JPS5956127A - Temperature measuring instrument - Google Patents

Temperature measuring instrument

Info

Publication number
JPS5956127A
JPS5956127A JP16738482A JP16738482A JPS5956127A JP S5956127 A JPS5956127 A JP S5956127A JP 16738482 A JP16738482 A JP 16738482A JP 16738482 A JP16738482 A JP 16738482A JP S5956127 A JPS5956127 A JP S5956127A
Authority
JP
Japan
Prior art keywords
resistance
circuit
temperature
standard resistor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16738482A
Other languages
Japanese (ja)
Inventor
Yoshihiko Sunakawa
砂川 慶彦
Yasumasa Tanaka
田中 保正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kashima Oil Co Ltd
Tokyo Keiso Co Ltd
Original Assignee
Kashima Oil Co Ltd
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kashima Oil Co Ltd, Tokyo Keiso Co Ltd filed Critical Kashima Oil Co Ltd
Priority to JP16738482A priority Critical patent/JPS5956127A/en
Publication of JPS5956127A publication Critical patent/JPS5956127A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/20Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit
    • G01K7/206Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit in a potentiometer circuit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To take a high-precision measurement even at a working site where temperature condition is inferior, by converting the resistance value ratio of the resistance bulb and standard resistor of a resistance thermometer into a time ratio. CONSTITUTION:The resistance bulb 2 and standard resistor 3 of the resistance thermometer 1 are supplied with a constant current from a constant current source 4 through a switch 5. A measurement control circuit 7 changes over the switch 5 to the side of the standard resistor 3 or resistance bulb 2. A capacitor 10 is charged up to the voltage corresponding to the resistance value ratio of the resistance bulb 2 and standard resistor 3 and a flip-flop circuit 12 is reset by the voltage. The output of the flip-flop circuit 12 is led to an output circuit 14 through an AND gate 13.

Description

【発明の詳細な説明】 た温度計測器に関する。[Detailed description of the invention] related to temperature measuring instruments.

一般的な温度計測器は、第1図に示すように、側温抵抗
体21を一辺とした3線式ブリッジ回路を構成し、測温
抵抗体2lの温度変化に対応する抵抗変化によって生ず
るブリッジ回路の不平衡電圧を電圧計22で検出すると
いう構成になっている。なお第1図中23は定電流源、
24は伝送ケーブルである。
As shown in Fig. 1, a general temperature measuring instrument constitutes a three-wire bridge circuit with a side temperature resistor 21 on one side, and the bridge is generated by a change in resistance corresponding to a change in temperature of the resistance temperature detector 2l. The configuration is such that a voltmeter 22 detects the unbalanced voltage in the circuit. In addition, 23 in Fig. 1 is a constant current source,
24 is a transmission cable.

この種の温度計測器は、3線ブリッジ回路を構成するこ
とによって伝送ケーブルの導線抵抗を一応無視できるが
、厳密には出力のリラヤリティ、・スパン等に影響が生
じ、伝送ケーブルを含めた現場設置状態での再調整を必
要とし、これによってもリニャリティーの悪化は防げら
れず、しかも伝送ケーブルは長くなってしまうためノイ
ズの混入による誤差も生じ、ノイズ除去フィルタ一定数
を大きくする必要性から高速のデータ採取は不可能とな
っている。
This type of temperature measuring instrument can ignore the conductor resistance of the transmission cable by configuring a 3-wire bridge circuit, but strictly speaking, it affects the output reliability, span, etc. readjustment is required, and even this does not prevent deterioration of linearity.Moreover, the transmission cable becomes longer, which causes errors due to noise intrusion, and the need to increase the number of noise removal filters increases the speed of high-speed transmission. Data collection is not possible.

また第2図に示すように、ブリッジを現場に設置して伝
送ケーブル24aを短<シ、変換器25を組み込んで、
ブリッジの不平衡電圧をその場で信号変換し、4〜20
mAs度のディジクル信号として受信計に伝送する形式
のものもあるが、この場合は、ブリッジ、変換器等が温
度条件等環境の悪い現場に設置されているため、部品全
てを温度特性の良いものを選択したとしても、周囲温度
の大幅な変化に伴なう回路構成素子自体の温度変化によ
る誤差が生じ易いものとなっている。
Further, as shown in FIG. 2, a bridge is installed at the site, the transmission cable 24a is shortened, the converter 25 is installed,
The unbalanced voltage of the bridge is converted into a signal on the spot, and 4 to 20
There is also a format that transmits a digital signal of mAs degrees to the receiver, but in this case, the bridge, converter, etc. are installed in a site with poor temperature conditions, so all components must have good temperature characteristics. Even if this is selected, errors are likely to occur due to temperature changes in the circuit components themselves due to large changes in ambient temperature.

本発明は斯かる諸点に着目してなされたもので、温度条
件の悪い現場に設置しても高精度な温度計測を可能とし
た温度計測器を提供できるようにした。しかしてその要
旨とするところは、側温抵抗体と標準抵抗体とを並列配
置した抵抗温度計と、前記測温抵抗体と標準抵抗体の抵
抗値の比を時間比に変換する積分回路とからなる温度i
t測器に存する。
The present invention has been made with attention to these points, and has made it possible to provide a temperature measuring instrument that can measure temperature with high precision even when installed at a site with poor temperature conditions. However, the gist of this is a resistance thermometer in which a side-temperature resistance element and a standard resistance element are arranged in parallel, and an integrating circuit that converts the ratio of the resistance values of the temperature-detecting resistance element and the standard resistance element into a time ratio. temperature i consisting of
It exists in the t measuring instrument.

次に、本発明の実施の一例を第3図、第4図を参照して
説明する。
Next, an example of implementation of the present invention will be described with reference to FIGS. 3 and 4.

図中1は抵抗温度計であり、この抵抗温度計1は一般的
なPt1.0Of1等の測温抵抗体2と標準抵抗体3が
並列配置で組み込まれている。
In the figure, reference numeral 1 denotes a resistance thermometer, and this resistance thermometer 1 incorporates a temperature measuring resistor 2 such as a general Pt1.0Of1 and a standard resistor 3 arranged in parallel.

この抵抗温度計1の測温抵抗体2と標準抵抗体3には定
電流源4からスイッチ5を介して定電流が供給されるも
のとなっている。
A constant current is supplied from a constant current source 4 to the temperature measuring resistor 2 and standard resistor 3 of the resistance thermometer 1 via a switch 5.

定電流回路の出力電流をIOとし、スイッチ5が測温抵
抗体2又は標準抵抗側に切り換っている場合の図中P点
の電圧Vpはそれぞれ次のようになる。
When the output current of the constant current circuit is IO and the switch 5 is switched to the resistance temperature detector 2 or standard resistance side, the voltage Vp at point P in the figure is as follows.

Vp =Vt =(Ro+4RT) Io   、、9
.、、■Vp =Vs = R’oIo      、
、、、、、 (2)ここで、hは基準温度に於る測温抵
抗体2の抵抗、乙Rは測温抵抗体2の温度係数(Ω10
C)、Tは基準温度からの温度差、RIOは標準抵抗体
3の抵抗である。
Vp = Vt = (Ro+4RT) Io,, 9
.. ,, ■Vp = Vs = R'oIo,
,,,,, (2) Here, h is the resistance of the resistance temperature detector 2 at the reference temperature, and R is the temperature coefficient of the resistance temperature detector 2 (Ω10
C), T is the temperature difference from the reference temperature, and RIO is the resistance of the standard resistor 3.

また、図中6は極性変換回路であり、7の計測制御回路
がスイッチ5を測温抵抗体2 (El!lに切り挨えて
いる場合に正極性、標準抵抗体3側に切り換えている場
合には負極性となるようになっている。
In addition, 6 in the figure is a polarity conversion circuit, and when the measurement control circuit 7 is switching the switch 5 to the resistance temperature detector 2 (El!l), it is positive polarity, and when it is switching it to the standard resistor 3 side, it is It is designed to have negative polarity.

すなわち、図中Q点の電位■0は測温抵抗体2側に切り
換っている場合、標準抵抗体3側に切り換っている場合
にそれぞれ次のようになる。
That is, the potential 0 at point Q in the figure is as follows when switching to the temperature-measuring resistor 2 side and when switching to the standard resistor 3 side, respectively.

Va=Vt =(r(o +aRT) Io     
、、、、、、■Va=−Vs= −R’o Io   
    、10.、、■また、図中8は電流変換回路で
あり、図中Q点の電圧に比例した定電流を発律する機能
を有し、その電流は測温抵抗体2側に切り換えの場合な
It、標準抵抗体3側に切り換えの場合をIsとすると
それぞれ次のようになる。
Va=Vt=(r(o+aRT)Io
, , , , ■Va=-Vs=-R'o Io
, 10. ,,■ In addition, 8 in the figure is a current conversion circuit, which has the function of generating a constant current proportional to the voltage at point Q in the figure, and when the current is switched to the resistance temperature detector 2 side, Letting Is be the case of switching to the standard resistor 3 side, the results are as follows.

It =k (Ro−+−りR’I’ ) Io   
    、、、1.、 ■Is = kR’o IO・
自・・・■ここでkは電流変換回路8の電流変換定数で
あるO さらに図中9は発振回路で、一定周波数のクロックパル
スを発振しており、このクロックパルスを前記した計測
制御回路7が分周して、スイッチ5を測温抵抗体2側に
切り換え、極性変換回路6を正極性にする。かくするこ
とによりコンデンサ10には0式よりIt=k(Ro+
ムRT)Iの電流が流れ込み、これを充電し始める。第
1測制御回路7はこの積分時間をクロックパルスの先め
定められたNパル2分の時間Toとなるよう制御するの
で、To後のコンデンサ10の両端の電圧Vcは次のよ
うになる。
It = k (Ro-+-riR'I') Io
,,,1. , ■Is = kR'o IO・
Auto... ■Here, k is the current conversion constant of the current conversion circuit 8. Furthermore, 9 in the figure is an oscillation circuit that oscillates a clock pulse of a constant frequency, and this clock pulse is transmitted to the measurement control circuit 7. divides the frequency, switches the switch 5 to the resistance temperature detector 2 side, and sets the polarity conversion circuit 6 to positive polarity. By doing this, the capacitor 10 has It=k(Ro+
The current from RT) I flows into the circuit and begins to charge it. The first measurement control circuit 7 controls this integration time to be the predetermined time To of two N pulses of the clock pulse, so the voltage Vc across the capacitor 10 after To is as follows.

時間がTだゆ経過すると、計測制御回路7はスイッチ5
を標準抵抗体3側に切り換え、極性変換回路6を負極性
に切り換えてコンデンサ10で積分を行う。ここでコン
デンサIOの両端の電圧がゼロとなるまで9時間1反は
コンデンサー0の両端の電圧が前回の積分でVc =v
(llo+乙Rt)IoT。
When the time T has elapsed, the measurement control circuit 7 switches the switch 5
is switched to the standard resistor 3 side, the polarity conversion circuit 6 is switched to negative polarity, and the capacitor 10 performs integration. Here, for 9 hours until the voltage across the capacitor IO becomes zero, the voltage across the capacitor 0 is the previous integration, Vc = v
(llo + Otsu Rt) IoT.

であるから、 0式より  (Ro −t4RT)To−R’oTx 
=0       、、、、、@どなる。
Therefore, from equation 0, (Ro -t4RT)To-R'oTx
=0 , , , , @ roar.

このように、時間豚が経過してコンデンサー0の両端電
圧がゼロと芹ると、零検゛出回路11より出力が発生し
、フリツプフロツプ回路12をリセットする。この7リ
ツプフロツプ回[12はス、イッチ5が標準抵抗体3側
に切り換わると同時にセットされるようになっているか
ら、セットとリセットの間の時間は1″Xであり、また
ノリノブフロップ回路12の出力はアンドゲートI3に
接続されているので、アントゲ−1・13からは′■\
の時間、発振回路9の出力クロックを通過させ、出力回
路14を通して受信4側へ発信されることとなる。
In this way, when the voltage across the capacitor 0 reaches zero after a period of time has elapsed, an output is generated from the zero detection output circuit 11 and the flip-flop circuit 12 is reset. These 7 lip-flop circuits [12 are switches] are set at the same time as switch 5 is switched to the standard resistor 3 side, so the time between setting and resetting is 1'' Since the output of the circuit 12 is connected to the AND gate I3, the output from the AND gates 1 and 13 is '■\
The output clock of the oscillation circuit 9 is passed through for a time of , and is transmitted to the receiving side 4 through the output circuit 14.

一方、TOはクロックのNパル2分として予め定められ
、h時間内には同一の周期のクロックが通過するから、
クロックパルスの1周期をTcとすると、 To = Tc x N        、、、、、、
、■n= Tc x n         ・・・・・
・・00式、0式を0式に代入すると (Ro+4RT)TcxN−R’oTcxn= O、、
、、、@これを整理すると一1ゝ1“”−−−”  :
、’、、、。
On the other hand, TO is predetermined as 2 minutes of N pulses of the clock, and since clocks with the same period pass within h time,
If one period of the clock pulse is Tc, then To = Tc x N, , , ,
,■n=Tc x n...
...Substituting the 00 formula and 0 formula into the 0 formula gives (Ro+4RT)TcxN-R'oTcxn=O,,
,,,@If you organize this, 11ゝ1“”---”:
,',,,.

R”o       N 品に要求される特性は1サンプルの計測時間内で積分用
コンデンサの容量、クロックの発振周波数が安定してい
れば良いこととなる。
The characteristics required of an R''o N product are that the capacitance of the integrating capacitor and the oscillation frequency of the clock are stable within the measurement time of one sample.

また、受信計に於ては標準抵抗体3の値R’o、一定積
分時間Toに対するパルス数Nは読値であるから、0式
より、 として測温抵抗体2の現時点での抵抗を知り温度の計測
を行うことができる。
In addition, in the receiving meter, the value R'o of the standard resistor 3 and the number of pulses N for a constant integration time To are the reading values, so from equation 0, the current resistance of the resistance temperature detector 2 can be found as can be measured.

さらに、以下の如くすれば、発信するパルスを直読値に
することも可能である。
Furthermore, it is also possible to make the transmitted pulse a direct reading value by doing the following.

測温抵抗体2をptiooΩとした場合、臣はOOC基
準で100.0. 、  R’oを100fl、、n=
N十乙nとすると、100°Cノ時、dRT=39.1
6fl、これを[相]式に代入するととなる。したがっ
て直読できるようにするためにはA n = 100と
おけばよい。また有効数字を1桁増して0.1℃単位ま
で表−Tために、!Jn=1000とすると、0式は となり、との0式を[相]式に代入すると、4n=25
.54×Δnr       、、、、、、@となる。
If the resistance temperature sensor 2 is ptiooΩ, the resistance is 100.0.0 based on the OOC standard. , R'o is 100fl, , n=
When N is 100°C, dRT=39.1 at 100°C.
6fl, and substituting this into the [phase] equation becomes. Therefore, in order to enable direct reading, it is sufficient to set A n = 100. Also, increase the number of significant figures by one digit to the nearest 0.1°C for table-T! When Jn=1000, the 0 equation becomes, and substituting the 0 equation into the [phase] equation, 4n=25
.. 54×Δnr , , , , @.

ここでPt100.Q、各点による0式による1泊を示
すと表Iのようになる。
Here, Pt100. Q. Table I shows one night's stay according to the 0 formula for each point.

受信針にはn = N + 4 nなるパルス数が伝送
されるので、N(ここでは2554パルス)を差し引き
してカウントすればよいことになる。
Since the number of pulses n = N + 4 n is transmitted to the receiving needle, it is sufficient to subtract N (here, 2554 pulses) and count.

なお、パルスの発信状態は第4図に示す如く  lで、
(A)はコンデンサ1oの両端の電圧、(B)は発信出
力イg号を示す。
The pulse transmission state is l as shown in Figure 4.
(A) shows the voltage across the capacitor 1o, and (B) shows the transmission output Ig.

発情出力信号はスペースの後にパルス列信号が続く状態
が計測時間中周期的に繰り返されるので、受信計ではス
ペースとスペース間のパルスを計数して、次のスペース
でこのR−1゛測値をラッチする動作を繰り返し、その
信号をデコードして表示する等の受信動作をすればよい
Since the estrus output signal has a space followed by a pulse train signal that is repeated periodically during the measurement time, the receiver counts the pulses between spaces and latches this R-1 measurement value in the next space. What is necessary is to perform a receiving operation such as repeating the above operation and then decoding and displaying the signal.

また、本実施例では、クロックの周波数をそのまま出力
するように構成したが、実際的にはアンドゲートの後に
カウンターを設け、ここでカウントした信号をコード化
し、て、これに適当なヘッドコードを付加してデータの
語長を短縮して伝送することが長距離伝送に適する。
In addition, in this embodiment, the clock frequency is output as is, but in reality, a counter is provided after the AND gate, the counted signal is encoded, and an appropriate head code is applied to this. It is suitable for long-distance transmission to reduce the word length of data by adding it.

本発明に係る温度計測器は」二記の如く構成されている
ため、計測に際して回路構成部品の昼夜の温度差による
定数の変化等は一切影響がなく、現場に設置しても高精
度のデータを得ることができる。
Since the temperature measuring device according to the present invention is configured as described in 2, there is no effect on constant changes due to temperature differences between day and night in circuit components during measurement, and highly accurate data can be obtained even when installed on site. can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来例を示す回路図、第3図は本発明
に併る温度=i6I+i器の回路図、第4図はパルスの
発(M状態を示す波形図である。 図中 1 抵抗温度ぎ−12測温抵抗体 3 標準抵抗体   6  %性変換回路7 計測制御
回路   8 電流変換回路9 発振回路     1
0  コンデンサ11  零検出回路     12 
  ソ1ルプフロツプ回路13  アンドゲート   
14  出力回路出願人  東京計装株式会社 代理人   弁理士 前 1)清 美
1 and 2 are circuit diagrams showing a conventional example, FIG. 3 is a circuit diagram of a temperature=i6I+i device according to the present invention, and FIG. 4 is a waveform diagram showing pulse generation (M state. Middle 1 Resistance temperature -12 RTD 3 Standard resistance 6 Percentage conversion circuit 7 Measurement control circuit 8 Current conversion circuit 9 Oscillation circuit 1
0 Capacitor 11 Zero detection circuit 12
Solver flop circuit 13 AND gate
14 Output circuit applicant Tokyo Keiso Co., Ltd. Agent Patent attorney 1) Kiyomi

Claims (1)

【特許請求の範囲】[Claims] 側温抵抗体と標準抵抗体とを並列配置した抵抗温度計と
、前記測温抵抗体と標準抵抗体の抵抗値の比を時間比に
変換する積分回路とからなる温度計測器。
A temperature measuring instrument comprising a resistance thermometer in which a side temperature resistance element and a standard resistance element are arranged in parallel, and an integrating circuit that converts the ratio of the resistance values of the temperature measurement resistance element and the standard resistance element into a time ratio.
JP16738482A 1982-09-25 1982-09-25 Temperature measuring instrument Pending JPS5956127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16738482A JPS5956127A (en) 1982-09-25 1982-09-25 Temperature measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16738482A JPS5956127A (en) 1982-09-25 1982-09-25 Temperature measuring instrument

Publications (1)

Publication Number Publication Date
JPS5956127A true JPS5956127A (en) 1984-03-31

Family

ID=15848703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16738482A Pending JPS5956127A (en) 1982-09-25 1982-09-25 Temperature measuring instrument

Country Status (1)

Country Link
JP (1) JPS5956127A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006981A3 (en) * 1995-08-17 1997-03-20 Bosch Gmbh Robert Process for checking a passenger safety device in a vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4967675A (en) * 1972-10-18 1974-07-01
JPS4974081A (en) * 1972-11-15 1974-07-17

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4967675A (en) * 1972-10-18 1974-07-01
JPS4974081A (en) * 1972-11-15 1974-07-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006981A3 (en) * 1995-08-17 1997-03-20 Bosch Gmbh Robert Process for checking a passenger safety device in a vehicle

Similar Documents

Publication Publication Date Title
JPS5956127A (en) Temperature measuring instrument
RU2730047C1 (en) Digital frequency meter
US4598375A (en) Time measuring circuit
EP0122984B1 (en) Time measuring circuit
JPS58124921A (en) Thermistor thermometer
SU1661653A1 (en) Meter
Chavan et al. A new method of time interval measurement with high resolution over wide dynamic range for nuclear timing spectroscopy applications
SU970133A1 (en) Digital temperature meter
SU566195A1 (en) Digital frequency meter
SU1530995A1 (en) Thermoanemometric device for with automatic temperature self-compensation
SU1408251A1 (en) Device for measuring index of thermal lag of thermal converter
SU606114A1 (en) Multichannel temperature measuring device
SU920403A1 (en) Converter of temperature to frequency
SU1509630A1 (en) Device for measuring temperature
SU970134A1 (en) Digital temperature meter
Elangovan A Novel Triple-Slope-Based Digital Measurement Platform for 3-Wire Connected Resistive Sensors
SU708175A2 (en) Temperature measuring device
RU2074416C1 (en) Device which provides linear characteristics of transducers
SU1068738A1 (en) Device for measuring temperature having frequency output
SU627349A1 (en) Temperature digital meter
SU976396A1 (en) Digital frequency meter
SU1247682A1 (en) Device for measuring temperature
SU1247680A1 (en) Time-to-pulse converter or device for measuring temperature
SU1339413A1 (en) Temperature measuring device
SU1084624A1 (en) Digital temperature meter