JPS5951497B2 - Method for producing ultrafine iron oxide powder - Google Patents

Method for producing ultrafine iron oxide powder

Info

Publication number
JPS5951497B2
JPS5951497B2 JP5169280A JP5169280A JPS5951497B2 JP S5951497 B2 JPS5951497 B2 JP S5951497B2 JP 5169280 A JP5169280 A JP 5169280A JP 5169280 A JP5169280 A JP 5169280A JP S5951497 B2 JPS5951497 B2 JP S5951497B2
Authority
JP
Japan
Prior art keywords
iron oxide
hydrogen
oxide powder
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5169280A
Other languages
Japanese (ja)
Other versions
JPS56149330A (en
Inventor
福彦 菅
慎一郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP5169280A priority Critical patent/JPS5951497B2/en
Publication of JPS56149330A publication Critical patent/JPS56149330A/en
Publication of JPS5951497B2 publication Critical patent/JPS5951497B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 技術分野 本発明は酸化鉄超微粉末の製法に関する。[Detailed description of the invention] Technical field The present invention relates to a method for producing ultrafine iron oxide powder.

より具体的にいえば、水素含有燃料の酸素含有気体によ
る燃焼によって生ずる炎に鉄塩化物蒸気を導入して高温
加水分解によって鉄酸化物微粉末を製造する方法の改良
に関する。
More specifically, the present invention relates to an improvement in a method for producing fine iron oxide powder by high-temperature hydrolysis by introducing iron chloride vapor into a flame produced by combustion of a hydrogen-containing fuel with an oxygen-containing gas.

従来技術 水素含有燃料の酸素含有気体による燃焼によって生ずる
炎に金属塩化物の蒸気を導入して高温加水分解によって
金属酸化物の微粉末を得る方法はことに知られており、
シルカ、アルミナ、チタニア等については工業的に成功
しているが、鉄酸化物については未だ工業的成功例を聞
かない。
PRIOR ART It is particularly known to obtain fine powders of metal oxides by high-temperature hydrolysis by introducing vapors of metal chlorides into the flame produced by the combustion of hydrogen-containing fuels with oxygen-containing gases.
Silica, alumina, titania, etc. have been industrially successful, but iron oxides have not yet been commercially successful.

その理由は種々あるが、一つの理由は原料の塩化第二鉄
が吸湿性であるために、これを直接酸水素炎の中に導入
することに困難があり、またあらかじめ塩化第二鉄の蒸
気を発生させるにしても気化器の容量等に制限があって
連続的工業的製造が困難で゛あった。
There are various reasons for this, but one reason is that the raw material ferric chloride is hygroscopic, so it is difficult to introduce it directly into an oxyhydrogen flame, and the ferric chloride vapor is Even if it were to be produced, continuous industrial production was difficult due to limitations in the capacity of the vaporizer.

この点に関して本発明者等は先に、鉄と塩素を酸水素炎
に導入するに先立って合成し、塩化第二鉄を新鮮な蒸気
の形で酸水素炎中に供給する方法を開発して、従来法の
欠点に一つの改良を与えた。
In this regard, the inventors have previously developed a method in which iron and chlorine are synthesized prior to introduction into the oxyhydrogen flame, and ferric chloride is fed into the oxyhydrogen flame in the form of fresh vapor. , one improvement was made on the shortcomings of the conventional method.

(特願昭55−029250号)。酸水素炎による高
温加水分解法が酸化鉄微粉末の製造に関して工業的に成
功していない理由は上記のような化学工学的な困難とは
別に、塩化鉄の高温加水分解時に生成するHCIが高温
の酸水素炎中で酸素が過剰に存在すると(ある程度の過
剰酸素の存在は避けられない)酸化されて、4HCl
+02→2C■2+2H20 なる反応によって塩素ガスを発生し、この塩素ガスが排
ガスの冷却過程で、生成した酸化鉄微粉末と再結合して
塩化鉄に戻す傾向があり、この傾向は鉄の場合、他の金
属の場合より大きく、塩素化は完全に進行しないまでも
、酸化鉄微粉体の表面を部分的に塩素化することにより
活性化し、周辺に存在する粉粒同志の増粒成長を促進し
、従って超微粉の酸化鉄を得ることが困難であるという
点にも問題があった。
(Patent Application No. 55-029250). The reason why the high-temperature hydrolysis method using oxyhydrogen flame has not been industrially successful in producing iron oxide fine powder is that, apart from the chemical engineering difficulties mentioned above, the HCI produced during high-temperature hydrolysis of iron chloride is When there is an excess of oxygen in an oxyhydrogen flame (the presence of some excess oxygen is inevitable), it is oxidized to 4HCl.
+02→2C■2+2H20 Chlorine gas is generated by the reaction, and during the cooling process of exhaust gas, this chlorine gas tends to recombine with the generated iron oxide fine powder and return to iron chloride. This is larger than in the case of other metals, and although the chlorination does not progress completely, it is activated by partially chlorinating the surface of the fine iron oxide powder, promoting the growth and growth of the surrounding powder particles. Therefore, there was also a problem in that it was difficult to obtain ultrafine iron oxide powder.

本発明者等は、この点に着目し、反応を終った排ガス中
に水素を導入し、塩素ガスの生成を阻止する、阻ち、生
成しても直ちに CI。
The present inventors focused on this point, and introduced hydrogen into the exhaust gas after the reaction to prevent or prevent the production of chlorine gas, and even if it was produced, it would immediately react with CI.

+H2→2HC1の反応によって塩化水素に戻すことに
より、超微粉末の酸化鉄を効率よく製造できることを発
見した。
It has been discovered that ultrafine iron oxide powder can be efficiently produced by converting it back to hydrogen chloride through the +H2→2HC1 reaction.

発明の開示 本発明によれば、水素含有燃料の酸素含有気体による燃
焼によって生ずる炎に、鉄塩化物蒸気を導入して、鉄塩
化物の高温加水分解を行なわせ、燃焼ガスを冷却し、酸
化鉄微粉末を分離回収する方法において、該燃焼ガスの
温度が550℃から350℃の範囲内で水素を含むガス
を導入することを特徴とする酸化鉄超微粉末の製造方法
が提供される。
DISCLOSURE OF THE INVENTION According to the present invention, iron chloride vapor is introduced into the flame produced by the combustion of hydrogen-containing fuel with oxygen-containing gas to cause high-temperature hydrolysis of iron chloride, cool the combustion gas, and oxidize it. A method for producing ultrafine iron oxide powder is provided, which comprises introducing a hydrogen-containing gas at a temperature of the combustion gas within a range of 550°C to 350°C, in a method for separating and recovering fine iron powder.

酸素含有ガスと水素含有燃料をバーナーに導き点火、燃
焼させる。
Oxygen-containing gas and hydrogen-containing fuel are introduced into a burner, where they are ignited and combusted.

この酸水素炎中に塩化鉄蒸気を導入し、酸水素炎中に生
成しているH2Oにより、高温状態で、気体状の塩化鉄
を加水分解させる。
Iron chloride vapor is introduced into this oxyhydrogen flame, and the gaseous iron chloride is hydrolyzed at high temperature by H2O generated in the oxyhydrogen flame.

この時、塩化鉄は無水物を昇華点以上に加熱して蒸気を
発生させてもよく、また、塩素を含有するガスを加熱さ
れた金属状の鉄の存在下に通気し、塩化第二鉄を生成さ
せてもよい。
At this time, iron chloride may be produced by heating an anhydride above its sublimation point to generate steam, or by passing chlorine-containing gas in the presence of heated metallic iron to produce ferric chloride. may be generated.

またバーナーに導入されるまでの塩化鉄蒸気の配管は塩
化鉄の昇華点以上に保温しておくことが適当である。
Further, it is appropriate to keep the temperature of the iron chloride vapor piping to a temperature higher than the sublimation point of iron chloride until it is introduced into the burner.

生成ないし、気化した塩化鉄蒸気のバーナーへの搬送に
は、助燃用の酸素含有ガスを利用してもよい。
Oxygen-containing gas for auxiliary combustion may be used to transport the produced or vaporized iron chloride vapor to the burner.

塩化鉄の加水分解で生成した酸化第二鉄は、燃焼排ガス
中で個体の核を形成する。
Ferric oxide produced by hydrolysis of iron chloride forms solid nuclei in the combustion exhaust gas.

燃焼排ガスを煙管を通過させながら徐々に冷却する酸化
第二鉄の固体状の核は、微粉体に到るまで成長する。
The solid core of ferric oxide that gradually cools the combustion exhaust gas as it passes through the smoke pipe grows until it becomes a fine powder.

しかし、この粉体は、前述したように酸水素炎中におい
て、塩化水素が一部酸化されて生成した塩素により、排
ガス煙管気流中で塩素化される傾向がある。
However, as described above, this powder tends to be chlorinated in the flue gas stream by chlorine generated by partially oxidizing hydrogen chloride in an oxyhydrogen flame.

そこで、この塩素ガスを排ガス温度が550℃から35
0℃の範囲に冷却された段階で煙管に水素を含むガスを
導入することにより、塩化水素に転化する。
Therefore, this chlorine gas is
Once cooled to a temperature of 0° C., hydrogen-containing gas is introduced into the smoke pipe to convert it to hydrogen chloride.

燃焼排ガスは煙管への生成酸化鉄の付着を極力少なくす
る配慮から、乱流域の緩速度が維持されるべく管径が選
択されているので、水素を含むガスの導入は、特に規定
しなくとも排ガスと良く混合し、塩素の塩化水素への転
化は速やかである。
In order to minimize the adhesion of produced iron oxide to the smoke pipe, the pipe diameter of the combustion exhaust gas is selected to maintain a slow velocity in the turbulent region, so the introduction of hydrogen-containing gas is not required. It mixes well with exhaust gas, and the conversion of chlorine to hydrogen chloride is rapid.

これにより酸化鉄は超微粉末の状態で得られ、バッグ・
フィルターやサイクロンなどの常法に従い燃焼排ガスか
ら分離捕集される。
As a result, iron oxide is obtained in the form of ultra-fine powder, which can be stored in bags or
It is separated and collected from combustion exhaust gas using conventional methods such as filters and cyclones.

塩化鉄の高温加水分解のために、水分の供給源である酸
水素炎中の水素量は化学量論値以上が必要であるが、酸
素は燃焼を空気中で行えば、酸水素炎バーナーに化学量
論的必要量が直接供給されていなくても差しつかえない
For high-temperature hydrolysis of iron chloride, the amount of hydrogen in the oxyhydrogen flame, which is the source of moisture, must be at or above the stoichiometric value. It is okay even if the stoichiometric requirement is not directly supplied.

また原料FeCl3の塩素は、燃焼状態によって異なる
ので一義的に定めることはできないが、その約4〜8%
が塩素ガスとなるので、燃焼排ガスに加えるべき水素量
は発生塩素量に対して少なくとも当量は必要である。
In addition, the chlorine content of the raw material FeCl3 varies depending on the combustion state, so it cannot be determined unambiguously, but it accounts for about 4 to 8%.
becomes chlorine gas, the amount of hydrogen to be added to the combustion exhaust gas must be at least equivalent to the amount of chlorine generated.

当量以上に水素を供給しても、とくに問題はない。There is no particular problem even if hydrogen is supplied in excess of the equivalent amount.

燃焼排ガスに対して水素を供給する温度範囲は、排ガス
温度が550℃以上であると、水素が排ガス中の酸素と
選択的に結合するので適当でない。
The temperature range in which hydrogen is supplied to the combustion exhaust gas is not appropriate if the exhaust gas temperature is 550° C. or higher because hydrogen will selectively combine with oxygen in the exhaust gas.

また、350℃以下であると塩化水素の生成速度が緩慢
になり好ましくない。
Further, if the temperature is 350° C. or lower, the rate of hydrogen chloride production becomes slow, which is not preferable.

本発明によれば、酸水素炎中での塩化鉄の高温加水分解
によって副生する塩素ガスが、生成する酸化鉄超微粉体
を塩素化することなく、添加する水素と結合するので、
酸化鉄超微粉体の平均粒径は約40mμから80mμと
なり、従来法より微細となる。
According to the present invention, chlorine gas produced as a by-product by high-temperature hydrolysis of iron chloride in an oxyhydrogen flame combines with the added hydrogen without chlorinating the produced ultrafine iron oxide powder.
The average particle size of the ultrafine iron oxide powder is about 40 mμ to 80 mμ, which is finer than that of the conventional method.

また一度生成した酸化鉄の塩素化が抑制されるので、酸
化鉄超微粉体の収率も向上する。
Furthermore, since chlorination of iron oxide once generated is suppressed, the yield of ultrafine iron oxide powder is also improved.

好適実施態様 実施例 1 塩化第二鉄を110g /minの割合で、スクリュー
フィーダーで350℃に加熱された気化器に導入し昇華
した塩化第二鉄蒸気を12017m1nの乾燥空気で酸
水素燃焼用バーナーに搬送すると同時に水素を3Q/m
inの流速で同バーナーに供給し酸水素炎を形成させた
Preferred Embodiment Example 1 Ferric chloride was introduced at a rate of 110 g/min into a vaporizer heated to 350°C with a screw feeder, and the sublimated ferric chloride vapor was heated to an oxyhydrogen combustion burner with 12017 ml of dry air. while simultaneously transporting hydrogen at 3Q/m
was supplied to the same burner at a flow rate of in to form an oxyhydrogen flame.

生成した酸化第二鉄微粉末を含む燃焼排ガスは煙道に導
き、徐々に冷却し、ガス温度が390℃の箇所から4
l /minの流速で水素を供給したところ、燃焼排ガ
ス中からは90℃に冷却された出口での測定では、塩素
は検出されなかった。
The combustion exhaust gas containing the generated ferric oxide fine powder is led to the flue, where it is gradually cooled.
When hydrogen was supplied at a flow rate of l/min, no chlorine was detected in the combustion exhaust gas at the outlet cooled to 90°C.

なお、塩素の検出限界は、0,11/minの量である
The detection limit for chlorine is 0.11/min.

なお、燃焼排ガスから分離回収された酸化鉄超微粉体は
、30分間に1510gであり、平均粒径は約50mμ
であった。
In addition, the iron oxide ultrafine powder separated and recovered from the combustion exhaust gas was 1510 g in 30 minutes, and the average particle size was about 50 mμ.
Met.

実施例 2 塩化第二鉄を138g /minの割合で、スクリュー
フィーダーを用い370℃に加熱された気化器に導入し
、気化した塩化第二鉄蒸気を1401 /minの空気
で、酸水素燃焼用バーナーに搬送すると同時に水素を4
01 /minの流速で同バーナーに供給し、酸水素炎
を形成させた。
Example 2 Ferric chloride was introduced at a rate of 138 g/min into a vaporizer heated to 370°C using a screw feeder, and the vaporized ferric chloride vapor was heated at 1401/min with air for oxyhydrogen combustion. Hydrogen is transferred to the burner at the same time as 4
The gas was supplied to the same burner at a flow rate of 0.01 /min to form an oxyhydrogen flame.

生成した酸化第二鉄粉末を含む燃焼排ガスは煙道に導き
、徐々に冷却し、ガス温度が510℃の箇所から617
m1nの流速で水素を供給したところ、90℃に冷却さ
れた燃焼排ガス出口では、排ガス中に塩素は検出されな
かった。
The combustion exhaust gas containing the generated ferric oxide powder is led to the flue, where it is gradually cooled and the gas temperature is 510°C.
When hydrogen was supplied at a flow rate of m1n, no chlorine was detected in the exhaust gas at the combustion exhaust gas outlet cooled to 90°C.

また、燃焼排ガスから分離回収された酸化鉄超微粉体は
lQmin間に617gであり、平均粒径は40mμで
あった。
Further, the amount of ultrafine iron oxide powder separated and recovered from the combustion exhaust gas was 617 g per lQmin, and the average particle size was 40 mμ.

産業上の利用性 本発明により得られる酸化鉄超微粉体は、従来法では得
られなかった80mμ以下の粒径を有するので、粉末冶
金、樹脂添加物、塗膜処理などの分野に有効な原料を提
出するものである。
Industrial Applicability The ultrafine iron oxide powder obtained by the present invention has a particle size of 80 mμ or less, which could not be obtained by conventional methods, so it is effective in fields such as powder metallurgy, resin additives, and coating treatment. Raw materials must be submitted.

また、他の金属酸化物とともに混合焼成し、複合酸化物
を形成させると、ある種のオレフィン類に対して、部分
酸化選択性の高い酸化脱水素反応触媒として有効に機作
する可能性を有するものと推察される。
In addition, when mixed and calcined with other metal oxides to form a composite oxide, it has the potential to function effectively as an oxidative dehydrogenation catalyst with high partial oxidation selectivity for certain olefins. It is presumed that this is the case.

Claims (1)

【特許請求の範囲】[Claims] 1 水素含有燃料の酸素含有気体による燃焼によって生
ずる炎に、鉄塩化物蒸気を導入して、鉄塩化物の高温加
水分解を行なわせ、燃焼ガスを冷却し、酸化鉄微粉末を
分離回収する方法において、該燃焼ガスの温度が550
℃から350℃の範囲内で水素を含むガスを導入するこ
とを特徴とする酸化鉄超微粉末の製造方法。
1. A method of introducing iron chloride vapor into the flame generated by combustion of hydrogen-containing fuel with oxygen-containing gas to cause high-temperature hydrolysis of iron chloride, cooling the combustion gas, and separating and recovering fine iron oxide powder. , the temperature of the combustion gas is 550
A method for producing ultrafine iron oxide powder, characterized by introducing a gas containing hydrogen at a temperature in the range of 350°C to 350°C.
JP5169280A 1980-04-21 1980-04-21 Method for producing ultrafine iron oxide powder Expired JPS5951497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5169280A JPS5951497B2 (en) 1980-04-21 1980-04-21 Method for producing ultrafine iron oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5169280A JPS5951497B2 (en) 1980-04-21 1980-04-21 Method for producing ultrafine iron oxide powder

Publications (2)

Publication Number Publication Date
JPS56149330A JPS56149330A (en) 1981-11-19
JPS5951497B2 true JPS5951497B2 (en) 1984-12-14

Family

ID=12893945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5169280A Expired JPS5951497B2 (en) 1980-04-21 1980-04-21 Method for producing ultrafine iron oxide powder

Country Status (1)

Country Link
JP (1) JPS5951497B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297240A (en) * 1988-05-26 1989-11-30 Daicel Chem Ind Ltd Hygroscopic laminated film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765920A (en) * 1986-07-14 1988-08-23 Cabot Corporation High temperature process for producing fine magnetic particles of M-phase structure
US4777031A (en) * 1986-07-14 1988-10-11 Cadot Corporation High temperature process for making fine magnetic particles
TWI381897B (en) 2004-12-22 2013-01-11 Taiyo Nippon Sanso Corp Process for producing metallic ultra fine powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297240A (en) * 1988-05-26 1989-11-30 Daicel Chem Ind Ltd Hygroscopic laminated film

Also Published As

Publication number Publication date
JPS56149330A (en) 1981-11-19

Similar Documents

Publication Publication Date Title
US4435379A (en) Process for treating chlorinated hydrocarbons
US2657976A (en) Process for producing iron oxide and titanium tetrachloride from titaniferous iron ores
US4060584A (en) Process for recovery of iron oxide and chlorine from dust produced in chlorination of titaniferous ores
JPS5951497B2 (en) Method for producing ultrafine iron oxide powder
FI70248B (en) FOERFARANDE FOER SEPARERING AV METALL FOERETRAEDESVIS JAERN URXIDMATERIAL
US4046853A (en) Production of titanium tetrachloride
US3896211A (en) Purification of iron oxides
CA1235879A (en) Two stage chlorination of titaniferous ore with fecl.sub.3 reclamation
AU2008283803B2 (en) Process for preparing titanium tetrachloride using off-gases from a silica and zircon carbo-chlorination process
US4185079A (en) Removal of phosphine contaminant from carbon monoxide gas mixtures
JPH07508704A (en) Method for producing ferric chloride
US3128150A (en) Process for preconditioning the carbon bed used in a method of converting refractorymetal oxychlorides
US20140154167A1 (en) Process for preparing titanium tetrachloride using off gases from a silica and zircon carbo-chlorination process
AU753050C (en) Treatment of iron chloride from chlorination dust
US4120941A (en) Process for the oxidation of halides
US4355008A (en) Chlorination process
US4363789A (en) Alumina production via aluminum chloride oxidation
US4192676A (en) High temperature reduction of copper salts
CA1113225A (en) Recovery of chlorine values
JPS6111284B2 (en)
JP5698273B2 (en) Method for producing titanium dioxide having increased sintering action
CA2013221C (en) Preparation of phosphorous acid
US1102715A (en) Purification of mixtures containing nitrids.
JPS6111283B2 (en)
US4331637A (en) Process for purifying aluminum chloride