JPS5955308A - Separation membrane for gas - Google Patents

Separation membrane for gas

Info

Publication number
JPS5955308A
JPS5955308A JP16546682A JP16546682A JPS5955308A JP S5955308 A JPS5955308 A JP S5955308A JP 16546682 A JP16546682 A JP 16546682A JP 16546682 A JP16546682 A JP 16546682A JP S5955308 A JPS5955308 A JP S5955308A
Authority
JP
Japan
Prior art keywords
membrane
gas
pore size
yarn
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16546682A
Other languages
Japanese (ja)
Other versions
JPH031055B2 (en
Inventor
Matsuhiro Kimura
木村 松弘
Kazuto Hamada
濱田 一人
Morio Morino
森野 盛雄
Seiji Yoshida
清司 吉田
Kaoru Furukawa
薫 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP16546682A priority Critical patent/JPS5955308A/en
Publication of JPS5955308A publication Critical patent/JPS5955308A/en
Publication of JPH031055B2 publication Critical patent/JPH031055B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To provide a hollow yarn membrane for sepn. of gas which has gas sepn. performance and gas permeation performance plus durability by forming cellulose ester having a specific pore size distribution into a hollow yarn-like film. CONSTITUTION:This sepn. membrane has the pore size distribution wherein the pore size corresponding to the max. peak of the pore size distribution function determined by an isothermal curve of B.E.T. adsorption is <=10Angstrom . In an example, cellulose diacetate is dissolved in the mixed soln. of N-methly-2-pyrolidone and methoxy polyethylene glycol and the soln. is extruded from the spinning mouthpiece of double pipes; the extrudate is solidified in a solidifying bath kept at 10 deg.C. The hollow yarn is treated for 20min in hot water at 85 deg.C and is then treated for 20min in hot water at 91 deg.C, whereafter the yarn is immersed in a soln. of sodium oleate and is then immersed stepwise in aq. soln. of isopropanol of 20, 50, 75, 100% concns. After the yarn is further immersed for 2hr in n- hexane, the yarn is vacuum-dried. The permeation rate of hydrogen of the obtained membrane is 8.1X10<-5>cc/cm<2>.sec.cmHg and the coefft. of sepn., for methane is 92.

Description

【発明の詳細な説明】 本発明はセルロースエステル系ガス分離用中空糸膜に関
するものである。さらに詳しくは、特定の細孔径分布を
有し、優れたガス分離性能およびガス透過性能ならびに
耐久性を兼せもつセルロースエステル系ガス分離用中空
糸膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cellulose ester-based hollow fiber membrane for gas separation. More specifically, the present invention relates to a cellulose ester-based hollow fiber membrane for gas separation that has a specific pore size distribution and has excellent gas separation performance, gas permeation performance, and durability.

ある気体混合物から特定の気体成分を分離することは重
要な単位操作の一つである。例えは各種工業プロセス上
のガス分離、空気中の酸素を濃縮する酸素富化法〜天然
ガス中のヘリウム等の希ガスや炭酸ガス硫化水素等の不
純物の分断1各種水素含有ガスからの水素の回収あるい
は精製1各種廃ガスからの有害ガスの除去など多種の用
途があり1従来一般的に実施されてきた方法は1深冷分
離法、吸着吸収法である。一方ある種の高分子膜が気体
に対して選択透過性を有することから気体の膜透過法が
気体成分の分離に応用できることは古くから知られてお
り、この方法は分離に際して各成分の相変化を伴わない
ため)前記した分か法に比べてエネルギー的に有利とい
われている。そのため近年特に高分子材料の発展とも相
まって膜透過によるガス分離に関する研究が盛んに行わ
れている0と・:ろがそれが実用化されたりあるいは実
用化の段階に近ずいているものは未だ非常に少ない状態
である。それは現在までに提案されているガス分離用高
分子膜は、ガス透過性能、ガス分離性能において未だ工
業的に利用し得るには不十分だからである。ガス透過性
能が小さい場合は、ガス混合物を分離し一定泌:の透過
濃縮ガスを得るのに非常に多くの膜透過面積を必要とす
ることになり設備コストが高くなる。又ガス分離性能が
低いということは、一定の分離効果を1段の膜透過では
達しえず2段以上のカスケード多段ガス透過法を必要と
したり、またガスの回収率を低くして運転することが必
要になり、やはり設備コストやランニングコストの増加
をもたらしいずれにしても膜分離法の有利性を発揮しえ
なくなる。しかも一般的な傾向としてはこれらの膜性能
即ち透過性能と分離性能は相反する性質があり、両者を
ともに高いレベルに維持することは勤しいとされるがガ
ス分離膜の実用化にはこれらの問題点の解決が不可避で
ある。
Separation of specific gas components from a gas mixture is one of the important unit operations. For example, gas separation in various industrial processes, oxygen enrichment method to concentrate oxygen in the air ~ Separation of impurities such as rare gases such as helium in natural gas, carbon dioxide, hydrogen sulfide, etc. 1. Hydrogen from various hydrogen-containing gases Recovery or purification 1. It has a variety of uses, such as the removal of harmful gases from various types of waste gases. 1. Methods that have been commonly practiced in the past are 1. cryogenic separation method and adsorption absorption method. On the other hand, it has been known for a long time that gas membrane permeation can be applied to the separation of gas components because certain polymer membranes have selective permselectivity for gases. This method is said to be more energetically advantageous than the above-mentioned separation method. For this reason, research on gas separation through membrane permeation has been actively conducted in recent years, especially in conjunction with the development of polymeric materials.However, there are still very few products that have been put into practical use or are close to being put into practical use. It is in a state where there are few. This is because the gas separation polymer membranes proposed to date are still insufficient in terms of gas permeability and gas separation performance for industrial use. If the gas permeation performance is low, a very large membrane permeation area is required to separate the gas mixture and obtain a constant amount of permeated concentrated gas, resulting in high equipment costs. In addition, low gas separation performance means that a certain separation effect cannot be achieved with one-stage membrane permeation, requiring a cascade multi-stage gas permeation method with two or more stages, or operation with a low gas recovery rate. However, this also increases equipment costs and running costs, and in any case, the advantages of the membrane separation method cannot be demonstrated. Moreover, there is a general tendency that these membrane performances, that is, permeation performance and separation performance, have contradictory properties, and it is said that it is important to maintain both at a high level. Solving the problems is inevitable.

一方1構造的には膜の外部性能)耐久性の観点から特に
非対称膜においてはガス分離性能を発揮するスキン層と
、それを支持する多孔質層がち密であることが必要とさ
れている。従って優れたガス分離性能・および耐久性を
もつ非対称ガス分離膜を得るには、すぐれた膜素材を使
用することはもとよりであるが)その素材を膜に加工す
るときにスキン層を薄くし支持層をち密構造にすること
が重要である。
On the other hand, from the viewpoint of durability (external performance of the membrane), especially in asymmetric membranes, it is necessary to have a dense skin layer that exhibits gas separation performance and a porous layer that supports it. Therefore, in order to obtain an asymmetric gas separation membrane with excellent gas separation performance and durability, it is necessary to use a superior membrane material, but also to thin the skin layer and support it when processing the material into a membrane. It is important that the layers have a dense structure.

これらの事情に鑑み本発明者らは特に上記のような膜構
造を保持させるのに好都合な加工性のよいセルリースエ
ステル系素材について、鋭意検討を加えた結果1特定の
細孔構造をもつセルロースエステル系中空糸膜が特に水
素、ヘリウム等に対するガス透過性能およびガス分離性
能ならびに耐久性に侵れていることを見い出し本発明に
いたった。即ち、セルロースエステル系中空糸膜の製造
において得られる膜の、BK’L’吸着等温線より求め
た細孔径分布関数の最大ピークに対応する細孔径がIO
A以下となるようにすることにより水素、ヘリウム等に
対するガス透過性能1分離性能および耐久性能のきわめ
て優れたガス分離膜が得られることを見い出した。
In view of these circumstances, the present inventors conducted intensive studies on cellulose ester-based materials that have good processability and are particularly advantageous in maintaining the above-mentioned membrane structure. It was discovered that ester-based hollow fiber membranes have particularly poor gas permeability and gas separation performance against hydrogen, helium, etc., as well as durability, leading to the present invention. That is, the pore size corresponding to the maximum peak of the pore size distribution function determined from the BK'L' adsorption isotherm of the membrane obtained in the production of cellulose ester hollow fiber membrane is IO
It has been found that by setting the value to be A or less, a gas separation membrane with extremely excellent gas permeability, separation performance, and durability against hydrogen, helium, etc. can be obtained.

ここでガス分離膜の細孔径分布は一般的なりITの装置
において窒素ガスの吸着毛管凝縮現象を利用しInkl
ey法(工nkley & 0ranston : A
dvances 1nOatalysis、 9. (
1957) )により計算したものを使用する。またガ
ス分離膜の耐久性能は膜透過の長期運転における透過性
能の低下の程度で表わされる。即ち1加圧下でガスの膜
透過を行うと、徐々に膜の圧密化が起り透過性能が低下
してくる。この現象は膜をち密化することにより軽減で
きる。
Here, the pore size distribution of the gas separation membrane is determined by using the adsorption capillary condensation phenomenon of nitrogen gas in general IT equipment.
Ey method (Eng. Kley & Oranston: A
dvances 1nOalysis, 9. (
1957)) is used. Furthermore, the durability performance of a gas separation membrane is expressed by the degree of decline in permeation performance during long-term membrane permeation operation. That is, when gas is permeated through the membrane under one pressure, the membrane gradually becomes compacted and the permeation performance decreases. This phenomenon can be alleviated by making the film denser.

こうした膜の耐久性能は下記式で定義される圧密化係数
−mで表わされる。
The durability of such a membrane is expressed by the compaction coefficient -m defined by the following formula.

Jt== J、  曇 t Jtl+、時間運転後の透過量 、yl: 1時間運転後の透過量 t :運転時間 (hr) このような本発明の如き特定の細孔構造をもったすぐれ
たガス分離性能をもつセルロースエステル系中空糸膜は
例えば以下に示すような紡糸条件、構造安定化条件1乾
燥条件の組合せの一体化で製造されうるが、特にこれら
の方法に限定されることはない。即ち、セルロースエス
テルを有機溶剤と非溶剤液に溶解しこの紡糸原液を紡糸
口金を通してまず気体雰囲気中に押出し、引続いて凝固
浴で凝固し次いで水洗し中空糸膜が形成される。次に得
られた中空糸を熱水中で多段熱処理し1中空糸膜の構造
を安定化させる。その後得られた中空糸膜を界面活性剤
の水溶液中に浸漬して界面活性剤を含浸させたのち該中
空糸に含まれる水分を水可溶性有機溶剤で置換し、次に
非極性、水弁可溶性有機溶剤で置換後、乾燥することに
より、細孔径分布でIOA以下の径に最大ピークを持ち
ガス透過性能1ガス分離性能および耐久性の優れたガス
分離膜を得ることができる。
Jt== J, cloudy t Jtl+, permeation amount after time operation, yl: permeation amount after 1 hour operation t: operation time (hr) An excellent gas having such a specific pore structure as in the present invention A cellulose ester-based hollow fiber membrane having separation performance can be produced, for example, by integrating the following combinations of spinning conditions, structural stabilization conditions, and drying conditions, but the method is not particularly limited to these methods. That is, cellulose ester is dissolved in an organic solvent and a non-solvent liquid, and the spinning stock solution is first extruded into a gas atmosphere through a spinneret, then coagulated in a coagulation bath, and then washed with water to form a hollow fiber membrane. Next, the obtained hollow fibers are subjected to multistage heat treatment in hot water to stabilize the structure of one hollow fiber membrane. After that, the obtained hollow fiber membrane is immersed in an aqueous solution of a surfactant to impregnate it with the surfactant, and then the water contained in the hollow fiber is replaced with a water-soluble organic solvent. By drying after substitution with an organic solvent, it is possible to obtain a gas separation membrane having a maximum peak in the diameter of IOA or less in the pore size distribution and excellent gas permeability, gas separation performance, and durability.

本発明において用いるセルロースエステル系ポリマーと
してはセルレースアセテート、セルローストリアセテー
ト、セルロースブチレート、セルロースジベンゾイル等
のセルロース誘導体があげられなかでもセルロースアセ
テートが最も好ましい。
Cellulose ester polymers used in the present invention include cellulose derivatives such as cellulose acetate, cellulose triacetate, cellulose butyrate, and cellulose dibenzoyl, and among these, cellulose acetate is most preferred.

本発明においてセルロースエステルの?1lIiに用い
る溶剤はその種類により中空糸膜のガス選択透過性能が
大きく異なるためその選定は重要である。
Cellulose ester in the present invention? The selection of the solvent used in 1lIi is important because the gas selective permeation performance of the hollow fiber membrane varies greatly depending on the type of solvent.

このような観点から従来より、セルロースエステル系ポ
リマの溶剤は数多く提案されているが1ジメチルホルム
アミド、ジメチルアセトアミド、Nメチル2ピロリドン
が最も好ましく、さらに非溶剤との併用により透過性能
に大きな相乗効果をもたらす。同様にその非溶剤もまた
その種類により)中空糸膜の透過性能に影響を及ばず。
From this point of view, many solvents for cellulose ester polymers have been proposed, but dimethylformamide, dimethylacetamide, and N-methylpyrrolidone are the most preferred, and when used in combination with a non-solvent, they have a great synergistic effect on permeation performance. bring. Similarly, the non-solvent (depending on its type) does not affect the permeation performance of the hollow fiber membrane.

従って、最終的に得られるガス分離膜性能の向上のため
には適切なポリマー溶剤と非溶剤の組合せが重要な技術
的要素の1つとなる。本発明においては該非溶媒として
は、下記一般式のものが用いられる。
Therefore, an appropriate combination of polymer solvent and non-solvent is one of the important technical elements in order to improve the performance of the gas separation membrane finally obtained. In the present invention, as the non-solvent, those of the following general formula are used.

R,O+ 02H,O+−n R。R, O+ 02H, O+-n R.

(式中R1およびR2はそれぞれ水素、炭素数1〜6の
炭化水素基−02H4R’または一〇 0 R1’であ
り、ここでR′はONp −00OR2’、 −0CI
H2または−C!H2NH2を示し、さらにR,Iおよ
びR,Iはそれぞれ水素または炭素数1〜6の炭化水素
基を示す。なお1前記式中nは2〜10の整数である。
(In the formula, R1 and R2 are hydrogen, a hydrocarbon group having 1 to 6 carbon atoms -02H4R' or 100 R1', respectively, where R' is ONp -00OR2', -0CI
H2 or -C! H2NH2, and R, I and R, I each represent hydrogen or a hydrocarbon group having 1 to 6 carbon atoms. Note that n in the above formula is an integer of 2 to 10.

)前記一般式で表わされるポリエーテルとしては例えば
トリエチレングリコール、テトラエチレングリコール、
ポリエチレングリコール、メチルカルピトール、ジメチ
ルカルピトール、メトキシトリグリコール、トリエチレ
ングリコールモノエチルエーテル)アセチル化ポリエチ
レングリコール、アミノエチル化ポリエチレングリコー
ル等があげられ1これらは1種のみあるいは2種以上を
混合して使用してもよい。
) Examples of the polyether represented by the above general formula include triethylene glycol, tetraethylene glycol,
Polyethylene glycol, methyl calpitol, dimethyl calpitol, methoxy triglycol, triethylene glycol monoethyl ether) acetylated polyethylene glycol, aminoethylated polyethylene glycol, etc.1 These can be used alone or in combination of two or more types. May be used.

つぎに、紡糸原液中のセルロースエステルのポリマー噛
度は中空糸膜の可紡性および膜性能との関係が深い。本
発明方法においては紡糸原液の濃度としてセルロースエ
ステル系ポリマー26〜39重量%、溶剤とポリエーテ
ルの混合物61〜74重量%の濃度範囲で用いられる。
Next, the degree of polymer granularity of cellulose ester in the spinning dope is closely related to the spinnability and membrane performance of the hollow fiber membrane. In the method of the present invention, the concentration of the spinning dope used is 26 to 39% by weight of the cellulose ester polymer and 61 to 74% by weight of the mixture of solvent and polyether.

以上のようなポリマーおよび溶剤1非溶剤を用い・それ
らを混合し必要により加熱を行って攪拌溶解することに
より紡糸原液を調合し、p過脱泡を行い紡糸口金から空
気、不活性ガス等の気体雰囲気中に押出す0なお、紡糸
口金はアーク型、C型または紡糸口金内部に気体導入管
を設けた二重背型のものが用いられる。
A spinning stock solution is prepared by using the above polymer and solvent 1 non-solvent, mixing them, heating if necessary, stirring and dissolving them, and performing excessive defoaming to remove air, inert gas, etc. from the spinneret. Extrusion into a gas atmosphere Note that the spinneret used is an arc type, C type, or double back type with a gas introduction tube provided inside the spinneret.

口金より押出され中空形状を形成した中空糸は前記気体
雰囲気中を通過したのち直ちに凝固洛中に浸漬され凝固
したのぢ水洗され湿潤中空糸膜を得る。ここで、凝固浴
に用いられる凝固液としては水と該紡糸原液に用いられ
る溶剤および非溶剤との混合溶剤が用いられる。又凝固
浴温度としては常温以下特に0〜25℃が好ましい。
The hollow fibers extruded from the die to form a hollow shape are immediately immersed in a coagulating liquid after passing through the gas atmosphere, solidified, and washed with water to obtain a wet hollow fiber membrane. Here, as the coagulating liquid used in the coagulating bath, a mixed solvent of water and the solvent and non-solvent used in the spinning dope is used. The temperature of the coagulation bath is preferably room temperature or lower, particularly 0 to 25°C.

湿潤中空糸膜は、紡糸で得られた膜構造を安定化させる
ためにさらに熱処理される。熱処理は中空糸に対して不
活性な加熱媒体中に中空糸を浸漬することによって行わ
れる。熱処理媒体は該中空糸に対して不活性なものであ
れはどのようなものでもよいが、取扱い上の問題と経済
性から水を用いるのが好ましい。また、熱処理の実施に
おいては低湿側より高湿側に段階的に多段で熱処理する
方法が膜の分離性能向上の点から好ましい。最初の熱処
理温度は60〜90℃最終の熱処理温度は85〜99℃
好ましくはS87〜95℃である。
The wet hollow fiber membrane is further heat treated to stabilize the membrane structure obtained by spinning. The heat treatment is carried out by immersing the hollow fibers in a heating medium that is inert to the hollow fibers. The heat treatment medium may be any medium as long as it is inert to the hollow fibers, but water is preferably used from the viewpoint of handling issues and economy. Furthermore, in carrying out the heat treatment, it is preferable to perform the heat treatment in multiple stages from the low humidity side to the high humidity side from the viewpoint of improving the separation performance of the membrane. Initial heat treatment temperature is 60-90℃ Final heat treatment temperature is 85-99℃
Preferably it is S87-95 degreeC.

段階的熱処理は2〜3段が好ましい。The stepwise heat treatment is preferably carried out in two or three stages.

このようにして得られた湿潤中空糸はそのまま乾燥する
と収縮が大きく膜性能が失われるため、例えば、米国特
許3,592,672号明細書に開示されるように1第
1段階として膜中に含まれる水分を水混和性有機溶剤で
置換し、第2段階として膜中に含まれる水混和性有機溶
剤を非極性有機溶剤で置換したのち、膜を乾燥するとい
う方法が適用される。こうした溶剤置換工程においては
やはり溶剤の選択やその他の条件が最終膜性能に大きく
影響するのである。
If the wet hollow fibers obtained in this way are dried as they are, they will shrink significantly and lose membrane performance. A method is applied in which the water contained in the film is replaced with a water-miscible organic solvent, and in the second step, the water-miscible organic solvent contained in the film is replaced with a non-polar organic solvent, and then the film is dried. In such a solvent replacement step, the selection of solvent and other conditions greatly influence the final membrane performance.

本発明の方法では、前記溶剤置換工程に先だって該湿潤
中空糸膜を界面活性剤の水溶液に浸漬する方法が行われ
る。これにより以下の溶剤置換乾燥工程が円滑に行われ
る。界面活性剤の種類としては特にカチオン活性剤が好
ましいがその他アニオン活性剤、両性活性剤、高分子活
性剤等も使用可能である。溶剤1θ換に使用されろ水混
和性有機溶剤としてはメタノール、エタノール、n−プ
ロパツール、1BO−プロパツール、n−ブタノール、
工l!0ブタノール、8eCブタノール、t−ブタノー
ル、アセトン等が用いられ、また、非極性有機溶剤とシ
クロペンタン、シクロペンタン、n−ヘキサン、シクロ
ヘキサン、n−へブタン、シクロヘプタン、れ、そのな
かでも特にインプロパツールとシクロヘキンの組合せが
望ましい。溶剤置換工程においてもその操作条件が膜と
しての最終的な性能と構造に大きな影響を及ぼす。本発
明の方法においては、溶剤置換の第1段階である水混和
性有機溶剤との置換において該有機溶剤の濃度が5〜1
00%で、異った数種類の水溶液を用意し水湿潤中空糸
膜を低濃度液から高濃度液へ段階的に接触させて脱水す
る段ド1的置換法を用いる。これにより、有機溶剤の置
僚が円滑に行われS湿潤膜の構造が維持され、すぐれた
性能の膜が得られる。逆に、水湿潤膜を直接水混和性有
機溶剤100%の液に接触させると、膜よりの水分の脱
水が急激に起り膜構造に良くない影響を与え最終的に中
空糸膜の性能は不良となる。この段階的置換法における
有機溶剤の濃度の段数は2〜5段が好ましい0第1段階
の溶剤置換の完了後肢中空糸膜を第2段階として非極性
有機溶剤に接触させ、充分に置換させたのち乾燥に供さ
れる0 乾燥は通常40℃以下の空気あるいは不活性ガス雰囲気
中にて行うことができるし又真空乾燥によることもでき
る乾燥した中空糸膜はさらに40℃〜150℃で緊張下
または無緊張下で乾熱処理を行うことにより安定化した
膜を得ることができる。
In the method of the present invention, the wet hollow fiber membrane is immersed in an aqueous solution of a surfactant prior to the solvent replacement step. This allows the following solvent replacement drying process to be performed smoothly. As for the type of surfactant, cationic surfactants are particularly preferred, but anionic surfactants, amphoteric surfactants, polymeric surfactants, etc. can also be used. Water-miscible organic solvents used for solvent 1θ conversion include methanol, ethanol, n-propertool, 1BO-propertool, n-butanol,
Engineering! 0-butanol, 8eC-butanol, t-butanol, acetone, etc. are used, and non-polar organic solvents such as cyclopentane, cyclopentane, n-hexane, cyclohexane, n-hebutane, cycloheptane, etc. A combination of propatool and cyclohexine is desirable. Even in the solvent replacement process, the operating conditions have a large effect on the final performance and structure of the membrane. In the method of the present invention, in the first step of solvent replacement, which is the replacement with a water-miscible organic solvent, the concentration of the organic solvent is 5 to 1.
00%, a step-by-step replacement method is used in which several different types of aqueous solutions are prepared and a water-wet hollow fiber membrane is brought into contact with the water-wetted hollow fiber membrane stepwise from a low-concentration solution to a high-concentration solution for dehydration. As a result, the organic solvent can be placed smoothly, the structure of the S-wet film can be maintained, and a film with excellent performance can be obtained. On the other hand, if a water-wet membrane is brought into direct contact with a solution containing 100% water-miscible organic solvent, water will rapidly dehydrate from the membrane, adversely affecting the membrane structure and ultimately resulting in poor performance of the hollow fiber membrane. becomes. The number of organic solvent concentration stages in this stepwise replacement method is preferably 2 to 5 stages.0 After completion of the first stage solvent replacement, the hindlimb hollow fiber membrane was brought into contact with a non-polar organic solvent in the second stage, and was sufficiently replaced. The dried hollow fiber membrane is then dried under tension at 40°C to 150°C.Drying can be carried out in an air or inert gas atmosphere at a temperature of 40°C or lower, or can also be carried out under vacuum. Alternatively, a stabilized film can be obtained by dry heat treatment under no tension.

以下余白 以上詳述した方法により、細孔径10A以下に細孔径分
布のピークを有するすぐれたガス分離性能とガス透過性
能を兼せもち1しがち良好な耐久性能をもつガス分離膜
を得ることができる。
By the method detailed above in the margins below, it is possible to obtain a gas separation membrane that has both excellent gas separation performance and gas permeation performance, with a peak in pore size distribution below 10A, and has good durability. can.

かかる方法により得られるセルロースエステル系乾燥分
離膜は水素ガス透過速度(KH2)として5xlOCo
(STP)/ejseacmHg以上1ガス分離係数(
α)として水素およびメタンの透過速度比(αH210
H4)で表すときαH2/ CnH2が70以上の性能
を示す。
The cellulose ester dry separation membrane obtained by this method has a hydrogen gas permeation rate (KH2) of 5xlOCo.
(STP)/ejseacmHg or more 1 gas separation coefficient (
α) as hydrogen and methane permeation rate ratio (αH210
When expressed as H4), αH2/CnH2 exhibits performance of 70 or more.

なお1これらの膜を用いたモジュール装置化は一般的な
方法で作製され−その優れた性能をもつ故に前記したよ
うに特に天然ガス中のヘリウムの回収や各植混合ガス中
の水素の分離1空気中の酸素富化等の広い用途に有効に
使用されうる。
1 Modular equipment using these membranes can be fabricated using a general method, and because of their excellent performance, they are particularly useful for the recovery of helium from natural gas and the separation of hydrogen from mixed gases. It can be effectively used in a wide range of applications such as oxygen enrichment in the air.

以下、本発明を実施例によって具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例 L Nメチル2ピ四リドン(NMP ) 46部と分子量3
50のメトキシポリエチレングリコール(MPEG)1
8部からなる混合溶液にセル四−スジアセテー)36m
t−入れて100 ’Oで攪拌溶解した。この紡糸原液
をp過脱泡後2重管型紡糸口金を用いて空気中に押出し
気流中に0.1秒接触させたのち次に凝固液組成NMP
21重量%5MPE09重量%〜水70%N温度10℃
の凝固洛中に導き1凝固し1ネルソンロ一ラ一方式で水
洗を行ったのち118III/分の速度で捲取った。次
に中空糸をがせ散機で捲取集束状態で無緊張下・熱水÷
85℃、20分間処理後−続いて91℃の熱水にて20
分間熱処理した。得られた湿潤中空糸をオレイン酸ソー
ダ0.01モル/l 浴液に30分間浸漬したのちイソ
プロパツール水溶液濃度20%、50%、75%110
0%の6液に段階的にそれぞれ30分間ずつ浸漬した。
Example L 46 parts of N-methyl 2-pytetralidone (NMP) and a molecular weight of 3
50 methoxypolyethylene glycol (MPEG) 1
36 m of cellulose diacetate in a mixed solution consisting of 8 parts
The mixture was stirred and dissolved at 100'O. After excessive defoaming, this spinning stock solution was extruded into the air using a double tube spinneret and brought into contact with the air flow for 0.1 seconds.
21% by weight 5MPE09% by weight ~ Water 70%N Temperature 10℃
It was coagulated once, washed with water using one Nelson roller, and then rolled up at a speed of 118 III/min. Next, the hollow fibers are peeled off, rolled up with a scatterer, and heated under no tension under hot water.
After treatment at 85°C for 20 minutes - followed by treatment with hot water at 91°C for 20 minutes.
Heat treated for minutes. The obtained wet hollow fibers were immersed in a sodium oleate bath solution of 0.01 mol/l for 30 minutes, and then an isopropanol aqueous solution with concentrations of 20%, 50%, and 75%110
The specimens were immersed in 6 0% liquids in stages for 30 minutes each.

ついでn−ヘキサンに1.20分間浸漬後30℃の湿度
で真空乾燥した。乾燥後さらに熱風乾燥機にて60 ’
Q 30分間熱処理を行った。このようにして得られた
中空糸膜を長さ50c+1巻数100のかせ糸としその
一端を開放しエポキシ樹脂で接着したのち圧力容器に装
着して圧カlo%G温度20℃で水素とメタンの透過速
度(KH2゜KC!H4)全測定し1分離係数(αH,
/C!H,:透過速度比)を求めた。その結果は KH2= 8.I X I O−’ CIC(STP)
/cdsecc+mHgαH210H4=92 (−) を示した。この中空糸膜を湯浅アイオニクス社製のカン
タソルブ装置により細孔径分布を求めたところ第1図の
ごとき結果を得た。また耐久性を表す圧密化係Wt−m
は0.005以下であった。
Then, it was immersed in n-hexane for 1.20 minutes and then dried under vacuum at a humidity of 30°C. After drying, use a hot air dryer for 60'
Q: Heat treatment was performed for 30 minutes. The hollow fiber membrane thus obtained was made into a strand with a length of 50c + 100 turns, one end of which was opened, bonded with epoxy resin, and then attached to a pressure vessel to react with hydrogen and methane at a pressure lo%G temperature of 20℃. The permeation rate (KH2゜KC!H4) was completely measured and the separation coefficient (αH,
/C! H,: permeation rate ratio) was determined. The result is KH2=8. IXIO-'CIC(STP)
/cdsec+mHgαH210H4=92 (-). The pore size distribution of this hollow fiber membrane was determined using a Kantasolve device manufactured by Yuasa Ionics, and the results shown in FIG. 1 were obtained. In addition, the consolidation factor Wt-m, which represents durability,
was less than 0.005.

比較例 L 実施例1において溶剤置換の前にオレイン師ソーダ浸漬
を行わなかったこと以外はすべて実施例1と同様な操作
で中空糸膜を作り実施例1と同様な方法で細孔径分布を
求めたところ1第2図のようになった。また実施例1と
同様に膜性能の評価を行った結果は次のとおりである。
Comparative Example L A hollow fiber membrane was prepared in the same manner as in Example 1, except that the oleic acid soda immersion was not performed before the solvent replacement in Example 1, and the pore size distribution was determined in the same manner as in Example 1. The result was as shown in Figure 1 and 2. Furthermore, the membrane performance was evaluated in the same manner as in Example 1, and the results are as follows.

KH2= 5,1 x :L O−’  Co(STP
 ycjsoo cmHgαH,/C!H4= 55 − 荒 =  0.01 比較例 2 実施例1において溶剤置換の第1段階のイソプロパツー
ルの置換で濃度の段階的置換を行わず直接100%イソ
プロパツールに浸漬した以外はすべて実施例1と同様な
操作により中空糸膜を作り実施例1と同様な方法で細孔
径分布を求めたところ1第3図のようになった。また実
施例1と同様に膜性能の評価を行った結果は次のとおり
である。
KH2=5,1 x :LO-'Co(STP
ycjsoo cmHgαH,/C! H4 = 55 - Rough = 0.01 Comparative Example 2 All procedures were carried out in Example 1 except that in the first step of solvent replacement, the isopropanol was directly immersed in 100% isopropanol without performing stepwise replacement of the concentration. A hollow fiber membrane was prepared in the same manner as in Example 1, and the pore size distribution was determined in the same manner as in Example 1, as shown in Figure 3. Furthermore, the membrane performance was evaluated in the same manner as in Example 1, and the results are as follows.

KHg =5 、3 X I O−’ Co(STP 
)/cjsec emH9αH3/C!H,= 55 −m=o、o15
KHg = 5, 3XIO-'Co(STP
)/cjsec emH9αH3/C! H,=55-m=o,o15

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るセルロースエステ/l’系ガス分
離用中空糸膜のBET吸着等温線により求めた細孔径分
布関数であり、第2図及び第3図は本発明外の細孔径分
布関数を示す。 特杵出願人  東洋紡績株式会社
Figure 1 shows the pore size distribution function determined from the BET adsorption isotherm of the cellulose ester/l'-based hollow fiber membrane for gas separation according to the present invention, and Figures 2 and 3 show the pore size distribution functions other than the present invention. Indicates a function. Special pestle applicant Toyobo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] E、 L T、吸着等混線より求めた細孔径分布関数の
最大ピークに対応する細孔径がIOA以下である細孔径
分布をもつことを特徴とするセルロースエステル系ガス
分離用中空糸膜。
A hollow fiber membrane for cellulose ester gas separation, characterized in that it has a pore size distribution in which the pore size corresponding to the maximum peak of a pore size distribution function determined from crosstalk such as E, L T and adsorption is less than or equal to IOA.
JP16546682A 1982-09-21 1982-09-21 Separation membrane for gas Granted JPS5955308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16546682A JPS5955308A (en) 1982-09-21 1982-09-21 Separation membrane for gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16546682A JPS5955308A (en) 1982-09-21 1982-09-21 Separation membrane for gas

Publications (2)

Publication Number Publication Date
JPS5955308A true JPS5955308A (en) 1984-03-30
JPH031055B2 JPH031055B2 (en) 1991-01-09

Family

ID=15812945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16546682A Granted JPS5955308A (en) 1982-09-21 1982-09-21 Separation membrane for gas

Country Status (1)

Country Link
JP (1) JPS5955308A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282415A (en) * 1985-05-31 1986-12-12 ヘキスト セラニーズ コーポレーシヨン Porous cellulose ester product having stripe on surface thereof
US5096468A (en) * 1987-10-19 1992-03-17 W. R. Grace & Co.-Conn. Cellulose acetate butyrate gas separation membranes
JPH04166219A (en) * 1990-10-29 1992-06-12 Kuraray Co Ltd Production of membrane provided with hydrophilic property

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138281A (en) * 1974-09-30 1976-03-30 Hitachi Ltd SANSOGASUSENTAKUSEITOKAMAKU
JPS5194482A (en) * 1975-02-17 1976-08-19 Kansojoseruroosu aseteetohantomakuno seizoho
JPS51112917A (en) * 1975-03-27 1976-10-05 Daicel Chem Ind Ltd A process for producing hollow filaments for use in separation
JPS5289574A (en) * 1976-01-23 1977-07-27 Daicel Chem Ind Ltd Production of hollow filament used for separation
JPS53146274A (en) * 1977-05-26 1978-12-20 Toshiba Corp Production of cellulose acetate film used for gas separation
JPS5626526A (en) * 1979-08-13 1981-03-14 Teijin Ltd Selective permeable membrane for separation of gas
JPS5858111A (en) * 1981-10-05 1983-04-06 Toyobo Co Ltd Dry separation membrane

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138281A (en) * 1974-09-30 1976-03-30 Hitachi Ltd SANSOGASUSENTAKUSEITOKAMAKU
JPS5194482A (en) * 1975-02-17 1976-08-19 Kansojoseruroosu aseteetohantomakuno seizoho
JPS51112917A (en) * 1975-03-27 1976-10-05 Daicel Chem Ind Ltd A process for producing hollow filaments for use in separation
JPS5289574A (en) * 1976-01-23 1977-07-27 Daicel Chem Ind Ltd Production of hollow filament used for separation
JPS53146274A (en) * 1977-05-26 1978-12-20 Toshiba Corp Production of cellulose acetate film used for gas separation
JPS5626526A (en) * 1979-08-13 1981-03-14 Teijin Ltd Selective permeable membrane for separation of gas
JPS5858111A (en) * 1981-10-05 1983-04-06 Toyobo Co Ltd Dry separation membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282415A (en) * 1985-05-31 1986-12-12 ヘキスト セラニーズ コーポレーシヨン Porous cellulose ester product having stripe on surface thereof
US5096468A (en) * 1987-10-19 1992-03-17 W. R. Grace & Co.-Conn. Cellulose acetate butyrate gas separation membranes
JPH04166219A (en) * 1990-10-29 1992-06-12 Kuraray Co Ltd Production of membrane provided with hydrophilic property

Also Published As

Publication number Publication date
JPH031055B2 (en) 1991-01-09

Similar Documents

Publication Publication Date Title
US5820659A (en) Multicomponent or asymmetric gas separation membranes
US4681605A (en) Anisotropic membranes for gas separation
EP0732143B1 (en) Fluid separation membranes prepared from blends of polyimide polymers
JPH0565211B2 (en)
WO1990006169A2 (en) Defect-free ultrahigh flux asymmetric membranes
US5443728A (en) Method of preparing membranes from blends of polyetherimide and polyimide polymers
CN107596925B (en) Poly 4-methyl-1-pentene radial heterogeneous hollow fiber membrane and preparation method thereof
JP2006528057A (en) Monolithically skinned asymmetric membrane with solvent resistance
US5490931A (en) Fabrication of a fluoropolymer hollow fiber having a defect-free separation layer
US6017474A (en) Highly permeable polyethersulfone hollow fiber membranes for gas separation
KR101200366B1 (en) Mass fabrication method of asymmetric gas separation hollow fiber membranes having high selectivity and permeability
KR100835655B1 (en) Preparation method of gas seperation membrane and gas seperation membrane prepared therefrom
WO2003040444A1 (en) Manufacture of polyimide hollow fibres
JPS5955308A (en) Separation membrane for gas
US4283359A (en) Process for producing polyacrylonitrile reverse osmotic membranes
JPS588504A (en) Gas separation membrane comprising polysulfone hollow fiber
KR101503395B1 (en) Preparation method of support membrane for recovering hydrocarbon and support membrane prepared therefrom
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
JPH0226529B2 (en)
KR101474545B1 (en) Method for manufacturing asymmetric hollow fiber membranes for fluorinated gas separation and asymmetric hollow fiber membranes for fluorinated gas separation manufactured thereby
KR20020011593A (en) Method for forming gas separation membraines
GB2192581A (en) Process for fabricating a separation medium
JPH027690B2 (en)
JPS6391124A (en) Porous hollow yarn membrane and its production
CN117358073A (en) Gas separation membrane and preparation method and application thereof