JPS5953608A - Method for measuring flow speed of gas in blast furnace - Google Patents

Method for measuring flow speed of gas in blast furnace

Info

Publication number
JPS5953608A
JPS5953608A JP16366882A JP16366882A JPS5953608A JP S5953608 A JPS5953608 A JP S5953608A JP 16366882 A JP16366882 A JP 16366882A JP 16366882 A JP16366882 A JP 16366882A JP S5953608 A JPS5953608 A JP S5953608A
Authority
JP
Japan
Prior art keywords
furnace
gas
charge
determined
inclination angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16366882A
Other languages
Japanese (ja)
Other versions
JPS6039725B2 (en
Inventor
Tadashi Isoyama
磯山 正
Yoshio Okuno
奥野 嘉雄
Toshiyuki Irita
入田 俊幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16366882A priority Critical patent/JPS6039725B2/en
Publication of JPS5953608A publication Critical patent/JPS5953608A/en
Publication of JPS6039725B2 publication Critical patent/JPS6039725B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To grasp accurately the distribution of the gaseous flow in the furnace by measuring the deposition condition of the charge in a blast furnace right after charging basing on the fact that the shape of the deposition formed by said charge in the furnace is varied in accordance with the distribution of the gaseous flow in the furnace. CONSTITUTION:The temp. T and components of the gas on the surface of the charge in the port of a blast furnace are measured and the density rhof of the gas is calculated from the furnace top pressure Pr determined from operating conditions. The speed Umf of the gas for beginning fluidization of the charge is calculated from the density rhof of the gas and the grain size Dp and density rhob of the charge determined by the test on the outside of the furnace. On the other hand, the deposition shape of the charge in the port of the furnace is separately measured and the inclination angle theta at each measuring point is calculated from said shape, then theta/theta0 is calculated from the inclination angle theta0 of the charge in the absence of wind determined by the test outside of the furnace. The value U/Umf with respect to theta/theta0is read from the graph, and the flow speed U of the gas in the furnace with respect to the inclination angle is determined by said value.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高炉炉内装入物表面ニ′l・・けるガス流分
布測定方法に関するものであzl。 一般に高炉の操業にあたっては、炉内に装入する鉱石、
コークス等の固体原旧(以後べξ入物と称す)と、炉T
部羽11部に送風する熱風で装入物中のコークスが燃焼
して発生するi4元性炉内ガス(以後1)つに炉内ガス
と称す)との接触全よくし、鉱石の還元および溶解状況
を適正な状態に保持するととが重要であるが、このだめ
には炉内ガス流分布を擢実にtl’ Il!することが
必要である。すなわち、炉内ガスの流れが部分的に偏流
して著しくガス流分布が乱れメξ場合、ガス流れの多い
部分と少ない部分が生じ、鉱石の還元割合が不均一とな
る。 との結果、炉下部での鉱石溶1・・111Iレベルのノ
くランスが崩わて棚吊り、スリップ等のター人物降下異
常等を起こし、高炉t■檗の安定を大きく乱すことにな
る。このような炉内ガス流の1向流1現象が生じた場合
には、ガス流の多い部6トに卸、T1を多く装入すべく
装入方式を変更する等、いわゆる装入物分布を制御して
ガス流分布の乱れを改;、I、4する方策がとられてい
るつし7たがって高炉の安定な操業を維持する上で炉内
ガス流分布を的確に検知することが極めて重要なポイン
トとなっている。 しかるに従来は、炉ロ部装入物イト3而のガス1%a 
ll′fが50〜800℃まで高範囲に変化−ノるこ、
とおよび炉内ガス中に多−Mのダストが混入1−1でい
ることからガス流速を直接測定することが困411rな
ため、炉内ガスの温度および成分分布を測′)1”しと
れらの変化から炉内ガス流分布の変化を間接的に推定す
る方法に重重っている。しかし、この方法では、炉内ガ
スの温度、成分の変化ががならず1−もガス流速の変化
だけで生ずるものでt、[なく、装入物の(11、コー
クス鉱石の割合および装入物の性状へ4の変化によって
も著しく変化する。したがって炉内ガス流速分布の推定
精度が悪く、装入物分布を的?iMにfli制御できな
いという問題が存在する。 本発明はこれらの問題を解決するために炉内ガスjlj
i:連分布’a: (’r’f暦よ<41°シ握する方
法を折供するものでイりる。 本発明における炉内ガス力)、速分布の測定原理は、高
炉4IE入物を炉内に装入した時に炉内で形成する1’
l巨、It形状が装入時の炉内ガス流分布に対応して変
化することから、装入直後の装入物堆稈1形状を測定し
、この結果をもどにガス流分布を把握するものである。 十々わち、通常高炉で使用されるコークス、鉱石等の装
入物は、高炉内に装入されると第3図に示すようにある
角度をもって堆f1qする。一般にこの晴の装入物面と
水平面とのなす角1!cを傾斜角θと称するが、この傾
1;1角は、装入物の粒IJ’j 、密黒、空11ζi
率および装入時のガス流、速によって犬きく変化する。 この場合やイi斜角は、一般的に次の式で表わされるこ
とが公知である。 ここでθ:ガス流下での傾斜角(0) θ0:内部摩擦角(0) ε:装装入中空1k率(−) Rep :粒子t/イノルズ数(−) I〕P:粒子径(m)    ρf:ガス密”’ (k
!7/m’)11:ガス流速(m/S)  ρh : 
tsン子717度(1(9/n/ )φ::状係数  
11f力加速度(m/5ec2)(1)式か、]1、U
=0(無風)でθ−θ。、U=Umf (Umfは粒子
の流動化開始速度m/s)でθ=0″となる。 しだがって、(1)式は次のように整理できる。 0/θ。−f C1(T−T/Uml) ’)    
 ・・・・・・・・・(2)f:門斂を表わす記し Umf ’流jl、化開始速度 そこで、別途炉外において、装入物固有の物件値である
ε、r)p、ρb、θ0を求め、これらの装入物につい
てガス流下での傾斜角θを測定して、θ/θ。 とU / U +nfとの関係として求めると第1図が
得られる。ここで、流、動化開始速1焦’J+nf r
、l: 、−カ;や1に高炉にべ一一入される装入物′
IFI′i度の(ii)、囲(コークス:l。 〜70′n、鉱石5〜50″” ) テfrJ:、1:
J、’i:ノ式テ求メラれるととが公知である。 IJ、、(= 0.12ハ)(ρゎ一ρf)Dp/ρf
 ・・・町(3)
The present invention relates to a method for measuring gas flow distribution across the surface of contents in a blast furnace. Generally, when operating a blast furnace, the ore charged into the furnace,
Solid raw materials such as coke (hereinafter referred to as input materials) and furnace T
The hot air blown to the 11th part of the blade makes contact with the quaternary furnace gas (hereinafter referred to as the furnace gas) generated by the combustion of the coke in the charge, reducing the ore and reducing the ore. It is important to maintain the melting conditions in an appropriate state, but in this case, the gas flow distribution in the furnace must be carefully controlled. It is necessary to. That is, if the flow of gas in the furnace is partially uneven and the gas flow distribution is significantly disturbed, there will be parts where there is a lot of gas flow and parts where there is less gas flow, and the reduction ratio of the ore will become non-uniform. As a result, the lance at the level of ore melt 1...111I in the lower part of the furnace collapses, causing problems such as shelf suspension and slipping, which greatly disturbs the stability of the blast furnace. If such a one-direction one-direction phenomenon of gas flow in the furnace occurs, the so-called burden distribution may be changed, such as changing the charging method to charge more T1 and unloading to the area with a large gas flow. Therefore, in order to maintain stable operation of a blast furnace, it is necessary to accurately detect the gas flow distribution in the furnace. This is an extremely important point. However, conventionally, the gas at the bottom of the furnace was charged at 1%a.
ll'f changes in a high range from 50 to 800℃ - Noruko,
Since it is difficult to directly measure the gas flow rate due to the presence of multi-M dust in the furnace gas, it is difficult to directly measure the gas flow rate, so the temperature and component distribution of the furnace gas must be measured. The emphasis is on methods that indirectly estimate changes in the gas flow distribution in the furnace from changes in the gas flow rate.However, this method does not result in changes in the temperature or components of the gas in the furnace; However, it also changes significantly depending on changes in the proportion of coke ore in the charge and the properties of the charge. Therefore, the estimation accuracy of the gas flow velocity distribution in the furnace is poor, and the There is a problem in that it is not possible to precisely control the distribution of the materials in the furnace.
i: Continuous distribution 'a: ('r'f calendar < 41°).The measurement principle of the velocity distribution is 1' formed in the furnace when charged into the furnace
Since the shape changes depending on the gas flow distribution in the furnace at the time of charging, the shape of the charge pile 1 is measured immediately after charging, and the gas flow distribution is determined based on this result. It is something. In other words, when charged materials such as coke and ore that are normally used in a blast furnace are charged into the blast furnace, they are deposited at a certain angle f1q as shown in FIG. Generally, the angle between this clear charge surface and the horizontal plane is 1! c is called the inclination angle θ, and this inclination 1;
It varies greatly depending on the rate and gas flow and speed during charging. In this case, it is well known that the oblique angle is generally expressed by the following formula. Here, θ: Inclination angle under gas flow (0) θ0: Internal friction angle (0) ε: Charging hollow 1k ratio (-) Rep: Particle t/Inolds number (-) I] P: Particle diameter (m ) ρf: Gas-tight'' (k
! 7/m') 11: Gas flow rate (m/S) ρh:
tsunko 717 degrees (1 (9/n/ ) φ:: shape coefficient
11f force acceleration (m/5ec2) (1) formula, ]1, U
= 0 (no wind) and θ - θ. , U=Umf (Umf is the particle fluidization starting speed m/s) and θ=0″. Therefore, equation (1) can be rearranged as follows: 0/θ.−f C1( T-T/Uml)')
・・・・・・・・・(2) f: Notation representing gate Umf 'Flow jl, conversion start speed Therefore, separately outside the furnace, property values ε, r)p, ρb specific to the charge are calculated. , θ0 and measure the inclination angle θ under the gas flow for these charges to obtain θ/θ. Figure 1 is obtained by determining the relationship between and U/U +nf. Here, flow, activation start speed 1 focus 'J+nf r
, l: , -F; and 1 are the charges to be put into the blast furnace.
IFI'i degree (ii), range (coke: l.~70'n, ore 5~50'') Te frJ:, 1:
J,'i: The expression ``required'' is well known. IJ,, (= 0.12ha) (ρゎ1ρf) Dp/ρf
...Town (3)

【7たカッチ¥:1−r−T’6 (
1)p )、私°l了’/l’i I’l’ (ρh)
およびガスの密度(ρf)をIU!握できれば(3)式
でUmlを91出できる。ことで、粒子径(1)p)i
Jl、一般に炉外試験において高炉直径方向におりる木
・、′1度分布変化として装入方式、装入11(、装入
割合智が変化した場合について測定し、同時にオ\ソ子
密バ;゛(ρb)も測定しているので両者に、容易に把
握てきる。、i1.だガス密度(ρf)も炉頂圧力(]
)T>、炉Jド1 r昌度(T) オ、1: ヒガス成
分が測定さtlていることがらボイル・シャールの法則
により容易に割t♀できる。このJB合、ガス成分の変
化はガス潟71#(T) 、炉■11圧カ(H’丁)が
偽゛化した場合よりガス密度(ρf)への影゛j;・が
小さいので直径方向で一定成分とみな1〜てガス密y【
を計智しても大きな誤差は生じ外い。 一方高炉においては炉内に装入し7た堆積形状をかなり
精度よく測定できる技術が開発されている(例えば、レ
ーザー、マイクロ波を)flいたプロフィルメーターと
L2て!(コl公昭56−9644、ツ開昭54−60
608 )。したがって炉内のや七入物堆積形状から、
装入物の傾斜角は容易に求廿る。才だ、(2)式におけ
る0/θ。も容易にτ1出できる。す々ゎ1ハ装入物堆
積形状をil’l11定する))4合打11、高炉内の
ある基準面から高さ1]と、水51′方向ノj’t11
’4f’、 X (!: カ同Mい−求めC)jlるの
でこわからへ・(1、入′10)百σ)帥u角θシ1次
式でjjl’ ¥)できる。 hi−hi、11 1、i’1.+1  θ =−−□〜−−・・・ ・・
・・・ (イ)Xi −Xi+3 1】:ある基亭面からの齢さくm) X:  〃 点からの水平距1ブ’If(m)i : 
1lill >ii (−シII胃を示すザフィックス
しだがって、(4)式で得だ(1,+’< @l角0と
’=lt前に炉外試l11.′qで求めた無風時の傾斜
角θ。とかC)i:jl 、+Eに1.〜りるθ/θ0
が求まる。そこで、第1141に」、りこの0/θ0に
41応するU/lJmfの値を%B JI′J、す、前
記(3)式で求め/こlJmfを代入すれば装入物堆4
+’を形状の傾斜角θを示ず位的″のガス流速が容易に
求めら11る。 以上間、明したように本発明は、旧や手脂を第2図に示
すが、高炉炉]」備装入物イリ(riのガスy1.W度
(T)およびガス成分を測定し、操業千f1で決定され
る炉11(圧力(I)T)とからガス畜房(ρf)を算
出し、このガス密度(ρf)と炉外試験で求めたべ(二
人中粒)n(1)p)、密H(pb)とから」−1入物
ノi4(、1tll化開始速度(Umf)を滑出する。 一方、別冷炉11部の装入物+1+:4式形状を測定し
、この714状から名+l’l 5+’、点フ11の傾
帝[角θをバ1て(し、ケタ1h・(j昼で)1(めだ
イ!!l:、 J)l!L ”T’での仏式j吻傾斜角
θ。とからθ/θ0をt(串−する。このようにして求
めたθ/θ。に対応するIJ/Umfの植f第1図から
:’++?、 ’Ikす、とので(1(より知多1角0
に対する炉内ガス流速Uを求めるものである。 本発明を実施例にもとづいて貌明Jると、第3図は高炉
炉口部における装入物1の堆イ1ゝを形状な測定するレ
ーザ一式プロフィルメーターの杯“4器fjj7成例で
2し」レーザー琴生奨ffg1.3シニ1.投光装置i
′r、4に。 1]−ザー、5d2受y(:器、6を、1、fllll
 rli−さ)]だ装装入物の−f′Il積形状から1
lill定点4jFの傾斜角0を3〆1出して出力する
演v4′器である。7は装入物表面におけるガス温度、
成分分布を測定する移!l1lI式、ガス分布測定ゾン
デであり、B6よ架台、9はゾンデ7で検知したガス塩
KTおよび成分を111力するi¥1411目):÷、
10は堆積形状、ガス分布測定時の1・■業条件より炉
頂圧力(■)T)、装入方式勢を泪1つ器11に出力す
る変換器である。割算器11は、ナ11余[角θ、ガス
流にc’、 ’l”、、ガス成分および炉頂圧力(1丁
)とから1lill ’)’II虞4t%のガス’l’
t、−I口(ρf)を言11′)すると共に、l+ i
’+iTは炉外で求め′/′r、装入Q4qの粒パ4分
布、密IWおよびツ1!(風n’; )4+’i <f
J 角θ。をrtl:憶17て卦き、とJlと4ε入争
イ′1とイ1一対応させテ各?ll1l 5?、a K
 オIr) Zl 装入’i?a’l”+’1度(1)
11)、 ?l’+ Jtr (ρh)を乏I七W)、
ガス流用jtJをs t’i−する。I2υ、11、言
ド′(され。 /?−ガスγtli′連を、ji’j1炉操業渚が装入
物分布制御の可否をI′1(定t、やすい形で表示する
ように1.た表示器で才1 、/’+ 6 イ・)il−明によるガス流速用j、+j ((11,
1を第4図(イ)〜(へ)に示−)。この時の装入方式
し)、C↓C↓0↓0↓(↓tJllコ?内への装入タ
イミングを示すn+、3 ”’−シ、CG−]:ゴーク
ス、θは剣、石)で、炉用圧力は1.01(り/crJ
、鉱石の!fM 四k、1.3.26 t/rr?、1
ljl *:)角θ。Vl、36°である。第41j−
Zl (イ) tit:移動式ガス分布沖1定ゾンデで
>lkめだ高炉炉1−1部iYi径方向におけるガスn
″;l n’+分布であり、(ロ)1:j ll−リ゛
一式、フ゛ロフィルメーターにより11川シi−シた1
111部の装入物堆積形状で基準点よりの高さで示した
ものである。第41ツ1(うt、ll、111【倉;1
]会11,4図(ロ)の氾117iす、li J、tj
より測定点間11゛AずQに求めた413人物す11劃
角θである。第4図に)はケタ1 ii、t: l幹で
求めた当日の4εε入代のもとての鉱石の粒度分布であ
る。9(’r 4図(ホ)ケ」、これらの測定結里よυ
本発明の方法で求めた装入物表面のガス流速分イ[Iで
あり、第4図(へ)し1装入方式をC↓C↓O↓0↓か
らC↓C↓0↓00↓に変中17だIt、’?の炉ロ部
ガス流、速分布の変化を示したものである。 このように本発明によれV、1従来1(イ接測定するど
とができなかった炉1目′II(のガス?Ii’、速分
布を僅゛実に把握することが可能であり、装入Φ件等を
変更して高炉内のガス流分布を適正な範囲に制fIl1
1する高炉j、¥、 梨法の極めて有効ガ検用情報を得
ることができる。 なお、本発明の実施例として、堆積形状測定装置1′イ
をレーザ一式プロフィルメーターで、壕だガス分布測定
を移動式ゾンデで測定しているが、本発明の目的からし
てこれらの4?4置に限定されるものではなく、装入物
の堆積形状および装入物表面ガス温度分布を測定できる
ものが全て含1れることは明かである。しかし、との場
合のit[径方向における測定点数は、ガス流速分布泪
2’1時のA=fl m:に大きく ;ts響するので
、ガス分布は11′1径方向にIX)点1゛1、L (
1llll定間+hg &;l、1.0 m、 に、じ
ト)、’llj ’!占形状iCライてl+Yiiイ祥
方向20点以−1=、 (側5i” 1ift l当+
15m以下)であることが望ましい。装入l吻11 (
″11i形状i;川51旧!jl F、清々、か\る分
布1111定間1(Aが一致し2ない1.1%合ケ、1
2、Jllミ(1゛1形状fill 5iJ位j、L/
、+に対応させてガス4)イ11111′Iかr1内1
.I法でガス渦1j’[、成分を41+一定することが
用能である。
[7ta kacchi ¥: 1-r-T'6 (
1) p )、I°l了'/l'i I'l' (ρh)
and the density of the gas (ρf) in IU! If you can grasp it, you can get Uml of 91 using equation (3). Therefore, the particle size (1) p)i
In general, in an outside-furnace test, measurements are taken for cases where the charging method and charging ratio change as the distribution of wood falling in the diameter direction of the blast furnace. Since ゛(ρb) is also measured, both can be easily grasped. , i1. The gas density (ρf) is also the furnace top pressure (]
)T>, Furnace Jdo1rChang degree (T) O,1: Since the hygas component is measured tl, it can be easily divided by t♀ using the Boyle-Scharr law. In this JB case, the change in gas composition has a smaller effect on the gas density (ρf) than when the gas lagoon 71 # (T) and the furnace ■ 11 pressure (H' t) are falsified, so the diameter It is assumed that the component is constant in the direction from 1 to the gas density y [
Even if you calculate this, there will be a large error. On the other hand, in the case of blast furnaces, technology has been developed that can fairly accurately measure the shape of the deposits charged into the furnace (e.g., using lasers or microwaves) and L2! (Color Publication 56-9644, Tsukai 54-60
608). Therefore, from the shape of the deposits in the furnace,
The angle of inclination of the charge can be easily determined. 0/θ in equation (2). can also easily produce τ1. 1) Determine the shape of the burden piled up)) 4.11, height 1] from a certain reference plane in the blast furnace, and water 51' direction noj't11
'4f', hi-hi, 11 1, i'1. +1 θ =−−□〜−−・・・・・
... (a) Xi - Xi + 3 1]: horizontal distance from a certain basic plane (m)
1lill > ii (-X II) Therefore, it is obtained by formula (4) (1,+' Inclination angle θ when there is no wind, or C) i:jl, 1. to +E θ/θ0
is found. Therefore, in the 1141st step, the value of U/lJmf corresponding to 41
+' indicates the inclination angle θ of the shape, and the gas flow velocity at the position can be easily determined. ]' Measure the gas y1.W degrees (T) and gas components of the equipped charge iri (ri), and extract the gas cell (ρf) from the furnace 11 (pressure (I)T) determined in operation 1,000 f1. From this gas density (ρf) and the density H (pb), which was determined by the outside-furnace test, On the other hand, measure the shape of the charge +1+:4 in the separate cooling furnace section 11, and from this 714 shape, calculate the name +l'l 5+', the angle θ of te(shi, digit 1h・(j daytime) 1(medai!!l:, J)l!L ``Presta j snout inclination angle θ at ``T'. From θ/θ0 to t(skewer . From Fig. 1, the IJ/Umf plot f corresponding to θ/θ obtained in this way: '++?, 'Iksu, so (1 (from Chita 1 angle 0
This is to find the in-furnace gas flow rate U for Based on the present invention based on an embodiment, Fig. 3 shows an example of a four-piece laser profilometer for measuring the shape of a charge 1 at the mouth of a blast furnace. 2" Laser Kotosho ffg1.3 Shini 1. Projector i
'r, to 4. 1] - Za, 5d2 Uy (: vessel, 6, 1, fullll
rli-sa)] From the -f'Il product shape of the charge, 1
This is a vector v4' that outputs the slope angle 0 of the lill fixed point 4jF by 3〆1. 7 is the gas temperature at the surface of the charge;
Move to measure component distribution! It is a l1lI type gas distribution measurement sonde, B6 is a mount, 9 is a gas salt KT and components detected by sonde 7.
Reference numeral 10 denotes a converter that outputs the furnace top pressure (■) T) and charging method to the converter 11 based on the deposition shape, the operating conditions 1 and 2 at the time of gas distribution measurement. The divider 11 calculates the angle θ, the gas flow c', 'l', the gas component and the furnace top pressure (1 lill')' II 4t% gas 'l'.
t, -I mouth (ρf) (11'), and l + i
'+iT is determined outside the furnace'/'r, grain distribution of charging Q4q, density IW and Tsu1! (Wind n';)4+'i<f
J angle θ. rtl: Remember 17, and let Jl and 4ε enter into correspondence A'1 and A11, respectively? ll1l 5? ,aK
Ir) Zl Charge'i? a'l"+'1 degree (1)
11), ? l'+ Jtr (ρh) (I7W),
s t'i- for gas flow jtJ. I2υ, 11, word de'(sare. /?-Gas γtli' series, ji'j1 furnace operation, availability of charge distribution control is I'1 (constant t, 1. The display shows the gas flow rate j, +j ((11,
1 is shown in Figures 4 (a) to (f). Charging method at this time), C ↓ C ↓ 0 ↓ 0 ↓ (↓ n+, 3 ”'-shi, CG-], which indicates the timing of charging into Jll Ko?: Gorks, θ is sword, stone) The furnace pressure is 1.01 (ri/crJ
, of ore! fM 4k, 1.3.26 t/rr? ,1
ljl *:) Angle θ. Vl is 36°. No. 41j-
Zl (a) tit: Mobile gas distribution offshore 1 constant sonde>lk Meda blast furnace furnace 1-1 part iYi gas n in radial direction
'';l n'+ distribution, (b) 1:j ll-li set, 11 rivers i-scanned by a filometer.
The shape of the charge piled up in part 111 is shown as the height from the reference point. 41st Tsu 1 (ut, ll, 111 [kura; 1
] Meeting 11, Figure 4 (b) Flood 117i, li J, tj
Therefore, the distance between the measurement points is 11゛A and Q, and the 413 people are 11 angles θ. Figure 4) is the particle size distribution of the ore at the source of the 4εε input on that day, determined from the digit 1 ii, t:l stem. 9('r 4fig(ho)ke), These measurements are υ
The gas flow velocity on the surface of the charge determined by the method of the present invention is I, and the one-charging method is changed from C↓C↓O↓0↓ to C↓C↓0↓00↓ It's 17 years old,'? This figure shows changes in the gas flow and velocity distribution at the bottom of the furnace. As described above, according to the present invention, it is possible to accurately grasp the velocity distribution of gas ? Control the gas flow distribution in the blast furnace to an appropriate range by changing the input parameters, etc. fIl1
1. You can obtain extremely effective inspection information for blast furnaces, ¥, and pear methods. In addition, as an embodiment of the present invention, the deposition shape measuring device 1'a is measured by a laser set profile meter, and the trench gas distribution is measured by a mobile sonde, but from the purpose of the present invention, these 4? It is clear that the present invention is not limited to four positions, and includes all systems capable of measuring the deposition shape of the charge and the gas temperature distribution on the surface of the charge. However, in the case of it [the number of measurement points in the radial direction is greatly affected by A = fl m: when the gas flow velocity distribution is 2'1, so the gas distribution is 11'1 in the radial direction゛1, L (
1llll fixed period + hg &;l, 1.0 m, ni, jito), 'llj'! Scroll shape iC liete l+Yii good direction 20 points or more -1=, (side 5i” 1ift l hit +
15m or less) is desirable. Charging l snout 11 (
``11i shape i; river 51 old!
2, Jllmi (1゛1 shape fill 5iJ place j, L/
, Gas 4) I11111'I or 1 in r1 corresponding to +
.. In the I method, it is possible to keep the gas vortex 1j'[, component 41+ constant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は010.とIJ/Un、fの関係を示ずグラフ
、会1)721゛ソ1は木うへ明の泪勢千1111”j
を示す619.明1゛イ1、第3図Vよ本イト1明にお
ける槙器描成図、単41”2+ )J、%iτ)結−[
(シを示す説明図である。 1k、1、高炉内装入物、2はL’ −リ゛−9,71
t pi jFf、3t」投光装置、4←Lレーザー、
5 +、’1. ”?: )’(: 8:S、61.1
 f’f1′)器、7 tri、 :/” 7 f、8
dゾンデのイV1台、9t、Lガス温度、成分を出力す
る泪1LllI器、10&よ1・−1!業争件を出力す
る変換器、11は計得器、12け表示器である。 出願人  新日本製鐵株式会社 代理人弁理士   青  柳       稔第1図 U/Umf  (空堪基4) 第2図 40 第3図
Figure 1 shows 010. Graph showing the relationship between
619. Ming 1゛i 1, Fig. 3 V, this Ito 1 Drawing of Maki in Ming, single 41" 2+ ) J, %iτ) conclusion - [
(This is an explanatory diagram showing the contents. 1k, 1, blast furnace contents, 2, L'-Li-9, 71
t pi jFf, 3t” projector, 4←L laser,
5 +,'1. ”?: )’(: 8:S, 61.1
f'f1') device, 7 tri, :/” 7 f, 8
d Sonde's I V1 unit, 9 tons, L gas temperature, 1LllI device that outputs the components, 10&yo1・-1! A converter outputs business dispute information, 11 is a counter, and 12 is a display. Applicant Nippon Steel Corporation Representative Patent Attorney Minoru Aoyagi Figure 1 U/Umf (Kuranki 4) Figure 2 40 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 高炉炉内装入物表面上のガス湯度を測定し、このTl1
ll nM値と炉11’i圧力とから炉内のガス密度を
計9し、このガス密度と予め炉外において求めた装入物
の粒度分布及び密度とから装入物のl’ll+’、軸化
開始速度Umfを計算し、一方、高炉に装入l−た直後
の4−二人物の径方向の堆積形状を1llll >’+
’、 I−、てこの測定値をもとに一定間隔毎の傾斜角
θに−求め、この1.Ii斜角θと予め無風下で求めた
傾斜角0゜との比θ/θGを求め、との比θ/θ。に対
応する炉内ガス流速Uと前ttl−: tfl’ 3’
fで求めたIJmfとの比TJ/Umfを予め求めてお
くことによって前記傾斜角θを求め九位11′tにおけ
る炉内ガスが「1速Uを9出することを特徴とする高炉
内ガス流速測定法。
The gas temperature on the surface of the contents inside the blast furnace is measured, and this Tl1
The total gas density in the furnace is determined from the ll nM value and the furnace 11'i pressure, and from this gas density and the particle size distribution and density of the charge previously determined outside the furnace, the charge is determined to be l'll+', Calculate the axisization start speed Umf, and on the other hand, calculate the radial deposition shape of 4-2 people immediately after charging into the blast furnace as 1lllll >'+
', I-, the inclination angle θ at regular intervals is determined based on the measured values of the lever, and this 1. Ii Find the ratio θ/θG between the inclination angle θ and the inclination angle 0° previously determined under no wind, and the ratio θ/θ. The in-furnace gas flow rate U and front ttl-: tfl'3' corresponding to
The inclination angle θ is determined by determining the ratio TJ/Umf with IJmf determined in advance. Velocity measurement method.
JP16366882A 1982-09-20 1982-09-20 Blast furnace gas flow rate measurement method Expired JPS6039725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16366882A JPS6039725B2 (en) 1982-09-20 1982-09-20 Blast furnace gas flow rate measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16366882A JPS6039725B2 (en) 1982-09-20 1982-09-20 Blast furnace gas flow rate measurement method

Publications (2)

Publication Number Publication Date
JPS5953608A true JPS5953608A (en) 1984-03-28
JPS6039725B2 JPS6039725B2 (en) 1985-09-07

Family

ID=15778315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16366882A Expired JPS6039725B2 (en) 1982-09-20 1982-09-20 Blast furnace gas flow rate measurement method

Country Status (1)

Country Link
JP (1) JPS6039725B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101193749B1 (en) 2010-07-29 2012-10-22 인하대학교 산학협력단 method for anlyzing gas flow of blast furnace
JP2015028209A (en) * 2013-07-02 2015-02-12 新日鐵住金株式会社 Method for estimating gas flow velocity and reduced load of blast furnace lumpy zone

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101193749B1 (en) 2010-07-29 2012-10-22 인하대학교 산학협력단 method for anlyzing gas flow of blast furnace
JP2015028209A (en) * 2013-07-02 2015-02-12 新日鐵住金株式会社 Method for estimating gas flow velocity and reduced load of blast furnace lumpy zone

Also Published As

Publication number Publication date
JPS6039725B2 (en) 1985-09-07

Similar Documents

Publication Publication Date Title
JP6503055B2 (en) Method of detecting distribution of blast furnace gas flow
Szekely et al. Flow pattern velocity and turbulence energy measurements and predictions in a water model of an argon-stirred ladle
TWI637061B (en) Method for estimating slag-removal weight and device for estimating slag-removal weight
JP6248550B2 (en) How to determine blast furnace operating conditions
JPS5953608A (en) Method for measuring flow speed of gas in blast furnace
JP7077842B2 (en) Blast furnace charge distribution prediction method, program and computer storage medium
Handley et al. Stresses in granular materials flowing in converging hopper sections
JP7307341B2 (en) Furnace gas pressure fluctuation detection method
JP2727563B2 (en) Blast furnace operation method
CN208043721U (en) The crucible that crucible bottom is stepped
Wu et al. High‐Temperature Thermophysical Property Characterization of Molten Blast Furnace Slag: A Critical Reviews
JPS6116405B2 (en)
JP6631588B2 (en) Method for detecting deviation of charge descending speed and method for operating blast furnace
JPS6277414A (en) Operating method for blast furnace
JP7513226B1 (en) METHOD FOR MEASURING MOLTEN MATERIAL LEVEL IN BLAST FURNACE, MEASURING DEVICE FOR MOLTEN MATERIAL LEVEL IN BLAST FURNACE, AND METHOD FOR OPERATING BLAST FURNACE
JP4675523B2 (en) Method for calculating the terrace length of the raw material deposition layer at the top of the blast furnace furnace
JPS6277413A (en) Method for controlling position of welded zone of blast furnace
CN108959683A (en) A kind of digitlization boiler construction method based on CFD
Singh et al. Measured and Modelled Air Flow Rates during the Iron Ore Sintering Process: Green and Sintered Beds
JP2001323306A (en) Method for estimating distribution of charged material in blast furnace
JP2971183B2 (en) Estimation method of charge accumulation shape in vertical furnace
JP2019143190A (en) Method for operating blast furnace
CN113699291A (en) Method for calculating blast furnace material distribution drop point based on laser measurement data
JP2024050752A (en) State estimation method of sintering process, operation guidance method, method for producing sintered ore, state estimation device of sintering process, operation guidance device, sintering operation guidance system, sintering operation guidance server and terminal device
JPS6129674A (en) Method of detecting extraneous matter on inner wall of vertical type furnace