JPS595237A - Image detector - Google Patents

Image detector

Info

Publication number
JPS595237A
JPS595237A JP57113751A JP11375182A JPS595237A JP S595237 A JPS595237 A JP S595237A JP 57113751 A JP57113751 A JP 57113751A JP 11375182 A JP11375182 A JP 11375182A JP S595237 A JPS595237 A JP S595237A
Authority
JP
Japan
Prior art keywords
image
plate
detection device
detection plate
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57113751A
Other languages
Japanese (ja)
Inventor
Keiichi Kawasaki
川崎 敬一
Tsutomu Saegusa
三枝 力
Yuichiro Koizumi
小泉 祐一郎
Hiroshi Inoue
寛 井上
Shinichi Oota
信一 太田
Nobuo Kitajima
北島 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57113751A priority Critical patent/JPS595237A/en
Publication of JPS595237A publication Critical patent/JPS595237A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/043Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using fluoroscopic examination, with visual observation or video transmission of fluoroscopic images
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2012Measuring radiation intensity with scintillation detectors using stimulable phosphors, e.g. stimulable phosphor sheets

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Multimedia (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Radiology & Medical Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Radiography Using Non-Light Waves (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Combination Of More Than One Step In Electrophotography (AREA)

Abstract

PURPOSE:To enable the reduction in the size of a detection plate, by forming once the image of an object to be detected by image exposure, forming the image thereof on the detection plate with an imaging means, scanning the same with a beam and detecting the image time-serially. CONSTITUTION:The X-ray 18 transmitted through an object 16 to be examined by image exposure is made incident to a fluorescent plate 22 behind a front plate 19, and the optical image corresponding to the X-ray transmitted section of the bject 16 is formed thereon. The image thereof is formed on a detection plate 7a having sensitivity to visible light by an imaging lens 23. If the projecting magnification to the plate 7a is made smaller than 1, the plate 7a can be made smaller; therefore, the production of the detection plate for which uniformity in flatness, etc. is required is made easiter and further the area of the detection plate is made smaller and the overall scanning time is reduced. If the projecting magnification on the plate 7a is made larger than 1, the image expanded from a part of the object is formed on the plate 7a.

Description

【発明の詳細な説明】 本発明は像検出装置に関し、とヤわけ照射源からの像I
!元によシ一旦被検体像を形成し、線像を結像手段によ
シ検出プレート上に結像し、該検出プレー トをビーム
走査して時系列的に像検出する装置に関する。ここで像
露光は以ドに詳述するX線の他、可視光、赤外光、紫外
光、電子ビームその他一般電磁波によるものを含む。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an image detection device, and particularly relates to an image detection device that detects an image I from a irradiation source.
! The present invention relates to an apparatus that first forms an image of a subject, forms a line image on a detection plate using an imaging means, and detects the image in time series by scanning the detection plate with a beam. In addition to X-rays, which will be described in detail below, image exposure includes visible light, infrared light, ultraviolet light, electron beams, and other general electromagnetic waves.

一般に照射源からのW、光により被写体像を形成せんと
するとき、被写体からの反射光又は透過光を像面に伝送
するものであるが、被零体への照射■が少ない方が種々
の点で常客が少ない。
Generally, when trying to form a subject image using W and light from an irradiation source, the reflected light or transmitted light from the subject is transmitted to the image plane, but it is better to have less irradiation on the subject in various ways. There are few regular customers.

特に医療用X線撮影においては、人体にX線を照射しこ
れを透過したX線を噴出するものであり、被曝線量が多
いと白血病や悪性腫瘍等が生ずる。
In particular, in medical X-ray photography, the human body is irradiated with X-rays and the X-rays that pass through the body are ejected, and if the exposure dose is high, leukemia, malignant tumors, etc. will occur.

それ故、被検者の被B暖線量を減らすためX線照射によ
シ光導電体を有する検出プレートに静電潜・儂を形成し
、走査ビームを介して電気信号として取シ出す方法が考
えられている。ここで電気信号として取り出すことは、
各種画像処理を施して診断能を向上するのに有効である
Therefore, in order to reduce the amount of B warm radiation to which a subject is exposed, there is a method in which an electrostatic potential is formed on a detection plate with a photoconductor by X-ray irradiation, and the electrostatic potential is extracted as an electrical signal via a scanning beam. It is considered. Here, what can be extracted as an electrical signal is
It is effective for improving diagnostic ability by performing various image processing.

図参照)またX線撮影の応用例(後述する第2図参照)
が知られる。
(see figure) and an example of the application of X-ray photography (see figure 2 below)
is known.

第1図において1は透明電極、2はブロッキングコンタ
クト、3は光導電体層、4は界面、5は透明絶縁体層、
6は透明電極、7は1乃至6で構成される検出プレート
、8はレーザ光源、9はレーザ光、10はX−Y軸スキ
ャナ、11は一次帯電時に用いる光源、12は原画像、
13は原画像照明用の光源、14は結像レンズ、15は
出力端子、Slは直流電源Vdを開閉するスイッチ、S
2は透明電極1と透明電極6間を短絡するだめのスイッ
チ、R1は出力抵抗、Isは出力電流、Vsは出力電圧
、s3は光源電源vbを開閉するスイッチ、a、b、c
は電荷、S4は光源電源Vcを開閉するスイッチである
In FIG. 1, 1 is a transparent electrode, 2 is a blocking contact, 3 is a photoconductor layer, 4 is an interface, 5 is a transparent insulator layer,
6 is a transparent electrode, 7 is a detection plate composed of 1 to 6, 8 is a laser light source, 9 is a laser beam, 10 is an X-Y axis scanner, 11 is a light source used during primary charging, 12 is an original image,
13 is a light source for illuminating the original image, 14 is an imaging lens, 15 is an output terminal, SL is a switch for opening and closing the DC power supply Vd, S
2 is a switch for short-circuiting between transparent electrode 1 and transparent electrode 6, R1 is an output resistance, Is is an output current, Vs is an output voltage, s3 is a switch for opening and closing the light source power supply vb, a, b, c
is a charge, and S4 is a switch that opens and closes the light source power supply Vc.

第1図において原画像12からの反射光にょpWk出プ
レート7に静電#像が形成されるように図示されている
が、反射光でなく透過光を用いるものであっても良い。
Although FIG. 1 shows that an electrostatic image is formed on the plate 7 due to the reflected light from the original image 12, transmitted light may be used instead of reflected light.

また、第2図に示されるように可視光に限らずX線であ
っても静電潜像が形成される。勿論この場合、光導電体
層3はX線に対して感度をもつことが必要である。なお
読み出し糸としてレーザ光を用いるため光導電体層は更
にレーザ“光に対しても感度をもつことが必要である。
Moreover, as shown in FIG. 2, an electrostatic latent image is formed not only by visible light but also by X-rays. Of course, in this case the photoconductor layer 3 must be sensitive to X-rays. Note that since laser light is used as the readout thread, the photoconductor layer must also be sensitive to laser light.

第2図に於いて、被検体16はX線源17からのX線1
8で照射され、被検体16を透過するX線により検出プ
レート7に静電潜像が形成される。なお検出グレート7
を構成するもののうち5a、6aは各々絶縁体層、電極
であシ、第1図におけるものと異なり可視光に対して透
明である必要はない。X線が充分透過できるからである
In FIG. 2, a subject 16 is exposed to X-rays 1 from an X-ray source 17.
An electrostatic latent image is formed on the detection plate 7 by the X-rays irradiated at 8 and transmitted through the subject 16 . Furthermore, detection grade 7
Among the components 5a and 6a are an insulating layer and an electrode, respectively, and unlike those in FIG. 1, they do not need to be transparent to visible light. This is because X-rays can be sufficiently transmitted through it.

さて第1図、第2図におけるような装鎗において静1!
潜像が形成されるプロセスを@3図に説明する。ここで
は、第2図のようなX線露光について説明する。
Now, with the spears as shown in Figures 1 and 2, Shizuka 1!
The process by which a latent image is formed is explained in Figure @3. Here, X-ray exposure as shown in FIG. 2 will be explained.

まず第2図において、スイッチS2をオフ、Slをオン
とし透明電極1と電極6aとの間に直流電圧を図示のよ
うに印加し、同時に光源vb用スイッチS3をオンとし
透明電1klの全面を照射する。この状態を第3図第1
ステツグに示す。照射によって光導電体層3の抵抗が低
下して、電荷の注入を生じ、光導電体層の界面4に電荷
すが、電極6aに電荷Cが蓄積される。なお光導電体の
材質としては、非晶質セレン、 Cd8等があるが、こ
こでは説明の都合上P型半導体である非晶質セレンの性
質を用いて説明する。
First, in FIG. 2, switch S2 is turned off and Sl is turned on to apply a DC voltage between the transparent electrode 1 and the electrode 6a as shown in the figure, and at the same time, the light source VB switch S3 is turned on to cover the entire surface of the transparent electrode 1kl. irradiate. This state is shown in Figure 3.
Shown in Steg. The irradiation lowers the resistance of the photoconductor layer 3, causing charge injection and charging the photoconductor layer interface 4, while a charge C is accumulated in the electrode 6a. The material of the photoconductor includes amorphous selenium, Cd8, etc., but for convenience of explanation, the properties of amorphous selenium, which is a P-type semiconductor, will be used for explanation.

ブロッキングコンタクト2の役割は、一般の乾式複写機
のセレン感光体ドラムにおいて果たしている役割と同様
で、電極1と光導電体層3の間でダイオードとして働き
、光導電体層3に正電荷を保持する。ブロッキングコン
タクト2を特別に設ける必要のない性質の光導電体層3
もある。
The role of the blocking contact 2 is similar to the role played in the selenium photoconductor drum of a general dry copying machine, and acts as a diode between the electrode 1 and the photoconductor layer 3 to retain positive charges in the photoconductor layer 3. do. Photoconductor layer 3 of such a nature that it is not necessary to provide a special blocking contact 2
There is also.

第3図第1ステツプに示した電荷分布状態が得られたの
ち、スイッチ81.83をオフとし、スイッチS2をオ
ンとすれば、第3図第2ステツプのように、透明電極1
に電荷aが現われる。
After the charge distribution state shown in the first step of FIG. 3 is obtained, if the switches 81 and 83 are turned off and the switch S2 is turned on, the transparent electrode 1
A charge a appears at .

第3図第2ステツプを経たのち、スイッチ81オフ、8
2オン、83オフの状態で被検体16にX線18を照射
すれば、被検体を透過し光導電体層3に到達したX線の
量に応じて、光導電体層の抵抗が低ドする。このため界
面4における電荷すと、透明電極lの電荷aと、電極6
aの電荷Cとが減少する。従って、被検体16を透過し
光導電体層3に到達しfCXImの少ない部分に多くの
電荷が保持される。この状態を第3図第3ステツプに示
す。
After going through the second step in Figure 3, the switch 81 is turned off and the switch 81 is turned off.
If X-rays 18 are irradiated to the object 16 with 2 on and 83 off, the resistance of the photoconductor layer will be lowered depending on the amount of X-rays that have passed through the object and reached the photoconductor layer 3. do. Therefore, the charge at the interface 4 is the charge a of the transparent electrode l and the charge a of the electrode 6.
The charge C of a decreases. Therefore, the light passes through the object 16 and reaches the photoconductor layer 3, and a large amount of charge is retained in the portion where fCXIm is small. This state is shown in the third step of FIG.

スイッチSt 、82.83は第3図第3ステツプと同
じ状態で、レーザ光源8からのレーザ光9をX−Y軸ス
キャナ10を経て透明電極】に照射する。走査し〜ザ光
9が当たった部分の光導電体#3の抵抗が低下し、界面
4の電荷すが出力抵抗R1に向けて放出され、電流Is
が流れ、出力端子】5に出力電圧Vsを生ずる。
The switches St, 82, 83 are in the same state as in the third step of FIG. 3, and irradiate the transparent electrode with laser light 9 from the laser light source 8 via the X-Y axis scanner 10. During scanning, the resistance of the photoconductor #3 at the portion hit by the light 9 decreases, and the charge at the interface 4 is released toward the output resistor R1, resulting in a current Is.
flows, producing an output voltage Vs at the output terminal ]5.

この状態を第3図第4ステツプに示す。出力電圧Vsを
信号処理することによって、X線診断画像をC)LT上
で観察すること、フィルム等にハードコピーすること、
磁気メモリ等に7アイルしておくこと、画像電送するこ
と等が出来る。
This state is shown in the fourth step of FIG. By signal processing the output voltage Vs, the X-ray diagnostic image can be observed on C) LT, hard-copied onto film, etc.
It is possible to store 7 isles in magnetic memory, etc., and to transmit images electronically.

なお、第2図におけるX線18及び被検体16を透明電
極1側に配置しても同様のプロセスで同様の出力電圧V
sが得られる。
Note that even if the X-ray 18 and the subject 16 in FIG. 2 are placed on the transparent electrode 1 side, the same output voltage V can be obtained by the same process.
s is obtained.

以上のような従来装置においては被検体を透過シたX線
を直接、検出プレートに照射して静電潜像を形成するた
め、検出プレートの大きさL必然的に被検体の被検部と
同じ大きさとなり検出プレートの大きさを変える仁と又
は被検体の僧の大きさを変えること更には時系列的な像
検出の全走査時間を変えることができなかった。
In conventional devices such as those described above, since an electrostatic latent image is formed by directly irradiating the detection plate with the X-rays that have passed through the subject, the size L of the detection plate inevitably differs from the part to be inspected of the subject. It was not possible to change the size of the detection plate, or to change the size of the subject, or to change the total scanning time for time-series image detection.

本発明はこの点に鑑み、一旦被検体偉を形成し、該偉を
結像手段を介して噴出プレート上に結像し、該検出プレ
ートをビーム走査して時系列的に像検出をする像検出装
置を提供する仁とを目的とする。
In view of this point, the present invention provides an image in which an object to be examined is formed once, an image of the object is formed on an ejection plate via an imaging means, and the detection plate is scanned with a beam to detect the image in time series. The purpose is to provide detection equipment.

一般に大きな噴出プレートと9わけ全面に渡って均一な
検出性能をもつ検出プレートの製作は困難であシ、この
困難性は縮小像を形成して検出プレートを小さくすれば
緩和される。また検出プレートが小さくなれば全走査時
間が短縮され動画像噴出も可能となる。更には装置全体
のコンパクト化が可能となる。また一定の検出プレート
サイズに対して被写範囲を大きくとれる〇一方、@出プ
レートを大きくすることにより、すなわち、被検体の拡
大像を形成することによって被検体の微小部位を拡大し
て検出することが可能となる。
Generally, it is difficult to manufacture a large ejection plate and a detection plate having uniform detection performance over the entire surface, and this difficulty can be alleviated by forming a reduced image and making the detection plate smaller. Furthermore, if the detection plate is made smaller, the total scanning time will be shortened and it will also be possible to eject moving images. Furthermore, the entire device can be made more compact. In addition, the object range can be enlarged for a fixed detection plate size. On the other hand, by increasing the output plate, that is, by forming an enlarged image of the subject, a minute part of the subject can be enlarged and detected. It becomes possible to do so.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第4図は本発明の実施例である。倫露光によシ被検体1
6を透過したX線18は、有害光を遮幣する前面板19
の背後に設けられた螢光板22に入射し、螢光を発する
どとにより被検体16のXIm透過部位に応じた光学像
を形成し、これが結像レンズ23によって可視光に感度
を有する検出プレート711上に結像される。ここで結
像手段は任意に選択できレンズ光学系の他例えばεラー
光学系でも良く、更には複眼系であっても良い。検出グ
レー)7aへの投影倍率を1より小さくすることにより
、検出プレート7aを小さくでき、平面性等の均一性を
要求される検出プレートの製造が容易となる。更に、検
出プレート面積が小さくなシ全走査時間が短縮される。
FIG. 4 shows an embodiment of the present invention. Subject 1 exposed to light
The X-rays 18 that have passed through the
The light enters a fluorescent plate 22 provided behind the fluorophore and emits fluorescent light, thereby forming an optical image corresponding to the XIm-transmitting part of the subject 16, which is then captured by the imaging lens 23 on a detection plate sensitive to visible light. 711. Here, the imaging means can be arbitrarily selected, and in addition to a lens optical system, for example, an ε-ray optical system or a compound eye system may be used. By setting the projection magnification onto the detection gray (detection gray) 7a to be smaller than 1, the detection plate 7a can be made smaller, and it becomes easier to manufacture a detection plate that requires uniformity such as flatness. Furthermore, the total scanning time is shortened due to the small detection plate area.

またレーザ光源8aからのレーザビーム9aを走査する
X−Y軸スキャナ10aも検出プレート7aが小さくな
ることによってすなわち走査域が小さくなることによっ
て小型化でき、結果的に装置全体がコンパクトになると
ともに走査歪のない走査光学系とできる利点がある。
Furthermore, the X-Y axis scanner 10a that scans the laser beam 9a from the laser light source 8a can also be made smaller by making the detection plate 7a smaller, that is, by making the scanning area smaller, and as a result, the entire device becomes more compact and the scanning This has the advantage of creating a distortion-free scanning optical system.

ところで逆に検出プレート7aへの投影倍率を】より大
きくすることにより、小さな被写体又は、被写体の一部
分を拡大した静電潜像が検出プレー)7aに形成され、
この静電潜像から読み出された電気信号によれば高解像
力を有する電気信号が出力される。
By contrast, by increasing the projection magnification onto the detection plate 7a, an electrostatic latent image of a small object or a portion of the object is formed on the detection plate 7a.
According to the electrical signal read from this electrostatic latent image, an electrical signal having high resolution is output.

更に、結像レンズ23をズームレンズで構成する等して
、該螢光像の検出プレート7aへの結滞倍率を変えられ
るようにすれば、目的に応じて、広い被写範囲に対する
電気信号出力とか、高解像力を有する電気信号出力とか
を選択できることになる。
Furthermore, by configuring the imaging lens 23 with a zoom lens, etc., and making it possible to change the magnification of the fluorescent image on the detection plate 7a, it is possible to output electrical signals over a wide object range depending on the purpose. This means that you can select from the following options: 1.

上述の実施例においては、XIIJ!傷を可視光像に変
換する場合についてのみ述べたが、本発明に適用される
入射像はX # 儂に限られる本のでなく、γ線による
像等への適用をも可能である。
In the above embodiment, XIIJ! Although only the case of converting a flaw into a visible light image has been described, the incident image applied to the present invention is not limited to an X # me book, but can also be applied to a γ-ray image, etc.

なお図中20はンーザ走査制御、X線照射と像読み取り
との同期制御等を行なう電子制御ユニット、 21 ij険出出プレー7aの読み出し信号を増巾し、
画像信号として外部に出力する電子信号ユニットである
In the figure, 20 is an electronic control unit that performs laser scanning control, synchronization control between X-ray irradiation and image reading, etc.;
This is an electronic signal unit that outputs an image signal to the outside.

この電子信号ユニツ)21の信号処理の下に静電潜像が
時系列的な電気信号として出力されるQ 萌配実施例においては、X線像を可視光像に変換する系
として螢光板22を用いたが、第5図に示すごとくイメ
ージインテンシファイヤ26を用いても良い。第5図は
、イメージインテンシファイヤ26の出力螢光面25の
出力螢光fl11を結像レンズ系27.28を用いて検
出プレート7a上に結像させることによって、検出プレ
ー  ) 7 aに静電潜像を形成させるようにしたこ
とを特徴とする静電潜像読み出し装置である。
The electrostatic latent image is output as a time-series electric signal under signal processing by the electronic signal unit) 21. However, an image intensifier 26 may also be used as shown in FIG. FIG. 5 shows that the output fluorescent light fl11 of the output fluorescent surface 25 of the image intensifier 26 is imaged onto the detection plate 7a using the imaging lens system 27. This is an electrostatic latent image reading device characterized by forming an electrostatic latent image.

る。第5図において、24はイメージインテンシファイ
ヤ26の入力螢光面、30はテレビカメラ32でX線像
をモニターするときに、イメージインテンシファイヤ2
6の出力像を偏向させるだめのミラーで、検出プレー)
7a上に静電潜像を形成させる場合には結像レンズ系2
7゜28の光路よす矢印の方へ逃がしておく。なお29
は走査検出ユニット、31はテレビカメラ32に対する
結像レンズである。
Ru. In FIG. 5, 24 is the input fluorescent surface of the image intensifier 26, and 30 is the input fluorescent surface of the image intensifier 26 when monitoring the X-ray image with the television camera 32.
A mirror that deflects the output image of step 6 (detection play)
When forming an electrostatic latent image on 7a, the imaging lens system 2
Let it escape in the direction of the light path arrow at 7°28. Note 29
is a scanning detection unit, and 31 is an imaging lens for the television camera 32.

イメージインテンシファイヤ26は、被検体16を透過
したX線18によって入力螢光面24に形成された螢光
儂を電子レンズによって増倍し出力螢光面25に結像さ
せるという発光増大機能を有する。従って、第4図にお
ける螢光板22に対したときよシも、検出プレート7a
の感度が低くて良いことになシ、検出プレート7aの光
導電体層の材料選択範囲が広くなる。
The image intensifier 26 has a luminescence increasing function of multiplying the fluorescence formed on the input fluorescent surface 24 by the X-rays 18 transmitted through the subject 16 using an electronic lens and forming an image on the output fluorescent surface 25. have Therefore, when compared to the fluorescent plate 22 in FIG.
The advantage of the low sensitivity is that the selection range of materials for the photoconductor layer of the detection plate 7a is widened.

一方、イメージインテンシ7アイヤ26の出力像は、テ
レビカメラ32によってリアルタイムモニタ用電気信号
に変換されるわけではあるが、テレビカメラの走査線本
数に限度があるため、高解像力を有するX線像の電気信
号出力を得ることができない。しかし本実施例のように
静電a像読み出し系を用いると、このテレビカメラの欠
点を補うことができる。
On the other hand, although the output image of the image intensity 7 ear 26 is converted into an electrical signal for real-time monitoring by the television camera 32, since the number of scanning lines of the television camera is limited, it is converted into an X-ray image with high resolution. cannot obtain electrical signal output. However, if an electrostatic a-image reading system is used as in this embodiment, this drawback of the television camera can be compensated for.

次に第6図に更に別の実施例を示す。これは第4図実施
例における螢光板22の替わ)に、平板型イメージイン
テンシファイヤ35を用いた例である。
Next, FIG. 6 shows yet another embodiment. This is an example in which a flat plate image intensifier 35 is used in place of the fluorescent plate 22 in the embodiment shown in FIG.

平板型イメージインテンシファイヤ35においては、入
力螢光面33と出力螢光面34が同じ大きさの平板状構
造を有し近接して配薫されているため、像の歪がない状
態で、入射X線が増倍された可視光線に変換される。従
って、第4図において螢光板22を用いた場合よシも、
第6図におけるように平板型イメージインテンシファイ
ヤ35を用いた場合の方が検出ブレー)7aの感度が低
くて良いこと釦な妙、検出プレー)7aの材料選択範囲
が広くなる。
In the flat image intensifier 35, the input fluorescent surface 33 and the output fluorescent surface 34 have a flat structure of the same size and are arranged close to each other, so that the image is not distorted. Incident x-rays are converted into multiplied visible light. Therefore, even when using the fluorescent plate 22 in FIG.
The advantage of using the flat image intensifier 35 as shown in FIG. 6 is that the sensitivity of the detection plate 7a is lower, and the material selection range for the detection plate 7a is wider.

第5図及び第6図の例においては、X線像を可視光像に
変換する系そのものが発光増大機能を有している場合に
ついて述べたが、第4図における螢光板22による螢光
像を発光増大するライトイメージインテンシファイヤを
螢光板22と検出プレート7aの間に組込んだような静
電潜像検出装置にすることもできる。この場合にも噴出
プレート7aの材料選択範囲が広くなる。
In the examples shown in FIGS. 5 and 6, a case has been described in which the system itself that converts an X-ray image into a visible light image has a luminescence increasing function. It is also possible to use an electrostatic latent image detection device in which a light image intensifier that increases the emission of light is incorporated between the fluorescent plate 22 and the detection plate 7a. In this case as well, the selection range of materials for the ejection plate 7a is widened.

ところで以上の実施例においては像露光によシーB被検
体の光学像を形成し、結像光学系で検出プレート上に結
像させることを述べたが、本発明はこれに限らず、非光
学的な例えば電磁的な被検体像、結像手段を用いるもの
であっても良い。また本発明における時系列的な像検出
は光電的なものに限られない。
Incidentally, in the above embodiments, it has been described that an optical image of the subject B is formed by image exposure, and the image is formed on the detection plate by the imaging optical system. However, the present invention is not limited to this. For example, it may be possible to use an electromagnetic object image or imaging means. Further, the time-series image detection in the present invention is not limited to photoelectric detection.

以上5本発明によれば次のような効果が顕著である。す
なわち投影倍率を1よシ小さくすることにより、 fll  S出プレートサイズに比して被写範囲を大き
く蝦れる。
According to the above five aspects of the present invention, the following effects are remarkable. That is, by reducing the projection magnification by more than 1, the object range can be enlarged compared to the full S output plate size.

(2)  全走奄時間を短縮できる。(2) Total running time can be shortened.

(3)  噴出プレートの製作が容易となる。(3) It becomes easier to manufacture the ejection plate.

f41X−Y軸スキャナの小型化、歪補正の簡易化が可
能となる。
It is possible to downsize the f41 X-Y axis scanner and simplify distortion correction.

(5)  製電のコンパクト化が可能となる。(5) It becomes possible to make electrical manufacturing more compact.

また投影培率を1より大きくすることにより^解像力電
気信号の出力が得られる。更に発光増大機能を具備させ
ることにより (1) 検出プレートは低感度で良い。
Furthermore, by increasing the projection multiplication factor to more than 1, an output of a resolving power electric signal can be obtained. Furthermore, by providing a luminescence increasing function, (1) the detection plate can have low sensitivity.

(2)@出グレートの光導電体層の材料選択範囲が拡が
る。
(2) The range of material selection for the photoconductor layer of the @output grade is expanded.

(3)  第5図に示t7た如くリアルタイムモニタ機
能を具備させることかり能となる。
(3) This function can be achieved by providing a real-time monitor function as shown in t7 in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第2図は従来例の説明図、第3図はプロセス
説明図、第4図乃至第6図は本発明の実施例の図。 図中 7.73は検出プレート 8.8aはレーザ光源 9.9aはレーザビーム 10.10aはX−Y軸スキャナ 16は被検体 18はX線 22は螢光、板 23は結像レンズ 26はイメージインテンシファイヤ 27.28は結像レンズ系 32はテレビカメラ 35は平板型イメージインテンシファイヤである。 よ4.jIH八(す゛ 箔5同 第1頁の続き 0発 明 者 太田信− 川崎市中原区今井上町53番地キ ャノン株式会社小杉事業所内 0発 明 者 北島信夫 東京都大田区下丸子3丁目加番 2号キャノン株式会社内
1 to 2 are explanatory diagrams of a conventional example, FIG. 3 is an explanatory diagram of a process, and FIGS. 4 to 6 are diagrams of an embodiment of the present invention. In the figure, 7.73 indicates a detection plate 8.8a, a laser light source 9.9a, a laser beam 10.10a, an X-Y axis scanner 16, a subject 18, an X-ray 22, fluorescence, a plate 23, an imaging lens 26, The image intensifiers 27 and 28, the imaging lens system 32, and the television camera 35 are flat plate image intensifiers. Yo4. jIH 8 (Continued from page 1 of Suhaku 5) Author: Makoto Ota - Canon Co., Ltd. Kosugi Office, 53 Imaiue-cho, Nakahara-ku, Kawasaki City Author: Nobuo Kitajima 3-chome, Shimomaruko, Kanan-2, Ota-ku, Tokyo Within Canon Co., Ltd.

Claims (1)

【特許請求の範囲】 ■、照射源からの像露光により一旦被検体像を形成する
手段と、 咳像を噴出プレート上に結像する手段と、該噴出プレー
トに形成される被検体の潜像をビーム走査により時系列
的に検出する手段を有することを特徴とする像検出装置
。 2、 前記像露光による被検体像が光学像である特許請
求の範囲第1項記載の像検出装置。 3、前記照射源がX線源である特許請求の範囲第1項記
載の像検出装置。 4 前記被検体の光学像を形成する手段が螢光板である
特許請求の範囲第2項記載の像検出装置。 5、前記被検体の光学像を形成する手段が発光増大機能
を有する特許請求の範囲第2項記載の像検出装置。 6、 前記結像手段の結像倍率が1より小さい特許請求
の範囲第1項記載の像検出装置。 7、 前記結像手段の結像倍率が1より大きい特許請求
の範囲第1項記載のgl検出装置。 8、 前記結像手段の結像倍率が可変である特許請求の
範囲第1項記載の像検出装置。 9、前記結像手段がズームレンズである特許請求の範囲
第2項記載の像検出装置。 10、前記検出グレートに形成される潜像が静電潜像で
あり、レーザビーム走査によシ時系列的に検出される特
許請求の範囲第1項記載のg!!検出装置。
[Claims] (1) means for once forming an image of the subject by image exposure from an irradiation source; means for forming a cough image on a jetting plate; and a latent image of the subject formed on the jetting plate. An image detection device characterized by having means for detecting time-series by beam scanning. 2. The image detection device according to claim 1, wherein the image of the subject obtained by image exposure is an optical image. 3. The image detection device according to claim 1, wherein the irradiation source is an X-ray source. 4. The image detection device according to claim 2, wherein the means for forming an optical image of the subject is a fluorescent plate. 5. The image detection device according to claim 2, wherein the means for forming an optical image of the subject has a light emission increasing function. 6. The image detection device according to claim 1, wherein the imaging magnification of the imaging means is smaller than 1. 7. The GL detection device according to claim 1, wherein the imaging magnification of the imaging means is greater than 1. 8. The image detection device according to claim 1, wherein the imaging magnification of the imaging means is variable. 9. The image detection device according to claim 2, wherein the image forming means is a zoom lens. 10. The g! ! Detection device.
JP57113751A 1982-06-30 1982-06-30 Image detector Pending JPS595237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57113751A JPS595237A (en) 1982-06-30 1982-06-30 Image detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57113751A JPS595237A (en) 1982-06-30 1982-06-30 Image detector

Publications (1)

Publication Number Publication Date
JPS595237A true JPS595237A (en) 1984-01-12

Family

ID=14620195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57113751A Pending JPS595237A (en) 1982-06-30 1982-06-30 Image detector

Country Status (1)

Country Link
JP (1) JPS595237A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149612A (en) * 1984-01-13 1985-08-07 Dai Ichi Kogyo Seiyaku Co Ltd Production of water-soluble polymer
CN105158789A (en) * 2015-09-11 2015-12-16 中国工程物理研究院激光聚变研究中心 Spatial distinguishing radiant flux detection apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149612A (en) * 1984-01-13 1985-08-07 Dai Ichi Kogyo Seiyaku Co Ltd Production of water-soluble polymer
JPH0410881B2 (en) * 1984-01-13 1992-02-26
CN105158789A (en) * 2015-09-11 2015-12-16 中国工程物理研究院激光聚变研究中心 Spatial distinguishing radiant flux detection apparatus

Similar Documents

Publication Publication Date Title
US5760403A (en) High modulation transfer function CCD X-ray image sensor apparatus and method
US4818857A (en) Electrostatic image sensor having an electret which polarizes a photoconductive layer
US6392237B1 (en) Method and apparatus for obtaining radiation image data
US6828539B1 (en) Detection signal correction method and device as well as solid-state detector for use therewith
JPS595237A (en) Image detector
JP4050117B2 (en) Image information recording and reading method and apparatus
US4493096A (en) Method of X-ray imaging using slit scanning with controlled target erase
JPH0391734A (en) Radiograph reader
US5185772A (en) Radiation pickup device, and radiation imaging system and method for the same
JPS595773A (en) Image detector
US4542405A (en) Method and apparatus for displaying and reading out an image
JPH03200100A (en) X-ray microscope
JPS58189673A (en) Method and device for reading latent image
US3732007A (en) Method and device for instant recording of light images while observing said light images
JPS5939159A (en) Electrostatic latent image readout device
JPS58225772A (en) Image detector
JPS58187974A (en) Method and apparatus for executing exposure of detecting plate
JPH06105956B2 (en) Image recording / playback system
JPS58193570A (en) Image detector
CA1269447A (en) Method and device for processing large dynamic range picture information
JPS5928143A (en) Exposure method of detecting plate
JPS61244176A (en) Digital radiography device
JPH03112098A (en) X-ray image device
JPS60103940A (en) X-ray photogaphing apparatus
JPH08248542A (en) Radiation picture reader