JPS5956294A - Dynamic memory cell - Google Patents

Dynamic memory cell

Info

Publication number
JPS5956294A
JPS5956294A JP57167817A JP16781782A JPS5956294A JP S5956294 A JPS5956294 A JP S5956294A JP 57167817 A JP57167817 A JP 57167817A JP 16781782 A JP16781782 A JP 16781782A JP S5956294 A JPS5956294 A JP S5956294A
Authority
JP
Japan
Prior art keywords
memory cell
cell
dynamic memory
channel
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57167817A
Other languages
Japanese (ja)
Other versions
JPH044680B2 (en
Inventor
Toshio Takeshima
竹島 俊夫
Kazuo Terada
寺田 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57167817A priority Critical patent/JPS5956294A/en
Publication of JPS5956294A publication Critical patent/JPS5956294A/en
Publication of JPH044680B2 publication Critical patent/JPH044680B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To prevent information stored in a memory cell from being destroyed by the incidence of alpha particles, by using N-channel and P-channel MOS transistors TRs as a selecting gate to store the signal electric charge in both electrodes of a cell capacity. CONSTITUTION:A cell capacity CS is connected between the source of an N- channel field effect TR T0, which has the gate connected to a word line WL0 and has the drain connected to a bit line BL0, and the source of a P-channel field effect TR T1 which has the gate connected to a word line WL1 and has the drain connected to a bit line BL1. Minimum and maximum potentials used normally in the device are used as substrate potentials VN and VP of MOS TRa T0 and T1. Since both electrodes of the cell capacity can be held in the floating state, the electric charge stored in the cell capavity is prevented from being lost even if the potential of one electrode is varied by the incidence of alpha particles, and thus, destruction of stored contents is prevented.

Description

【発明の詳細な説明】 本発明は、ダイナミックメモリセル、特に、Nチャネル
およびPチャネルの一対の1に界効果トランジスタを用
いたダイナミックメモリセルに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dynamic memory cell, and particularly to a dynamic memory cell using a field effect transistor in one of a pair of N-channel and P-channel.

従来の夕°イナミックメモリセルt、t 、ソースとワ
ード線に接続されたゲートとビット%Aに接続されfc
 )’ L/インを有する電界効果トランジスタと、両
′f4f、極のそれぞれが前記ソースと一定’4位源と
に1妾続されたセル答縦とを含んで構成される。
Conventional dynamic memory cell t, t, source and gate connected to word line and bit %A connected to fc
)' L/in and a cell response column, each of whose poles is connected to the source and a constant source.

次に、従来のダイナミックメモリセルについて、図面を
参照して詳f4flに説明する。
Next, a conventional dynamic memory cell will be explained in detail with reference to the drawings.

第1図は従来の一例を示す回路図である。FIG. 1 is a circuit diagram showing a conventional example.

第1図に示すダイナミックメモリセルは、 tii:界
効果トランジスタとして1個のへチャネルのへ40Sト
ランジスタTSを選択ゲートとして使用した1トランジ
スタ型のダイナミックメモリセルである。
The dynamic memory cell shown in FIG. 1 is a one-transistor type dynamic memory cell using one hemi-channel 40S transistor TS as a field effect transistor as a selection gate.

このダイナミックメモリセルはM(JSI−ランジスタ
IMSとセル容゛縫USからなり、記イアはされたイj
報がIO”であるがtlsでるるかは、このセル容量0
8の節点SK#えられる電荷11tと対応づけられる。
This dynamic memory cell consists of an M (JSI) transistor IMS and a cell capacity US, and is
The information is "IO", but whether TLS is output is because this cell capacity is 0.
The node SK# of 8 is associated with the obtained charge 11t.

セル容量C8の一方の電極は一定1に位源に尚続され−
’jl +4;、 1立VSに1呆持されているM(J
SI−ランジスタ’l’ Sのゲートにし絖されたワー
ド線WLを選j1<することで、M−05Fランジスタ
’1’ S y<オン状態としM(JSI−ランジスタ
’i’ sのドレインにノブ続されたビット1;(13
Lを介し/6己1煮情報のセル容L U Sへの書°込
みや読出しが行われる。
One electrode of the cell capacitor C8 is connected to a constant voltage source -
'jl +4;, M(J
By selecting the word line WL wired at the gate of SI-transistor 'l' S, the M-05F transistor '1' S y is turned on, and the knob is connected to the drain of M (JSI-transistor 'i' s). bit 1; (13
Writing and reading of information to and from the cell capacity L US is performed via L.

このような従来のダイナミックメモリセルは節点8に滓
えられている情報すなわち11y荷がアルファ粒子等の
放射性4]η子の入射によって失われるという不可避的
な問題を持っており、この現象はセル容tit e S
が小さくなりそこに痔えるIIL(:fJ 14−が少
くなるほど著しくダイナミックメモリの人容団化が進む
につれてより重大な間i、!qとなってきている。
Such a conventional dynamic memory cell has an unavoidable problem in that the information stored at the node 8, that is, the 11y charge, is lost due to the incidence of radioactive 4]η particles such as alpha particles, and this phenomenon occurs in the cell. Contents
As the number of IIL(:fJ 14-) becomes smaller and the number of IIL(:fJ 14-) becomes smaller, it becomes more important as the dynamic memory becomes more and more humanized.

すなわち、従来のダイナミックメモリセルは、アルファ
粒子の入射により記憶411報がイσり暎される七いう
欠点があった。
That is, the conventional dynamic memory cell has the following drawback: the stored information is disturbed by the incidence of alpha particles.

本発明の目的は、アルファ粒子が入射しても記憶情報の
破壊が防止できるダイナミックメモリセルを提供するこ
とにある。
An object of the present invention is to provide a dynamic memory cell that can prevent stored information from being destroyed even if alpha particles are incident thereon.

すなわち、本発明の目的は、アルファ粒子がメモリセル
に入射しても記1.は情、YItがt妓壊されず正1・
徨な読出しが行なえるダイナミックメモリセルを1星供
することにある。
That is, an object of the present invention is to prevent alpha particles from entering the memory cell as described in 1. It's true, YIt's not broken and it's positive 1.
The purpose of this invention is to provide a dynamic memory cell that can perform flexible reading.

本発明のダイナミックメモリセルは、ゲートが第1のワ
ード線に接続され ドレインが第1のビット・腺に暎続
されたNチャンネルの第lのili界効果トランジスタ
と、ゲートが第2のワード、腺に1妾続され ドレイン
が第2のビット1舅に接続されたL′チャンネルの第2
のHL界効果トランジスタと、前記第10゛、IZ4.
lr−効果トランジスタのソースと[)口記第2の「E
界効果トジンジスタのソースとの間に4妾続されたセル
容)1士とを含んで構成される。
The dynamic memory cell of the present invention includes an N-channel first field effect transistor whose gate is connected to a first word line, whose drain is connected to a first bit line, and whose gate is connected to a second word line. The second of the L' channels with one connected to the gland and the drain connected to the second bit one
HL field effect transistor, and the 10th IZ4.
The source of the lr-effect transistor and the second “E”
It is composed of four cell volumes connected between the source of the field effect and the source of the field effect.

すなわち、本発明のダイナミックメモリセルは、セル容
叶の両dE極間に常に一定のM 1”J tを記憶1n
報として蓄えておき、一方の電極直イ)lが変化しても
セル容ト11:に蓄えられたi1尤荷量がは?’CE一
定のま提維持しj停るようにして、アルファ粒子の入射
にょ−る記憶情報の破喘を防ぐことに成功したものであ
る。
That is, the dynamic memory cell of the present invention always stores a constant M 1''J t between both dE poles of the cell capacity.
What is the potential amount of i1 stored in the cell capacitor 11: even if the value of one electrode 1) changes? By keeping CE constant and stopping, we succeeded in preventing the destruction of stored information due to the incidence of alpha particles.

以下、理1野を助けるために典型的な実施列を用いて本
発明を詳述する。
In the following, the present invention will be described in detail using exemplary implementation sequences to aid in understanding the theory.

第2図は本発明の一実廁例を示す回路図である。FIG. 2 is a circuit diagram showing an example of the present invention.

IJI、0・13L1はイH報の得1へみ、iii:出
し7を行なうための1対のビット線、WLQ 、’Wl
弓はメモリセルをy’44/くするための1対のワード
111!、′1゛oはNチャネルhxusトランジスタ
、′1゛JtiPチャネルM<US)ランジスタ、C8
は極性を1寺たないよつなセル容1よ、CO+ CIは
節点S 1.+ + S 1に形rrlt サit ル
寄生茶縫、VN r V PilM(JS l−ランシ
スタ’l’ Q 、 ’l’ lの)、(板rgatで
)IYI常装置1“tに1吏川している最低戒位、最高
1イ位がそれぞれにJllいられる。
IJI, 0.13L1 goes to the output 1 of the IH signal, iii: A pair of bit lines for output 7, WLQ, 'Wl
The bow is a pair of words 111 to make the memory cell y'44/! , '1゛o is an N-channel hxus transistor, '1゛JtiP channel M<US) transistor, C8
is a normal cell volume 1 with one polarity, CO+ CI is node S 1. + + S 1 form rrlt site le parasitic chanui, VN r V PilM (JS l-Lancisstar 'l' Q, 'l' l), IYI permanent device 1"t to 1 rikawa (on board rgat) The lowest commandment rank and the highest rank of 1st rank are each ranked separately.

第3図は第2図に示す実ノ崩例におけるダイナミックメ
モリセルの11□I造のイ既略断面図で、第2図に対応
する部分には同じ記号を用いている。
FIG. 3 is a schematic cross-sectional view of an 11□I structure of a dynamic memory cell in a modification of the actual example shown in FIG. 2, and the same symbols are used for parts corresponding to those in FIG. 2.

紀2図および2fl 3図に示すダイナミックメモリセ
ル娃:ワード:a Vv L oを高′醒泣にし、ワー
ド線’1JL1を低「4尤位にすることで選択され、ビ
ットAJpBL(zlJLlとの情報のやりとりが可能
になる。
The dynamic memory cell shown in Figs. It becomes possible to exchange information.

寸だワード向WLQを低If位にし、ワード線Wl、1
を高電位にすればMOS)ランジスタ’l’Q、’l’
1がオフ状i7,1となりメモリセルは[呆持伏峠とな
る。
The word line WLQ is set to low If, and the word line Wl,1
If you set it to a high potential, MOS) transistor 'l'Q, 'l'
1 becomes the OFF state i7,1, and the memory cell becomes [Damachibukutouge].

以後、ヒツトJd ’目Jot節点SOヲ高’St、 
(1’L (!: Lビット線1.1 L L 11″
ilj点81を低重1N′Lとするような715 is
’L関係’;+: ” 1 ” iff Yl&、逆ニ
ヒ、、 )+ii!+1JJ、LQ l 節点SOをイ
jいI’C酢としビット線1」Ll−ηi点Slを高電
位とす2)ような′「「位関係をII 、、 71情報
と呼ぶ。
From now on, hit Jd 'Jot node SOwotaka'St,
(1'L (!: L bit line 1.1 L L 11''
715 is such that the ilj point 81 has a low weight of 1N'L
'L-related';+: ``1'' if Yl&, reverse nihi,, )+ii! +1JJ, LQ l The node SO is set to I'C and the bit line 1'Ll-ηi point Sl is set to a high potential.2)''The position relationship is called II,, 71 information.

節点80 (n”−拡散ノー)または81(p+弘故層
)にアルファ粒子が入射すれば、そのため発生する電荷
により寄生茶1−+tUo、etが小さいと、ソノj4
’T点S O、t 81 ノrJij点屯fl V O
+ V l カ11(仮一 電位VN、Lf’それぞれに等しくなることはよく知ら
れている。
If an alpha particle is incident on the node 80 (n''-diffusion no) or 81 (p+ Hirokata layer), due to the electric charge generated, if parasitic tea 1-+tUo, et is small, sono j4
'T point S O, t 81 NorJij point tun fl V O
+ V l = 11 (it is well known that they are equal to the temporary potentials VN and Lf', respectively).

ここで、通常基板電位VNは低電位(iNL)、)1.
Here, the normal substrate potential VN is a low potential (iNL), )1.
.

板電位■Pは高11L位vDL)であるのでアルファ粒
子が節点SOまたはSlに入射すればその節点S O、
S 1 ノf1点r[eV O+ V l&−tiLk
+1lfii:(−3N L)または高+47.1■V
LSI)になる。
Since the plate potential ■P is high (about 11L vDL), if an alpha particle is incident on the node SO or Sl, the node SO,
S 1 f1 point r[eV O+ V l&-tiLk
+1lfii: (-3N L) or high +47.1■V
LSI).

従って +* OIt情報の保持状態でアルファ粒子が
節点SOν81に入射してもI o 71 ii¥ 7
長の伏!沈は変化しない。また、”′1″情報の保持状
態、すなわち節点80が高電位vDDかつ節点81が低
重1〜′LGNL)の状態でアルファ粒子が節点SOに
入射すると、消点(K、泣VQは高FK位V l) D
から基板+1. (■VNと等しいttt位の低電位G
NIJに低下する。
Therefore, +* Even if an alpha particle enters the node SOν81 in a state where OIt information is retained, I o 71 ii¥ 7
Long bow! Shen does not change. In addition, when an alpha particle enters the node SO in the state where the "'1" information is held, that is, the node 80 is at a high potential vDD and the node 81 is at a low gravity 1 to 'LGNL, the vanishing point (K, VQ is high). Free kick position V l) D
From board +1. (■Low potential G of about ttt equal to VN
Decreased to NIJ.

このとき節点SOに注入される’m、荷81士qは、次
の(1)式で示される。
At this time, the load 81 and the load 81q injected into the node SO are expressed by the following equation (1).

q=(−VuL)) −(Co+Ux−US/(C1+
US) )、・・・・・・・・・・・(1) また、節点S1の節点1毬位Vl/は、次の(2)式で
表される負電位となる。
q=(-VuL)) -(Co+Ux-US/(C1+
US)), ...... (1) Further, the node 1 level Vl/ of the node S1 becomes a negative potential expressed by the following equation (2).

Vl’  =(−V  D I))−US/(Ul  
+ US)   −−−−−−(2)寸だ、比軟の便宜
上、節点S1のjli点軍位V、/を低ri(位UNL
)にしたときの節点SOの、、ij点rlf、位V O
/を求めると、次の(3)式のようになる。
Vl' = (-V D I))-US/(Ul
+ US) -------(2) For convenience of comparison, set jli point military rank V, / of node S1 to low ri (position UNL
) of the node SO, ij point rlf, position V O
When / is calculated, the following equation (3) is obtained.

V O’ =VIJIJ −C82/ (U□−1−(
、’S ) ・(C1−t4:S)    ・・・・・
・・・・・・・(3)1/泊って、アルファ粒子の入射
により減少した信号酸)−は加点SOのところで、次の
(4)式のようになる。
V O' =VIJIJ -C82/ (U□-1-(
,'S) ・(C1-t4:S)...
(3) 1/signal acid (signal acid decreased by the incidence of alpha particles) is expressed as the following equation (4) at the addition point SO.

s、=1−C82/(Go+C3)−(cl−Is)−
・・・・・・・・・・・・(4) ここで、たとえば Co=c 1=US/1 。
s, = 1-C82/(Go+C3)-(cl-Is)-
・・・・・・・・・・・・(4) Here, for example, Co=c 1=US/1.

とすれば、これは約17.4 %となり節点5O9SI
KJえられている全体の信号卆悔f比べれば戎少縫は小
さく、約826%の信号耽が洩ることになる。
Then, this is about 17.4% and the node 5O9SI
Compared to the total signal loss f determined by KJ, the small amount of signal loss is small, and approximately 826% of the signal loss is leaked.

従って tt lpp債報は破壊されないで保持される
ことがわかる。
Therefore, it can be seen that the ttlpp bond is preserved without being destroyed.

また、節点81にアルファ粒子が入射しても先と同様に
、節点ボ(Y”L V Oは低電位UNL)から基板電
位Vl’と等しい高電位VIJIJになるがセル容14
士C8の容F、i:カップリングにより節点800節点
+liI■VOも高くなるため゛′1″情報は破1ψ工
されない。
Furthermore, even if an alpha particle is incident on the node 81, as before, a high potential VIJIJ equal to the substrate potential Vl' is generated from the node B (Y"L VO is a low potential UNL), but the cell capacitance 14
The capacity F, i of the operator C8: Since the node 800 node +liI■VO also becomes high due to the coupling, the ``'1'' information is not destroyed.

本発明のダ・fナミックメモリセルv、x−1gt−の
11j昇効弔トジンジスタの代りに異なる導V暗Iil
!を有する一対の、l/、 l’f−効果トランジスタ
をII+いることにより、セル宅1′、1.!”の画′
屯イ執を70−ティング1犬I沈に1呆持できるf−め
、 ’/Jのli’c I&の市1i7がアルファ71
′/子の入射によりf!1lIIシてもセル容縫に蓄え
られた電荷が失われないようにできるので、記憶破壊が
防止できるといつ効果がある。
In place of the 11j booster voltage resistor of the data dynamic memory cell v, x-1gt- of the present invention, a different conductor
! By including a pair of l/, l'f-effect transistors II+, the cells 1', 1. ! “Picture”
f-me who can hold 70-ting 1 dog I shen 1 stupor, '/J's li'c I&'s city 1i7 is alpha 71
′/ due to the incidence of child f! Since it is possible to prevent the charge stored in the cell capacitor from being lost even after 1lII cycles, it is effective to prevent memory destruction.

すなわち、本発明のダイナミックメモリセルは、ヘチャ
ネルとPチャネルのM(JS)ランジスタを選択ゲート
として用い、セルW−iftの両電極に信号’f(1W
JをiζVえることでメモリセルの1、己1意情?fi
がアルファ粒子の入射により破壊されること全防止でき
るという効果がある。
That is, the dynamic memory cell of the present invention uses H-channel and P-channel M (JS) transistors as selection gates, and applies a signal 'f (1W) to both electrodes of the cell W-ift.
By changing J to iζV, does the memory cell's 1, self-1 consciousness change? fi
This has the effect of completely preventing the destruction of the particles by the incidence of alpha particles.

図1(1Nの1ii) 、tli、な説明第1図i:I
、’ lj)’g来の一則を示す回路図、r、32図は
本発明の一′Jす(+: 1’zll全示す回路図、第
3図は第2図に示す実施1列に、1、・&JるIl、を
造断面図である。
Figure 1 (1ii of 1N), tli, explanation Figure 1 i:I
, 'lj)'g, r, Figure 32 is a circuit diagram showing the entirety of the present invention. , 1, .&J Il, is a cross-sectional view.

WL 、Wl)(1、WJ、l・・・・・・ワード1.
飢 J3J、−、IJL□ 。
WL, Wl) (1, WJ, l...word 1.
Hunger J3J, -, IJL□.

15L1・・・・・・ピッl−線、T S 、 T Q
・・・・・・M(JS)ランジスタ、Tl・・・・・・
PviUS)ランジスタ、eト。
15L1...Pill-line, T S , T Q
...M (JS) transistor, Tl...
PviUS) transistor, e.

・・・セル容+Il、<: o l U 1・・・・・
・寄生茶は、v S −−一定T扛(sr、 V N 
 、  V  P −・−・・jiu1反+Lri;j
、 s8+SO+”l・・・・・・111j点。
...Cell capacity + Il, <: o l U 1...
- Parasitic tea is v S -- constant T (sr, V N
, V P −・−・・jiu1anti+Lri;j
, s8+SO+”l...111j points.

第1 図 第2図Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] ゲートが第1のワード線に接続され ドレインが第1の
ビット線に接続されたNチャネルの第1の電界効果トラ
ンジスタと、ゲートが第2のワード線に接続され ドレ
インが第2のビット線に接1恍されたPチャネルの第2
の電界効果トランジスタと、前記第1の電界効果トラン
ジスタのソースと前記第2の電界効果トランジスタのソ
ースとの間に接続されたセル容量とを含むことを/1>
徴とするダイナミックメモリセル。
a first N-channel field effect transistor having a gate connected to a first word line and a drain connected to a first bit line; a gate connected to a second word line and a drain connected to the second bit line; The second of the connected P channel
and a cell capacitor connected between the source of the first field effect transistor and the source of the second field effect transistor.
Dynamic memory cell.
JP57167817A 1982-09-27 1982-09-27 Dynamic memory cell Granted JPS5956294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57167817A JPS5956294A (en) 1982-09-27 1982-09-27 Dynamic memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57167817A JPS5956294A (en) 1982-09-27 1982-09-27 Dynamic memory cell

Publications (2)

Publication Number Publication Date
JPS5956294A true JPS5956294A (en) 1984-03-31
JPH044680B2 JPH044680B2 (en) 1992-01-29

Family

ID=15856644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57167817A Granted JPS5956294A (en) 1982-09-27 1982-09-27 Dynamic memory cell

Country Status (1)

Country Link
JP (1) JPS5956294A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512576A (en) * 1978-07-12 1980-01-29 Nec Corp Integrated memory cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512576A (en) * 1978-07-12 1980-01-29 Nec Corp Integrated memory cell

Also Published As

Publication number Publication date
JPH044680B2 (en) 1992-01-29

Similar Documents

Publication Publication Date Title
US5424975A (en) Reference circuit for a non-volatile ferroelectric memory
US4888733A (en) Non-volatile memory cell and sensing method
TW446943B (en) Semiconductor memory apparatus and access method for a semiconductor memory apparatus
JP2000331484A (en) Ferroelectric non-volatile memory
JP4065870B2 (en) Dual port read SRAM cell with improved soft error immunity
KR100731451B1 (en) Nonvolatile memory and its driving method
JP4015968B2 (en) Ferroelectric memory
JPH0660635A (en) Ferroelectric storage device
US4446535A (en) Non-inverting non-volatile dynamic RAM cell
US4030081A (en) Dynamic transistor-storage element
JP4154967B2 (en) Semiconductor memory device and driving method
JPS5956294A (en) Dynamic memory cell
JPS6118839B2 (en)
US3686644A (en) Gated diode memory
JP3878370B2 (en) Nonvolatile memory and driving method thereof
US6574134B1 (en) Non-volatile ferroelectric capacitor memory circuit having nondestructive read capability
JPH0410154B2 (en)
JPS59195397A (en) Read/write memory array
JPH10223776A (en) Semiconductor memory device
JP3181046B2 (en) Non-volatile memory
JPS6233392A (en) Semiconductor non-volatile memory device
JPH0671068B2 (en) Semiconductor memory device
JPH0687499B2 (en) Semiconductor memory device
JPS6161293A (en) Dynamic memory
JPH04295690A (en) Semiconductor memory