixed time ly). And, below this, as shown in FIG. 8 G1-) obtained from the detection coil 7? C.N.
Dark signal at MIN-I (the first one is called the echo signal, ζ)
At the point in time when this echo signal is detected as fl (for example, the second point in time), the magnetization M is within the j, %1' plane as shown in FIG. 9(c). It is in the middle of gradually joining 1i in the direction of the dashed arrow. Confusingly, as shown in Figure 8 (c), 15 "on-time 11JI,
Then, as shown in Fig. 8 (b), an X gradient magnetic field -G22, - (7th..) is applied. As shown in Fig. 8 (a), a 90°-r pulse electromagnetic wave is applied.The sequence after applying the electromagnetic wave for τ time after first applying the electromagnetic wave (the sequence in which an echo signal is waited for) ) is a book in which the previous sequence (sequence for detecting data EI) is repeated in reverse 11i order. Therefore, assuming that the state of the sample does not change during the 2i time period, the data obtained in the previous sequence will be 7-data ■・;1.
Data E of the echo signal input in the j-%σ) sequence (means a signal waveform that is symmetrical on the time axis). When a positive magnetic wave of 90°-τ' pulse is applied with tC and lr shields, 1. As shown in Figure 9), the magnetization M is i
Axially φ; strictly oriented. Here, as shown in the figure, the magnetization M does not completely coincide with the 7; axis and is in a slightly dispersed state due to the relaxation time Go2. After a short period of time τ' in this state, the magnetization M-axis coincides with the i-axis due to relaxation. From the time point 15, the recovery time τ' when the magnetization M coincides with the i-axis is as follows: At the time point 130, the magnetization M is 7. Since there is only a slight dispersion from the ′ axis, it is sufficiently short compared to the relaxation time ′1”1, for example, about 4τ. When the rounding time τ′ has elapsed, the first sequence After that, the same sequence is repeated +0 In each sequence, the application time 1 of the X gradient magnetic field Oi applied to the specimen is adjusted according to the conditions of equation (5), so tt so j + σ)
Regarding the sequence, from detection coil 7 N M n J
l: n! ``Obtain + signal -β and echo signal. Combi 1.-E 8 are output in each sequence, for example, N M n 'v'' (data 1'i1. E2...σ) Perform a two-dimensional transposition operation as a group of N γ-tori to obtain an image and display it on the display 9. In the above, the computer 8 is designed not to use echo signals, but in each sequence, it first outputs f1, NMR, JI: ringing signal (this is simply referred to as NM11.signal). ) of each data M1. ! ', 2..., and each data E H + M2... of the echo signal that is output subsequently can be used. be. The average value of the +IINMTL signal and the signal obtained by reversing the time axis of the echo signal is expressed, and this is treated as one data,
Perform a two-dimensional Fourier transform operation to obtain a single tomographic image. (Obtain a proton density image using the II+NM signal, and calculate the difference signal between the NM multiplied signal and the echo signal with the time axis reversed, and use this as one σ) data7 to perform Fourier transform calculation. Transverse relaxation time called T2 (T2 is caused by the interaction of spins of nearby electron nuclei) Vci-; 6 (Obtain both images of 'r2 image. Based on (11), the proton density is 1
Another image is obtained by combining the iTi image and the '1' image. 6v) Average several N M It times signal echo signals of the lr tRσ) sequence and use this as one data. By adopting these methods, it is possible to improve the slN ratio and obtain an image with a quality of 11. However, by selecting one of these methods depending on the purpose of diagnosis, it is possible to obtain a tomographic image suitable for the purpose. FIGS. 10 and 11-1 are operation waveform diagrams showing other examples of the method according to the present invention. The method shown in FIG.
jec+ion rccnn+Nrt+cLion)
It was applied to As shown in Figures 10 (a) and (b), first, while applying a Z gradient magnetic field G2, a 90'' pulse electromagnetic wave is applied, and when at U, in Figure 10 (c), As shown in , X gradient magnetic field Sa and V gradient magnetic field (1,
2 by this? An original gradient magnetic field is created at ', and under this field, the L N M It co-exit signal is detected as shown in (e). # After applying the 9n' pulse, the X gradient P in the Zen direction is shown.
) J% -01 and y gradient magnetic field -Gy are applied simultaneously, and under this, an NM resonance signal (this is called an echo signal) is detected as data 1, as shown in (e). After that, (at the time when 2τ has passed after applying the 9o° pulse, that is, when the echo signal reaches the maximum), the Z
A gradient magnetic field ~(), I is applied, and with this 1, 900. Apply pulsed electromagnetic waves. Thereafter, wait for the recovery time τ' and repeat the following sequence in step 1:5. In each sequence, (1a,
(1) is transformed little by little, thereby making it possible to obtain NM resonance signals and echo signals corresponding to each projection in many directions of the object. The method shown in FIG.
xciJRjinnI applied to the inr+ method, so force) ro. As shown in FIGS. 11(a) and 11(b), while applying the Z gradient magnetic μ2 (12), apply a 90' pulse electromagnetic wave IJl+L,, 121xl (a) iτ. + Subject ITn17ffis, with the surface FJ!l start -1. As shown in Fig. 11 (c) and (a), under the X gradient magnetic field (1□ also applied). , 180' pulse is applied 111 to this (Figure 11 method) VC 87. as shown. Excite only the line Δy on the surface. IN
N M as shown in Fig.
IL J1H Narushin dark light spin echo) is maximum 7) A
A y gradient magnetic field oy is applied, and spin echoes are detected as datat:1 under which. After that (one hour after applying the qo″ pulse), the gradient furnace + −o in the reverse direction
, , Go'! l-G! are applied sequentially, -G2 is applied, and an electromagnetic wave of 90'''-Je pulse is applied at °C. By Fourier transforming the data I': I T Ml, X on the line Δν shown in FIG.
The proton density distribution in the axial direction is taken using the (+J lococoder). After that, the magnitude of o!/ + "!/ is gradually increased and the above sequence is repeated to obtain secondary T data over the entire Sz surface. As mentioned above, the method according to the present invention provides at least two types of pulses, (qo6 pulse, qi
The direction of the magnetization M is forcibly changed by a row of aer pulses, and the magnetization MfX returns to the equilibrium state in a short time. Check out the tomographic images related to this! 1. Wear hakama with rokoto. In addition, the NM multiplied signal and echo signal are #J'
Therefore, by using each of these signals, a tomographic image with a good S/N ratio and high resolution can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は核磁気モーメントを説明するための説明図、第
2図は核磁気モーメントの配列について説明するための
説明図、第3図は静磁場による核磁勿モーメントの整列
について説明するための図、第4図は従来の手法の一例
を説明するための動作波形図、第5図は第4図の手法に
よる磁化Mの方向を説明するtめの説明図、第6図は本
発明に係る手法を実現するための物置の一例を示すプロ
。 り図 fp; y図(イ)は第6図装置に用いら幻、て
いる勾配磁場コイルσ)−例を示す構成図、(ロ)は同
じ< Jil+磁コイ磁力イル’r lj’7図、第8
図は本発明に併る手法のひとつを説明するための動作波
形図、第9図は本イ1明σ)手法によるそ→1モ第1の
時点での磁化Mの方向な回転μm!標系りに示した説明
図、第1n図及び第11図は本発明の手が一σ)仙σ)
例を示す動作波形図、第12図は第11図手法において
印加する電磁波パルス釦よる励起面の説明図である。 1・・・靜鋲場用コイル、2・・・静磁場)hコイル制
御回路、3・・・勾配磁場用コイル、5・・・励磁コイ
ル、6〔1・・・コントローラ、7・・・検出コイル、
8・・・コンビ7−タ。
Figure 1 is an explanatory diagram for explaining nuclear magnetic moments, Figure 2 is an explanatory diagram for explaining the arrangement of nuclear magnetic moments, and Figure 3 is an explanatory diagram for explaining the arrangement of nuclear magnetic moments due to a static magnetic field. , FIG. 4 is an operation waveform diagram for explaining an example of the conventional method, FIG. 5 is a tth explanatory diagram for explaining the direction of magnetization M by the method of FIG. 4, and FIG. 6 is a diagram according to the present invention. A professional showing an example of a shed to realize the method. Figure fp; Figure y (A) is a configuration diagram showing an example of the gradient magnetic field coil σ) used in the device in Figure 6, and (B) is the same. , 8th
The figure is an operation waveform diagram for explaining one of the methods according to the present invention, and Fig. 9 is a rotation μm in the direction of magnetization M at the first point in time according to the present method. The explanatory diagrams shown on the standard scale, Figures 1n and 11 are the methods of the present invention.
An operational waveform diagram showing an example, FIG. 12 is an explanatory diagram of an excitation surface by an electromagnetic wave pulse button applied in the method of FIG. 11. DESCRIPTION OF SYMBOLS 1... Coil for static magnetic field, 2... h coil control circuit for static magnetic field, 3... Coil for gradient magnetic field, 5... Excitation coil, 6 [1... Controller, 7... detection coil,
8...Combi 7-ta.

Claims (1)

【特許請求の範囲】 (1)被検体に一様静磁場な力えるとともに被検体に核
磁気共鳴を誘起させる周波数の電磁波を印?加し、更に
前記被検体にこの被検体からの核磁気共鳴信号の放射部
分を特定するための勾配磁場を与え、前記被検体の特定
部分からの核磁気共鳴信号(NMR信号)を得るように
した検査方法において、 はじめに90パルスの電磁波で被検体を励起後、勾配磁
場を印加し、次に前記勾配磁場の方向を反転させるとと
もに反復させエコー信号をつくり、このエコー信号が最
大の時点で再び90パルスの電磁波を印加し、磁化を熱
平衡状態へ戻すようにし、以後前記のシーケンスを所定
間隔で繰り返すことを特徴とする核磁気共鳴による検査
方法。 (2)  ひとつのシーケンスの中で得られるNMIL
信号とエコー信号の時間軸を反・転した信号との平均値
を演算し、これを1プロジエクシヨンのデータとして得
るようにした特許請求の範囲第1争記載の核磁気共鳴に
よる検査方法。 (5) NMrL信号とエコー信号の時間軸を反転した
信号との差信号を演算し、こね、を1プロジェクシ、ン
のデータとし、所定の演算を行な〜て1゛2画像を得る
ようにした特許請求の範囲第1項記載の核磁気共鳴によ
る検査方法。 (4)  複数のシーケンスで得られる複数個のNMI
+。 信号及びまたは複数個のエコー信号を平均化し、これを
1プロジエクシヨンのデータとするようにした特許請求
の範囲第1項記載σ)核磁気共鳴による検査方法。 (5)  被検体に一様静磁場を力える静磁場形成手段
、前記被検体の2軸方向、X軸方向及びY軸方向にそれ
ぞれ勾配をもつ磁場を発生し被検体からの核磁気共鳴信
号の放射部分を特定する磁場発生手段、前記被検体にパ
ルス状の電磁波を印加するための励振手段、この励振手
段Vr−t5先/、信芸を制御する制御手段、前記被検
体かし、の核磁気共鳴信号(N M 11信号)を(φ
知する手段、こび)検知手段からσ)信号を人力中ると
ともに所定の演算を行な−て断層像を得る演幻手段も・
具備し、 前記磁場発生手段及びfljl! fal1手段は、は
じめに・汀パルスの電磁波で被検体を励起後、勾配磁場
を印加し、次に前記勾配磁場の方向を反転させろととも
に反復さ一す・てエコー信号をつくり、このエコー信号
が最大の時点で再び90゛パルスの電磁波を印加し、磁
化を熱平衡状態へ戻すようにし、以移前配のンーケンス
を所定間隔で繰り放す動作をブ[すことを特徴とする咳
磁気−11鳴による検査装置
[Claims] (1) Applying a uniform static magnetic field to the subject and marking an electromagnetic wave with a frequency that induces nuclear magnetic resonance in the subject? In addition, a gradient magnetic field is applied to the subject to identify a radiation part of a nuclear magnetic resonance signal from the subject, so as to obtain a nuclear magnetic resonance signal (NMR signal) from a specific part of the subject. In this testing method, the subject is first excited with 90 pulses of electromagnetic waves, then a gradient magnetic field is applied, and then the direction of the gradient magnetic field is reversed and repeated to create an echo signal, and when this echo signal is at its maximum, it is repeated again. An inspection method using nuclear magnetic resonance, characterized in that 90 pulses of electromagnetic waves are applied to return the magnetization to a thermal equilibrium state, and thereafter the above sequence is repeated at predetermined intervals. (2) NMIL obtained in one sequence
An examination method using nuclear magnetic resonance according to claim 1, wherein the average value of the signal and the signal obtained by reversing the time axis of the echo signal is calculated, and the average value is obtained as data of one projection. (5) Calculate the difference signal between the NMrL signal and the signal obtained by inverting the time axis of the echo signal, take the data of 1 project, and perform the specified calculation to obtain 1 and 2 images. An inspection method using nuclear magnetic resonance according to claim 1. (4) Multiple NMIs obtained from multiple sequences
+. σ) An inspection method using nuclear magnetic resonance as claimed in claim 1, wherein the signal and/or a plurality of echo signals are averaged to form data of one projection. (5) Static magnetic field forming means that applies a uniform static magnetic field to the subject, generates magnetic fields having gradients in the two axes of the subject, the X-axis direction, and the Y-axis direction, and generates nuclear magnetic resonance signals from the subject. a magnetic field generating means for specifying a radiation portion of the object, an excitation means for applying a pulsed electromagnetic wave to the object, a control means for controlling the excitation means Vr-t5/, a control means for controlling the radiation part of the object; Nuclear magnetic resonance signal (N M 11 signal) (φ
There is also a rendering means that manually inputs the σ) signal from the detection means and performs predetermined calculations to obtain a tomographic image.
The magnetic field generating means and fljl! The fal1 means first excites the subject with a wave pulse electromagnetic wave, then applies a gradient magnetic field, then reverses the direction of the gradient magnetic field and repeats the process to create an echo signal. At the point in time, a 90° pulse of electromagnetic waves is applied again to return the magnetization to a thermal equilibrium state, and from then on, the operation of repeating the previous sequence at a predetermined interval is blocked. Inspection equipment
JP57168180A 1982-09-27 1982-09-27 Method and apparatus for inspection utilizing nuclear magnetic resonance Pending JPS5957147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57168180A JPS5957147A (en) 1982-09-27 1982-09-27 Method and apparatus for inspection utilizing nuclear magnetic resonance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57168180A JPS5957147A (en) 1982-09-27 1982-09-27 Method and apparatus for inspection utilizing nuclear magnetic resonance

Publications (1)

Publication Number Publication Date
JPS5957147A true JPS5957147A (en) 1984-04-02

Family

ID=15863266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57168180A Pending JPS5957147A (en) 1982-09-27 1982-09-27 Method and apparatus for inspection utilizing nuclear magnetic resonance

Country Status (1)

Country Link
JP (1) JPS5957147A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214745A (en) * 1983-02-18 1984-12-04 アルバ−ト・マコフスキ− High-speed nuclear magnetic resonance image forming system
EP0223543A2 (en) * 1985-11-18 1987-05-27 Picker International Limited Nuclear magnetic resonance imaging
JPH0399631A (en) * 1989-09-13 1991-04-24 Hitachi Ltd Magnetic resonance imaging apparatus
JPH08206098A (en) * 1995-11-29 1996-08-13 Hitachi Ltd Inspection method and device using nuclear magnetic resonance
JPH1052415A (en) * 1997-05-14 1998-02-24 Hitachi Ltd Examination device using nuclear magnetic resonance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156596A (en) * 1978-05-25 1979-12-10 Emi Ltd Method and device for checking by nuclear magnetic resonance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156596A (en) * 1978-05-25 1979-12-10 Emi Ltd Method and device for checking by nuclear magnetic resonance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214745A (en) * 1983-02-18 1984-12-04 アルバ−ト・マコフスキ− High-speed nuclear magnetic resonance image forming system
EP0223543A2 (en) * 1985-11-18 1987-05-27 Picker International Limited Nuclear magnetic resonance imaging
JPH0399631A (en) * 1989-09-13 1991-04-24 Hitachi Ltd Magnetic resonance imaging apparatus
JPH07110272B2 (en) * 1989-09-13 1995-11-29 株式会社日立メディコ Magnetic resonance imaging equipment
JPH08206098A (en) * 1995-11-29 1996-08-13 Hitachi Ltd Inspection method and device using nuclear magnetic resonance
JPH1052415A (en) * 1997-05-14 1998-02-24 Hitachi Ltd Examination device using nuclear magnetic resonance

Similar Documents

Publication Publication Date Title
US4318043A (en) Method and apparatus for rapid NMR imaging of nuclear densities within an object
JPH0222348B2 (en)
JPS5967450A (en) Method of conquering effect of false fidnmr signal
JPS58151545A (en) Method of forming nuclear magnetic resonance picture
US4651097A (en) Examination method and apparatus utilizing nuclear magnetic resonance
US11119177B2 (en) Method and device for the hyperpolarization of a material sample
JPS5957147A (en) Method and apparatus for inspection utilizing nuclear magnetic resonance
JPS6134451A (en) Method of exciting sample for nuclear magnetic resonance tomography
JPH0222648B2 (en)
JPS6240658B2 (en)
JPS60146140A (en) Method and apparatus of inspection using nuclear magnetic resonance
JPS6082841A (en) Checking method and appratus utilizing nuclear magnetic resonance
JPS59231438A (en) Inspection method and apparatus by nuclear magnetic resonance
JPS5957146A (en) Method and apparatus for inspection utilizing nuclear magnetic resonance
JPS6249577B2 (en)
Rigden Molecular Beam Experiments on the Hydrogens during the 1930s
JPS5956154A (en) Method and device for inspection by means of nuclear magnetic resonance
JPS5983039A (en) Inspecting method and apparatus utilizing nuclear magnetic resonance
JPS5983040A (en) Inspecting method and apparatus utilizing nuclear magnetic resonance
JPS6024464A (en) Inspection method by employing nuclear magnetic resonance
JPS6029686A (en) Inspecting method by nuclear magnetic resonance
JPS5954952A (en) Inspection method and apparatus by nuclear magentism resonance
JPS59105550A (en) Inspection method by nuclear magnetic resonance
JPS6020140A (en) Inspecting apparatus by nuclear magnetic resonance
JPS6029684A (en) Inspecting method and device by nuclear magnetic resonance