JPS5950718B2 - Purification method using vegetable oil film - Google Patents

Purification method using vegetable oil film

Info

Publication number
JPS5950718B2
JPS5950718B2 JP19066081A JP19066081A JPS5950718B2 JP S5950718 B2 JPS5950718 B2 JP S5950718B2 JP 19066081 A JP19066081 A JP 19066081A JP 19066081 A JP19066081 A JP 19066081A JP S5950718 B2 JPS5950718 B2 JP S5950718B2
Authority
JP
Japan
Prior art keywords
membrane
oil
weight
liquid
vegetable oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19066081A
Other languages
Japanese (ja)
Other versions
JPS5893798A (en
Inventor
善比古 武藤
一雄 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo KK filed Critical Asahi Kasei Kogyo KK
Priority to JP19066081A priority Critical patent/JPS5950718B2/en
Priority to CA000415848A priority patent/CA1189087A/en
Priority to DE19823244007 priority patent/DE3244007C2/en
Publication of JPS5893798A publication Critical patent/JPS5893798A/en
Publication of JPS5950718B2 publication Critical patent/JPS5950718B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/008Refining fats or fatty oils by filtration, e.g. including ultra filtration, dialysis

Description

【発明の詳細な説明】 本発明は、植物性油の膜による精製方法に関する。[Detailed description of the invention] FIELD OF THE INVENTION The present invention relates to a method for refining vegetable oils by membrane.

さらに詳しくは、粗製植物性油から多孔膜によりガム質
を除去する方法に関する。植物性油中のガム質は、好ま
しくない臭いや風味を生じたり、貯蔵中に沈澱したり、
さらに脱色工程での白土を不活性化し白土のロスを生じ
たりするので、ガム質は除去(以後、脱ガムという)さ
れなければならない。
More specifically, the present invention relates to a method for removing gum from crude vegetable oil using a porous membrane. Gummies in vegetable oils can produce unpleasant odors and flavors, settle during storage, and
Furthermore, gummy matter must be removed (hereinafter referred to as degumming) because it inactivates the white clay during the decolorization process and causes loss of white clay.

植物性油の膜による脱ガム法として、すでに特公昭56
−14715号の方法が知られている。
As a degumming method using a film of vegetable oil, it was already published in 1983.
The method of No.-14715 is known.

この方法は、有機溶媒に溶かした植物性油から限外ろ過
膜によりガム質を分離除去するものであるが、膜の孔径
が非常に小さいため、膜を透過する油の抵抗が大きくな
り、単位膜面積、単位時間当りの透過油量が少ない。す
なわち、脱ガム処理能力が小さいという欠点がある。し
たがつて、膜面積を大きくすることが必要となり、この
ため脱ガム処理コストが高くなる上、装置が大きくなり
大きな設置スペースを必要とするといつた問題があつた
。さらに、透過油量の経時的な低下を回復させる手段と
して、膜に対し透過液側の面より供給液側の面へ、すな
わち、通常の液の流れ方向とは逆に流体を流す、いわゆ
る逆洗処理が有効であるが、このときも限外ろ過膜は孔
径が小さいため、単位膜面積単位時間当りの逆洗流体透
過量が少なく、膜表面に堆積したケーク層の剥離効果が
弱く、十分な逆洗効果、したがつて透過油量の回復効果
が得られないという問題もあつた。以上のように既存の
方法は非常に不満足なものであつた。
In this method, gum substances are separated and removed from vegetable oil dissolved in an organic solvent using an ultrafiltration membrane, but because the pore size of the membrane is extremely small, the resistance of the oil permeating through the membrane is large, resulting in Membrane area and amount of permeated oil per unit time are small. That is, there is a drawback that the degumming treatment capacity is low. Therefore, it is necessary to increase the membrane area, which raises the cost of the degumming treatment, and also causes problems such as the size of the device and the need for a large installation space. Furthermore, as a means to recover from the decrease in the amount of permeated oil over time, fluid is allowed to flow through the membrane from the surface on the permeate side to the surface on the feed liquid side, that is, in the opposite direction to the normal liquid flow direction. Washing treatment is effective, but since the pore size of ultrafiltration membranes is small, the amount of backwashing fluid that permeates per unit membrane area per unit time is small, and the peeling effect of the cake layer deposited on the membrane surface is weak, so it is not sufficient. There was also the problem that a backwashing effect, and thus an effect of restoring the amount of permeated oil, could not be obtained. As mentioned above, the existing methods are extremely unsatisfactory.

本発明は、鋭意検討の結果、上記欠点を全て解消したも
のであり、粗製植物性油に特別な工夫をこらして被処理
液とすること、および膜表面特性を選ぶことにより、限
外濾過膜のように小さな孔径の膜でないと通常分離しえ
ないガム質を、限外濾過膜と比較すると桁違いに大きな
孔径の膜での分離を可能ならしめ、その結果、単位膜面
積、単位時間当りの透油量を大きくせしめたものであつ
て、さらに被処理液の膜への供給方法および条件に工夫
をこらして、透油量の経時的な低下を小さくせしめたも
のである。
As a result of intensive studies, the present invention has solved all of the above-mentioned drawbacks, and by using crude vegetable oil as a liquid to be treated and by selecting the membrane surface characteristics, an ultrafiltration membrane has been developed. Gums, which normally cannot be separated using membranes with small pores, can be separated using membranes with pores that are orders of magnitude larger than ultrafiltration membranes. The oil permeation amount is increased, and the method and conditions for supplying the liquid to be treated to the membrane are devised to reduce the decrease in the oil permeation amount over time.

すなわち、本発明は、脱ガム処理効率の非常に優れた画
期的な植物性油の膜による脱ガム精製方法である。すな
わち、本発明は、ガム質を念む粗製植物性油を、水が0
.1〜10重量%共存下で攪拌しながら熟成した後、平
均孔径が0.05〜3μで膜表面の臨界表面張力が33
dyn/Cm未満の多孔膜の表面に接触させ、その膜面
に対し平行に線速0.05m/Sec〜3m/Secで
流し、ガム質を水と共に濃縮分離し、実質的にガム質お
よび水を自まない植物性油を得ることを特徴とする植物
性油の膜による精製方法である。
That is, the present invention is an innovative method for degumming and refining using a vegetable oil film, which has extremely high degumming efficiency. That is, in the present invention, crude vegetable oil that is intended to have a gummy texture can be used in a water-free manner.
.. After aging with stirring in the coexistence of 1 to 10% by weight, the average pore size is 0.05 to 3μ and the critical surface tension of the membrane surface is 33
It is brought into contact with the surface of a porous membrane of less than dyn/Cm and flowed parallel to the membrane surface at a linear velocity of 0.05 m/Sec to 3 m/Sec to concentrate and separate the gums together with water. This is a method for refining vegetable oil using a membrane, which is characterized by obtaining a vegetable oil that does not naturally produce oil.

また、本発明は、上記方法において、粗製植物性油の熟
成に際し、ガム質自量の0.01〜3.0倍の酸を添加
することにより、さらに著しい脱ガム効果が発揮される
、実質的にガム質、水および添加した酸を含まない植物
性油を得る植物性油の膜による精製方法である。本発明
が対象とする植物性油は、ナタネ油、大豆油、アマニ油
、サフラワ一油、ヒマワリ油、トウモロコシ油、綿実油
、ゴマ油、ヌカ油、ヒマシ油、オリーブ油、ツバキ油、
アン油、パーム油、エノ油、麻実油、キリ油、力ホック
油、茶油などであるが、特にナタネ油、大豆油、ヒマワ
リ油、サフラワ一油、綿実油、ゴマ油については、これ
ら植物性油の原油のガム質自有量が大きく、効果が顕著
であることから好適である。
Furthermore, in the above method, by adding acid in an amount of 0.01 to 3.0 times the amount of gum itself during aging of the crude vegetable oil, a more remarkable degumming effect is exhibited. It is a membrane refining method for vegetable oils that yields vegetable oils that are essentially gummy, water-free, and free of added acids. The vegetable oils targeted by the present invention include rapeseed oil, soybean oil, linseed oil, safflower oil, sunflower oil, corn oil, cottonseed oil, sesame oil, bran oil, castor oil, olive oil, camellia oil,
These vegetable oils include perilla oil, palm oil, eno oil, hempseed oil, tung oil, chili hock oil, and tea oil, but especially rapeseed oil, soybean oil, sunflower oil, safflower oil, cottonseed oil, and sesame oil. This is suitable because the crude oil has a large amount of gummy matter and the effect is remarkable.

植物性油がへキサン、アセトン等の有機溶媒との混合物
、たとえばミセラであつてもよく、また、植物性油の原
料に含まれているガム質以外の天然の汚染物、たとえば
、ロウ質、遊離脂肪酸、イオウ化合物、ペプチド、色素
、アルデヒド、ケトン等が含まれていてもよく、さらに
採油もしくは精製工程中で意図的にもしくは無意識に混
入する微量の汚染物、たとえば、アルカリ、金属イオン
、無機および有機の固体微粒子等が含まれていてもよい
。本発明でいうガム質とは、植物性油の原料に含まれる
天然の汚染物のうちアセトン不溶物のことであり、一般
にリン脂質がその主成分となつている。
The vegetable oil may be a mixture with an organic solvent such as hexane or acetone, such as micellar, and may also contain natural contaminants other than gums contained in the raw material of the vegetable oil, such as waxy, Free fatty acids, sulfur compounds, peptides, pigments, aldehydes, ketones, etc. may be included, and trace amounts of contaminants intentionally or unintentionally introduced during the oil extraction or refining process, such as alkalis, metal ions, inorganic and organic solid fine particles. The term "gum" as used in the present invention refers to acetone-insoluble substances among natural contaminants contained in raw materials of vegetable oils, and generally phospholipids are the main component thereof.

本発明において粗製植物性油を、水が植物性油重量に対
し0.1〜10重量%、好ましくは0.5〜5.0重量
%共存下で攪拌しながら熟成する必要がある。
In the present invention, it is necessary to ripen the crude vegetable oil while stirring in the coexistence of water in an amount of 0.1 to 10% by weight, preferably 0.5 to 5.0% by weight based on the weight of the vegetable oil.

水が0.1重量%未満では実質的な脱ガム効果がなく、
また水が10重量%を越えると透油量が著しく低下し、
さらに場合によつては水およびガム質が膜を透過するこ
ともあり好ましくない。さらに、粗製植物性油を、水が
0.1〜10重量%共存下で攪拌する前に、ガム質自量
に対し100%濃度の酸に換算して0.01〜3.0倍
重量の酸を添加し、攪拌しながら熟成されたものにする
ことにより、一層顕著な脱ガム効果の得られることがわ
かつた。酸添加量が0.01倍未満の場合は実質的に酸
添加の効果がなく、3.0倍を越えると酸の無駄が多く
コスト的に好ましくない。酸添加は粗製植物性油に水が
多量に共存しない条件下で実施するのが、酸の使用量を
少なくする上で望ましく、したがつて、水を0.1〜1
0重量%共存させるべく水を添加する場合、水添加前に
酸添加することが好ましい。酸としては、リン酸、硫酸
、硝酸、硼酸、クエン酸、シユウ酸、酢酸のいずれか1
種もしくはこれらの混合物が使用されることが好ましい
If the water content is less than 0.1% by weight, there is no substantial degumming effect;
In addition, if the water content exceeds 10% by weight, the oil permeation rate will decrease significantly.
Furthermore, in some cases, water and gum may permeate through the membrane, which is undesirable. Furthermore, before stirring the crude vegetable oil in the coexistence of 0.1 to 10% by weight of water, add 0.01 to 3.0 times the weight of the acid at a concentration of 100% based on the gum substance itself. It has been found that a more significant degumming effect can be obtained by adding acid and aging with stirring. When the amount of acid added is less than 0.01 times, there is substantially no effect of adding acid, and when it exceeds 3.0 times, there is a lot of waste of acid, which is not preferable in terms of cost. In order to reduce the amount of acid used, it is desirable to add acid under conditions where a large amount of water does not coexist in the crude vegetable oil.
When adding water to coexist with 0% by weight, it is preferable to add acid before adding water. As the acid, any one of phosphoric acid, sulfuric acid, nitric acid, boric acid, citric acid, oxalic acid, and acetic acid
Preferably, seeds or mixtures thereof are used.

以上に示す粗製植物性油の処理により、限外淵過膜のよ
うな小孔径の膜でないと通常分離しえない小さなガム質
が粗大化すると推定しており、この結果、限外淵過膜と
比べ桁違いに孔径の大きな次に示す多孔膜によりガム質
の分離が可能になつたものと考えている。次に多孔膜の
特徴について説明する。
It is estimated that the above-mentioned treatment of crude vegetable oil coarsens the small gums that cannot normally be separated using a membrane with small pores such as an ultra-permeable membrane. We believe that the porous membrane shown below, which has an order of magnitude larger pore size than the previous method, has made it possible to separate gummy substances. Next, the characteristics of the porous membrane will be explained.

上記被処理液を多孔膜で脱ガムと同時に脱水するために
は、孔径および表面特性に特徴ある多孔膜を使用する必
要のあることがわかつた。
It has been found that in order to simultaneously dehydrate the liquid to be treated using a porous membrane, it is necessary to use a porous membrane that is characterized by its pore size and surface characteristics.

本発明で使用される多孔膜は、平均孔径が0.05〜3
μ、好ましくは0.1〜4μのものである。
The porous membrane used in the present invention has an average pore diameter of 0.05 to 3.
μ, preferably 0.1 to 4 μ.

平均孔径が0.05μ未満では、単位膜面積、単位時間
当りの透油量が小さいため大きな膜面積を必要とし、好
ましくなく、3μを越えると、ガム質および水の膜透過
が著しく、脱ガム、脱水効果が小さく好ましくない。な
お、本発明に示す平均孔径は電子顕微鏡観察により測定
される。さらに多孔膜の臨界表面張力(【c)が33d
yn/Cm未満なることが必要である。32dyn/?
以上のときガム質および水の膜透過が著しく、精製植物
性油中に多量のガム質や水が混入するので好ましくない
If the average pore diameter is less than 0.05μ, the unit membrane area and oil permeation amount per unit time are small, so a large membrane area is required, which is undesirable. , the dehydration effect is small and undesirable. Note that the average pore diameter shown in the present invention is measured by electron microscopic observation. Furthermore, the critical surface tension ([c) of the porous membrane is 33d
It is necessary that it be less than yn/Cm. 32dyn/?
In the above case, the permeation of gum and water through the membrane is significant, and a large amount of gum and water is mixed into the purified vegetable oil, which is not preferable.

つまり、固体微粒子では一般に多孔膜の孔径で分離性が
ほとんど決まるが、ガム質や水のような固体微粒子でな
い場合は、孔径だけでは分離性が決まらず、膜表面とガ
ム質および水の親和性も分離性を決めるものと判断でき
る。臨界表面張力(Rc)が33dyn/Cfn未満の
多孔膜は、臨界表面張力が33dyn/c!n未満の樹
脂単独、またはこれらの樹脂の組合せ、またはこれらの
樹脂と上記臨界表面張力を有しない樹脂とを組合せたブ
レンドポリマーかコポリマーで、最終的に得られた樹脂
の臨界表面張力が33dyn/Cm未満のものから形成
される。また、多孔膜上にコーテイングや化学結合など
の手段により、膜表面の臨界表面張力が上記範囲の値を
有するよう調整された多孔膜も使用できる。
In other words, for fine solid particles, the pore size of the porous membrane generally determines the separation performance, but for non-solid fine particles such as gum or water, the pore size alone does not determine the separation performance, but the affinity between the membrane surface, gum and water. It can also be judged that this determines separability. A porous membrane with a critical surface tension (Rc) of less than 33 dyn/Cfn has a critical surface tension of 33 dyn/c! A blend polymer or copolymer consisting of less than n resins alone, a combination of these resins, or a combination of these resins and a resin that does not have the above critical surface tension, and the critical surface tension of the final resin is 33 dyn/ It is formed from less than Cm. It is also possible to use a porous membrane in which the critical surface tension of the membrane surface is adjusted to have a value within the above range by means such as coating or chemical bonding on the porous membrane.

多孔膜の形成材料として具体的には、ポリエチレン、ポ
リプロピレン、ポリブデン、ポリイソブチレン、ポリベ
ンゼン、ポリ4−メチルイソベンゼンなどのポリオレフ
インおよびフツ素原子を一つ以上含むこれらのハロゲン
化物;4−フツ化エチレン一′々−フルオロアルキルビ
ニルエーテル共重合体Jエチレン、プロピレン、ブテン
、イソブチレン、ベンゼン、ヘキサン、1−フツ化エチ
レン、フツ化ビニリデン、3−フツ化エチレン、4−フ
ツ化エチレン、3−フツ化塩化エチレンあるいは6−フ
ツ化プロピレンなどのエチレン系炭化水素またはフツ素
原子を一つ以上含むハロゲン置換エチレン系炭化水素の
組合せからなる共重合体、およびポリエチレンとポリプ
ロピレン、ポリフツ化ビニリデン、ポリ4−フツ化エチ
レンあるいはポリスチレンの組合せ、ポリプロピレンと
ポリフツ化ビニリデンあるいはポリ4−フツ化エチレン
の組合せ、ポリフツ化ビニリデンとポリスルホン、ポリ
アクリロニトリル、ポリフエニレンオキサイドあるいは
ポリ4−フツ化エチレンの組合せなどのブレンドポリマ
ーなどが挙げられる。好ましくはポリエチレン、ポリプ
ロピレン、エチレン−プロピレンコポリマー、ポリフツ
化ビニリデン、エチレン−テトラフルオロエチレンコポ
リマー、4−フツ化エチレン一6−フツ化プロピレンコ
ポリマー、4−フツ化エチレン一′々−フルオロアルキ
ルビニルエーテルコポリマーおよびこれらのブレンドポ
リマーが使用される。臨界表面張力は、以下の方法で測
定する。
Specific examples of materials for forming the porous membrane include polyolefins such as polyethylene, polypropylene, polybutene, polyisobutylene, polybenzene, and poly4-methylisobenzene, and halides thereof containing one or more fluorine atoms; 4-fluorinated Ethylene mono-fluoroalkyl vinyl ether copolymer J ethylene, propylene, butene, isobutylene, benzene, hexane, 1-fluoroethylene, vinylidene fluoride, 3-fluoroethylene, 4-fluoroethylene, 3-fluoroethylene Copolymers consisting of a combination of ethylene hydrocarbons such as ethylene chloride or 6-fluorinated propylene, or halogen-substituted ethylene hydrocarbons containing one or more fluorine atoms, as well as polyethylene and polypropylene, polyvinylidene fluoride, poly(4-fluorinated) Blend polymers such as combinations of ethylene fluoride or polystyrene, combinations of polypropylene and polyvinylidene fluoride or polyethylene fluoride, combinations of polyvinylidene fluoride and polysulfone, polyacrylonitrile, polyphenylene oxide, or polyethylene fluoride, etc. Can be mentioned. Preferably polyethylene, polypropylene, ethylene-propylene copolymer, polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, 4-fluoroethylene-6-fluoropropylene copolymer, 4-fluoroethylene-1'-fluoroalkyl vinyl ether copolymer, and these. A blend of polymers is used. Critical surface tension is measured by the following method.

均一素材から形成された多孔膜の場合は、その素材樹脂
を用いて均一な無孔性フイルムを製膜し、測定用サンプ
ルとする。多孔膜が均一素材からなるものでなく、膜表
面に種々の化学種がコーテイングされたり、化学結合さ
れているものの場合は、膜を形成しているのと同じ素材
の樹脂で均一な無孔質フイルムを製膜し、その表面に多
孔膜と同一条件下でコーテイングまたは化学結合を施し
、測定用サンプルとする。臨界表面張力とは、接触角θ
=0゜の時の表面張力であるから、上記サンプルの接触
角を種々の表面張力を持つた液体で測定し、外そう法に
よりθ=0゜の時の表面張力を求めれば、臨界表面張力
が得られる。本発明の多孔膜は、気孔率が15〜95%
のものが好ましい。
In the case of a porous membrane formed from a uniform material, a uniform non-porous film is formed using the material resin and used as a sample for measurement. If the porous membrane is not made of a uniform material, but has various chemical species coated or chemically bonded to its surface, it may be made of a uniform, non-porous resin made from the same material that forms the membrane. A film is formed, its surface is coated or chemically bonded under the same conditions as the porous membrane, and used as a sample for measurement. Critical surface tension is the contact angle θ
Since this is the surface tension when θ = 0°, if the contact angle of the above sample is measured with liquids with various surface tensions and the surface tension when θ = 0° is determined by the detachment method, then the critical surface tension is is obtained. The porous membrane of the present invention has a porosity of 15 to 95%.
Preferably.

気孔率が15%未満では透過油量が小さく、また95%
を越えると膜の強度が小さくなり、いずれも好ましくな
い。なお、気孔率Pは次式で定義される。
When the porosity is less than 15%, the amount of permeated oil is small;
Exceeding this decreases the strength of the film, which is not preferable. Note that the porosity P is defined by the following formula.

ρB P=(1− 一)×100%) ρa ρa:空孔を有しない膜の比重 ρb:多孔膜の重量をその体積で割つたもの多孔膜の膜
厚は0.01〜 411が好ましい。
ρB P=(1−1)×100%) ρa ρa: Specific gravity of the membrane without pores ρb: The weight of the porous membrane divided by its volume The thickness of the porous membrane is preferably 0.01 to 411.

つまり、膜厚が0.01n未満では膜強度が小さく、ま
た4鷹lを越えると透油量が小さくなり、いずれも好ま
しくない。多孔膜の形状は、平膜伏、プリーツ状、チユ
ーブ伏、中空糸状等実際の使用に好適なように成形され
使用されるが、モジユールの小型化およびその構造の簡
素化の点で中空糸伏が好ましい。
That is, if the film thickness is less than 0.01 nm, the film strength will be low, and if it exceeds 4 liters, the oil permeation amount will be small, both of which are unfavorable. Porous membranes are formed into shapes suitable for actual use, such as flat membrane, pleats, tubes, and hollow fibers. is preferred.

中空糸伏膜の場合、その内径は0.1〜10露lが好ま
しい。内径が0.1属翼未満では、中空糸膜端面におま
るガム質等の詰りが発生して好ましくなく、10属”を
越えると、その膜を使用したモジユールの体積が大きく
なり好ましくない。以上の条件に合致する多孔膜の製造
方法としては、公知の方法が適用でき、たとえば特開昭
52−70988号に示されるような溶融法がある。
In the case of hollow fiber membranes, the inner diameter is preferably 0.1 to 10 l. If the inner diameter is less than 0.1 mm, the hollow fiber membrane ends will become clogged with gum, which is undesirable, and if it exceeds 10 mm, the volume of the module using the membrane will become large, which is undesirable. As a method for manufacturing a porous membrane that meets the above conditions, known methods can be applied, such as a melting method as shown in Japanese Patent Application Laid-open No. 70988/1983.

その他、ミクロ相分離法、延伸法、放射線照射法などが
適用される。次に被処理液の多孔膜への供給方法条件に
ついて説明する。
Other methods that can be applied include a microphase separation method, a stretching method, and a radiation irradiation method. Next, the conditions for supplying the liquid to be treated to the porous membrane will be explained.

被処理液を多孔膜表面に接触させ、その面に対し平行に
線速が0.05m/SeC〜 3m/SeC)好ましく
は0.1m/SeC〜2m/Secで流すことが効率よ
い脱ガム処理のため必要であることがわかつた。
Efficient degumming treatment is achieved by bringing the liquid to be treated into contact with the surface of the porous membrane and flowing parallel to the surface at a linear velocity of 0.05 m/SeC to 3 m/Sec), preferably 0.1 m/SeC to 2 m/Sec. I found out that this is necessary.

線速が0.05m/Se味満では、透油量が小さくなる
ため好ましくなく、また3m/Secを越えると、エネ
ルギー消費量が大きくなる上、被処理液に高圧をかけて
流す必要が生じるため膜破損が生じたり、一方、高圧に
なることを避けようとして膜間隙を大きくすると、モジ
ユール体積が非常に大きくなるので好ましくない。被処
理液が多孔膜と接触する際の済過圧力は0.01〜5気
圧が好ましい。
Linear speeds of 0.05 m/Sec are unfavorable because the amount of oil permeation is small, and when linear speeds exceed 3 m/Sec, energy consumption increases and it becomes necessary to apply high pressure to the liquid to be treated. On the other hand, if the membrane gap is increased in an attempt to avoid membrane damage or high pressure, the module volume will become very large, which is undesirable. The overpressure when the liquid to be treated contacts the porous membrane is preferably 0.01 to 5 atm.

ろ過圧力が0.01気圧未満では、透油量が小さくなり
、5気圧を越えると、膜を破損することが多くなり、ま
たエネルギー消費量が大きくなるので好ましくない。被
処理液が多孔膜と接触する際の済過温度は、植物性油が
有機溶媒との混合物でない場合は10〜95℃が好まし
く、植物性油が有機溶媒との混合物の場合は、沸点が1
5℃以上の有機溶媒を用い、10℃以上有機溶媒の沸点
より5℃低い温度以下であることが好ましい。済過温度
が10℃未満では、被処理液の粘度が大きくなり透油量
が小さくなるため好ましくなく、95℃を越える場合も
しくは有機溶媒の沸点より5℃低い温度を越える場合は
、水もしくは有機溶媒の蒸発が著しくなり好ましくない
。膜により濃縮されたガム質および水を自む液(濃縮液
)を数度同一の膜に接触させる、いわゆる部分循環淵過
法が膜面積当りの透過量を大きくしうるので好ましい。
If the filtration pressure is less than 0.01 atm, the oil permeation rate will be small, and if it exceeds 5 atm, the membrane will often be damaged and energy consumption will increase, which is not preferable. The temperature at which the liquid to be treated contacts the porous membrane is preferably 10 to 95°C if the vegetable oil is not a mixture with an organic solvent, and if the vegetable oil is a mixture with an organic solvent, the boiling point is 1
It is preferable to use an organic solvent with a temperature of 5° C. or higher, and the temperature to be 10° C. or higher and 5° C. lower than the boiling point of the organic solvent. If the temperature is less than 10°C, the viscosity of the liquid to be treated will increase and the amount of oil permeable will be reduced, which is undesirable. If it exceeds 95°C or a temperature 5°C lower than the boiling point of the organic solvent, water or organic This is not preferable because the solvent evaporates significantly. The so-called partial circulation filtration method, in which a liquid containing gum and water concentrated by a membrane (concentrated liquid) is brought into contact with the same membrane several times, is preferred because it can increase the amount of permeation per membrane area.

さらに、濃縮倍率(被処理液中のガム質濃度に対する濃
縮液中のガム質濃度の比)が経時的に一定となることが
操作性もしくは膜の有効利用性から好ましく、このため
濃縮液を一部系外に排出すると共に、残つた濃縮液に透
過液量および排出濃縮液量にみあつた量の未濃縮液(被
処理液)を混入調整し、部分循環済過することが好まし
い。
Furthermore, it is preferable for the concentration ratio (the ratio of the gum concentration in the concentrated liquid to the gum concentration in the liquid to be treated) to be constant over time from the viewpoint of operability or effective use of the membrane. It is preferable that the remaining concentrated liquid is mixed with an amount of unconcentrated liquid (liquid to be treated) corresponding to the amount of permeated liquid and the amount of discharged concentrated liquid, and then partially circulated and filtered.

その際の濃縮倍率は1.5倍以上が好適である。1.5
倍未満では濃縮度が低いため処理効率が悪く好ましくな
い。
The concentration ratio at that time is preferably 1.5 times or more. 1.5
If it is less than twice as high, the degree of concentration is low, resulting in poor processing efficiency and is not preferred.

第1図に部分循環淵過法の一例の概念図を示した。Figure 1 shows a conceptual diagram of an example of the partial circulation permeation method.

こ\で、Aは被処理液、Bは濃縮液、Cは透過液、Dは
排出濃縮液、Eは膜、Fはモジユール、Pはポンプであ
る。透過液量の経時的な低下を回復させる手段として膜
に対する逆洗処理が知られているが、本発明の膜は、限
外済過膜と比べ孔径の非常に大きな膜であるため逆洗効
果が非常に顕著である。
Here, A is the liquid to be treated, B is the concentrated liquid, C is the permeate, D is the discharged concentrated liquid, E is the membrane, F is the module, and P is the pump. Backwashing of membranes is known as a means of recovering the amount of permeated liquid from decreasing over time, but the membrane of the present invention has a much larger pore size than an ultrafiltration membrane, so the backwashing effect is less effective. is very noticeable.

このときの逆洗液としては、膜を透過して得られた淵液
が好適であり、さらに植物性油が有機溶媒との混合物で
ある場合、その同一の有機溶媒の使用も好ましい。本発
明は、さらに濃縮液を数度異なる液と接触させる多段式
済過法にも適用できる。
As the backwash liquid at this time, the bottom liquid obtained by permeating through the membrane is suitable, and when the vegetable oil is a mixture with an organic solvent, it is also preferable to use the same organic solvent. The present invention can also be applied to a multi-stage filtering process in which the concentrated liquid is brought into contact with different liquids several times.

第2図に多段式済過法の一例の概念図を示した。こ\で
、Aは被処理液、Bl,B2は濃縮液、El,E2はモ
ジユール、P,,P2はポンプである。以下実施例によ
り本発明を具体的に説明する。
FIG. 2 shows a conceptual diagram of an example of the multi-stage process. Here, A is the liquid to be treated, Bl and B2 are concentrated liquids, El and E2 are modules, and P and P2 are pumps. The present invention will be specifically explained below using Examples.

実施例 1ポリプロピレン21.5重量%、ジブチルフ
タレート(DBP)55.5重量%、微粉シリカ23.
0重量%を混練機で混合した後、粉砕機で粉砕した。
Example 1 21.5% by weight of polypropylene, 55.5% by weight of dibutyl phthalate (DBP), 23% by weight of finely divided silica.
After mixing 0% by weight with a kneader, it was pulverized with a pulverizer.

この原料を二軸押出機および中空ノズルを使用して中空
糸伏に溶融押出ししたのち冷却して引取つた。この中空
糸を1,1,1−トリクロルエタンに浸漬してDBPを
抽出除去した後乾燥し、さらに40重量%苛性ソーダ水
溶液に浸漬して微粉シリカを溶解し、希薄苛性ソーダ水
溶液および水にて洗浄し、さらに乾燥して中空糸状多孔
膜を得た。この膜は、内径0.7j!l、膜厚300μ
、平均孔径0.15μ、気孔率69%、Rc=29.0
dyn/?であつた。この中空糸状膜を用いて、有効膜
面積0.11rfなるモジユールを作つた。
This raw material was melt-extruded into hollow fibers using a twin-screw extruder and a hollow nozzle, then cooled and collected. The hollow fibers were immersed in 1,1,1-trichloroethane to extract and remove DBP, dried, further immersed in a 40% by weight aqueous solution of caustic soda to dissolve fine silica, and washed with a dilute aqueous solution of caustic soda and water. , and further dried to obtain a hollow fiber porous membrane. This membrane has an inner diameter of 0.7j! l, film thickness 300μ
, average pore diameter 0.15μ, porosity 69%, Rc=29.0
dyn/? It was hot. Using this hollow fiber membrane, a module with an effective membrane area of 0.11 rf was fabricated.

一方、ナタネ油の圧さく油75容量%と抽出油25容量
%の混合油に、50℃にて油に対し1.7重量%の水を
少量づつ添加しながら撹拌熟成し、被処理液を準備した
On the other hand, a mixed oil of 75% by volume of pressed rapeseed oil and 25% by volume of extracted oil was stirred and aged at 50°C while adding 1.7% by weight of water to the oil little by little. Got ready.

この被処理液中のガム質は1.1重量%、水分は1.8
重量%であつた。なお、ガム質はアセトン不容量で、水
分はカールフイツシヤ一法にて、それぞれ定量しており
、以下の実施例においても同じ方法で定量している。先
記モジユールにこの被処理液を接触させ、線速0.6m
/Sec、平均F過圧力1.0気圧、ろ過温度45℃、
濃縮倍率5.0倍にて部分循環ろ過したところ、得られ
た透過油中のガム質は0.66重量%、水分は0.15
重量%であり、脱ガム効果および脱水効果とも良好であ
つた。このときの透過量は、定常済過伏態で4.11/
Hrであつた。実施例 2 ナタネ油の圧さく油75容量%と抽出油25容量%の混
合油に、40℃にて50重量%クエン酸水溶液を油に対
し0.6重量%を少量づつ添加しながら攪拌し、その後
、油に対し1.5重量%の水を少量づつ添加しながら攪
拌熟成して被処理液を作つた。
The gum content in this liquid to be treated is 1.1% by weight, and the water content is 1.8%.
It was in weight%. Note that the gum substance is acetone-incapable, and the water content is determined by the Karl Fischer method, and the same method is used in the following examples. This liquid to be treated is brought into contact with the module, and the linear speed is 0.6 m.
/Sec, average F overpressure 1.0 atm, filtration temperature 45°C,
Partial circulation filtration was performed at a concentration ratio of 5.0 times, and the resulting permeated oil had a gum content of 0.66% by weight and a water content of 0.15%.
% by weight, and both the degumming effect and the dehydration effect were good. The amount of permeation at this time is 4.11/
It was hot in Hr. Example 2 To a mixed oil of 75% by volume of rapeseed oil pressed oil and 25% by volume of extracted oil, a 50% by weight citric acid aqueous solution was added little by little at 0.6% by weight based on the oil at 40°C while stirring. Thereafter, 1.5% by weight of water was added to the oil little by little while stirring and aging to prepare a liquid to be treated.

この被処理液中のガム質は1.1重量%、水分は1.8
重量%であつた。この被処理液を実施例1と同一のモジ
ユールおよび同一の条件にて部分循環ろ過したところ、
得られた透過油中のガム質は0.18重量%、水分は0
.15重量%であり、酸添加処理により実施例1よりさ
らに良好な脱ガム効果が得られた。
The gum content in this liquid to be treated is 1.1% by weight, and the water content is 1.8%.
It was in weight%. When this treated liquid was subjected to partial circulation filtration using the same module and under the same conditions as in Example 1,
The gum content in the obtained permeated oil was 0.18% by weight, and the water content was 0.
.. The amount of degumming was 15% by weight, and an even better degumming effect than in Example 1 was obtained by the acid addition treatment.

このときの定常濾過伏態での透油量は4.01/Hrで
あつた。実施例3〜7、比較例2〜3 被処理液として、水の添加量を変化させた他は実施例1
と同じ条件で表1に示す7種のものを作つた。
At this time, the oil permeation amount in the steady state of filtration was 4.01/Hr. Examples 3 to 7, Comparative Examples 2 to 3 Example 1 except that the amount of water added as the liquid to be treated was changed.
The seven types shown in Table 1 were made under the same conditions as above.

これら被処理液のろ過温度を50℃にした他は、実施例
1と同一のモジユールおよび同一の条件にて部分循環濾
過した。
Partial circulation filtration was performed using the same module and under the same conditions as in Example 1, except that the filtration temperature of these treated liquids was 50°C.

各被処理液について、透過油中のガム質および定常濾過
伏態での透油量を表1に示した。
For each liquid to be treated, the gum quality in the permeated oil and the amount of oil permeated in the steady state of filtration are shown in Table 1.

この結果より被処理液中の水共存量として0.1〜10
重量%が、脱ガム効果および透油量の点で好ましいこと
がわかる。
From this result, the amount of coexisting water in the liquid to be treated is 0.1 to 10.
% by weight is preferable in terms of degumming effect and oil permeation amount.

実施例 8 高密度ポリエチレン23.0重量%、ジオクチルフタレ
ート(DOP)53.5重量%、微粉シリカ23.5重
量%を混練機で混合した後、粉砕機で粉砕した。
Example 8 23.0% by weight of high-density polyethylene, 53.5% by weight of dioctyl phthalate (DOP), and 23.5% by weight of finely divided silica were mixed in a kneader and then pulverized in a pulverizer.

この原料を二軸押出機およびTダイにて平膜伏に溶融押
出しした後、冷却して引取つた。この膜を1,1,1−
トリクロルエタンに浸漬してDOPを抽出除去した後、
乾燥し、さらに40重量%苛性ソーダ水溶液に浸漬して
微粉シリカを溶解し、希薄苛性ソーダ水溶液および水に
て洗浄し、さらに乾燥して平膜伏多孔膜を得た。この膜
は、膜厚300μ、平均孔径0.12μ、気孔率70%
、Rc= 31dyn/c!FLであつた。
This raw material was melt-extruded into a flat film using a twin-screw extruder and a T-die, then cooled and collected. This film is 1,1,1-
After extracting and removing DOP by immersing it in trichloroethane,
It was dried, further immersed in a 40% by weight aqueous solution of caustic soda to dissolve the finely divided silica, washed with a dilute aqueous solution of caustic soda and water, and further dried to obtain a flat membrane and porous membrane. This membrane has a thickness of 300μ, an average pore diameter of 0.12μ, and a porosity of 70%.
, Rc=31dyn/c! It was FL.

この平膜をバイオエンジニアリング社製フイルターホル
ダ一( UD− 6、有効膜面積0.08d)に取付け
、実施例2と同じ被処理液を用いて、線速0.4m/S
eC)平均濾過圧力1.0気圧、濾過温度35℃、濃縮
倍率5倍にて部分循環ろ過した。得られた透過油中のガ
ム質は0.12重量%、水分は0.10重量%であり、
脱ガム、脱水効果とも良好であつた。このときの定常ろ
過伏態での透油量は2.21/ h『であった。実施例
9〜13、比較例3〜5 膜として以下のものを用いて、植物性油の脱ガム実験を
行なつた。
This flat membrane was attached to a filter holder manufactured by Bio Engineering Co., Ltd. (UD-6, effective membrane area 0.08 d), and using the same liquid to be treated as in Example 2, the linear velocity was 0.4 m/s.
eC) Partial circulation filtration was performed at an average filtration pressure of 1.0 atm, a filtration temperature of 35° C., and a concentration ratio of 5 times. The obtained permeated oil had a gum content of 0.12% by weight, a water content of 0.10% by weight,
Both degumming and dehydration effects were good. At this time, the oil permeation rate in the steady state of filtration was 2.21/h. Examples 9 to 13, Comparative Examples 3 to 5 Degumming experiments for vegetable oil were conducted using the following membranes.

A膜: ポリフツ化ビニリデン20部をジメチルホルムアミドと
アセトンの混合溶媒(体積混合比20/80)80部に
溶解した原液を中空ノズルより押出し、水中で凝固させ
中空糸伏膜を得た。
Membrane A: A stock solution in which 20 parts of polyvinylidene fluoride was dissolved in 80 parts of a mixed solvent of dimethylformamide and acetone (volume mixing ratio 20/80) was extruded through a hollow nozzle and coagulated in water to obtain a hollow fiber membrane.

この膜は、内径0.7m11膜厚200μ、平均孔径0
.02μ、Rc=25dyn/CTflであつた。B膜
:ポリフツ化ビニリデン、ジメチルアセトアミド、ポリ
エチレングリコールをそれぞれ20重量%、60重量%
、20重量%混合溶解し、中空ノズルより押出し水中で
凝固させ中空糸状膜を得た。
This membrane has an inner diameter of 0.7 m, a thickness of 200 μ, and an average pore size of 0.
.. 02μ, Rc=25dyn/CTfl. B film: 20% by weight and 60% by weight of polyvinylidene fluoride, dimethylacetamide, and polyethylene glycol, respectively.
, 20% by weight were mixed and dissolved, extruded through a hollow nozzle, and coagulated in water to obtain a hollow fiber membrane.

1この膜は、内径0.7m7!L1膜厚190μ、平均
孔径0.05μ、Rc=25dyn/Cmであつた。
1 This membrane has an inner diameter of 0.7m7! The L1 film thickness was 190 μm, the average pore diameter was 0.05 μm, and Rc = 25 dyn/Cm.

C膜: 高密度ポリエチレン23.0重量%、DOP53.5重
量%、微粉シリカ23.5重量%を混練、粉砕後、二軸
押出機および中空ノズルにて溶融押出した後、脱DOP
、脱シリカを行なつて中空糸状膜を得た。
C membrane: 23.0% by weight of high-density polyethylene, 53.5% by weight of DOP, and 23.5% by weight of finely divided silica are kneaded and pulverized, then melted and extruded using a twin-screw extruder and a hollow nozzle, and then DOP is removed.
A hollow fiber membrane was obtained by removing silica.

この膜は、内径0.7mm、膜厚300μ、平均孔径0
.12μ、Rc=31dyn/Cmであつた。D膜: 実施例1と同じ中空糸状膜であり、内径0.7mm、膜
厚300μ、平均孔径0.15μ、Rc=29:Dyn
/Cllであつた。
This membrane has an inner diameter of 0.7mm, a membrane thickness of 300μ, and an average pore size of 0.
.. 12μ, Rc=31dyn/Cm. D membrane: The same hollow fiber membrane as in Example 1, inner diameter 0.7 mm, membrane thickness 300 μ, average pore diameter 0.15 μ, Rc = 29: Dyn
/Cll was hot.

E膜: エチレンーテトラフルオロエチレン共重合体26.7容
量%、DOP6O.O容量%、微粉シリカ13.3容量
%を混練、粉砕後、二軸押出機および泗中空ノズルにて
溶融押出した後、脱DOP、脱シリカを行なつて中空糸
状膜を得た。
E membrane: 26.7% by volume of ethylene-tetrafluoroethylene copolymer, DOP6O. After kneading and pulverizing O volume % and 13.3 volume % of fine powder silica, the mixture was melt-extruded using a twin-screw extruder and a hollow nozzle, followed by removal of DOP and removal of silica to obtain a hollow fiber membrane.

この膜は、内径0.7mm、膜厚300μ、平均孔径0
.5μ、「c=26.5dyn/Cmであつた。F膜: ポリフツ化ビニリデン26.7容量%、DOP6O.O
容量%、微粉シリカ13.3容量%を混練、粉砕後、二
軸押出機および中空ノズルにて溶融押出した後、脱DO
P、脱シリカを行なつて中空糸状膜を得た。
This membrane has an inner diameter of 0.7mm, a membrane thickness of 300μ, and an average pore size of 0.
.. 5μ, "c=26.5dyn/Cm. F membrane: Polyvinylidene fluoride 26.7% by volume, DOP6O.O
After kneading and pulverizing fine powder silica 13.3% by volume, it was melted and extruded using a twin-screw extruder and a hollow nozzle, and then DO was removed.
P, a hollow fiber membrane was obtained by removing silica.

この膜は、内径0.7翻、膜厚300μ、平均孔径3μ
、Rc=25dyn/Cmであつた。G膜:上記F膜を
長手方向に3倍延伸した。
This membrane has an inner diameter of 0.7 mm, a thickness of 300 μm, and an average pore diameter of 3 μm.
, Rc=25dyn/Cm. G film: The above F film was stretched 3 times in the longitudinal direction.

この膜は、内径0.51!l、膜厚155μ、平均孔径
5μ、Rc:25dyn/Cmであつた。H膜: エチレンービニルアルコール共重合体(エチレン含量3
3モル%、ケン化度99%以上)25,5容量%、グリ
セリン59.0容量%、微粉シリカ15,5容量%を混
練、粉砕後二軸押出機および中空ノズルにて溶融押出し
た後、温水にて脱グリセリンし、さらに40重量%苛性
ソーダ水溶液にて脱シリカして中空糸状膜を得た。
This membrane has an inner diameter of 0.51! 1, film thickness 155μ, average pore diameter 5μ, Rc: 25dyn/Cm. H membrane: Ethylene-vinyl alcohol copolymer (ethylene content 3
3 mol%, saponification degree of 99% or more) 25.5% by volume, 59.0% by volume of glycerin, and 15.5% by volume of finely divided silica were kneaded and crushed, then melted and extruded using a twin-screw extruder and a hollow nozzle. The mixture was deglycerinated with warm water and further desilicated with a 40% by weight aqueous solution of caustic soda to obtain a hollow fiber membrane.

この膜は、内径0.7m』膜厚300μ、平均孔径0.
15.μ、Rc=33dyn/Crllであつた。上記
各種中空糸状膜にて有効膜面積0.1イなるモジユール
を作り、水添加量を4.0重量%にした他は実施例2と
同じ被処理液を用いて、線速0.5m/Sec、平均ろ
過圧力1.0気圧、淵過温度40℃、濃縮倍率4倍にて
部分循環淵過した。
This membrane has an inner diameter of 0.7 m, a thickness of 300 μm, and an average pore diameter of 0.7 m.
15. μ, Rc=33 dyn/Crll. A module with an effective membrane area of 0.1 mm was prepared from the various hollow fiber membranes mentioned above, and the same liquid to be treated as in Example 2 was used, except that the amount of water added was 4.0% by weight, and the linear velocity was 0.5 m/min. Partial circulation filtration was carried out at Sec, average filtration pressure of 1.0 atm, filtration temperature of 40° C., and concentration ratio of 4 times.

得られた透過油中のガム質、水分および定常淵過伏態で
の透油量の結果を表2に示す。
Table 2 shows the results of the gum quality and water content in the obtained permeated oil, and the amount of oil permeated in the steady state of permeation.

なお、被処理液中のガム質は1.1重量%、水分は4.
3%であつた。
Note that the gum content in the liquid to be treated is 1.1% by weight, and the water content is 4.0% by weight.
It was 3%.

比較例 6〜7 膜として以下のものを用いて植物性油の脱ガム実験を行
なつた。
Comparative Examples 6-7 Degumming experiments on vegetable oil were conducted using the following membranes.

I 膜: ナイロン6,10を159/100ゴの濃度で硝酸に溶
解した後、流延し、オレイルサルフエートを添加した凝
固浴中に浸漬して凝固させ、水洗して平膜を得た。
I Membrane: After dissolving nylon 6,10 in nitric acid at a concentration of 159/100, it was cast, immersed in a coagulation bath containing oleyl sulfate to coagulate, and washed with water to obtain a flat membrane.

この膜は、膜厚200μ、平均孔径0.17μ、Rc=
37.0dyn/Cmであつた。膜:塩化ビニル15
重量%、ポリエチレングリコール10重量%、ジメチル
ホルムアミド75重量%を均一に混合して流延し、乾燥
して水中に浸漬して平膜を得た。
This membrane has a thickness of 200μ, an average pore diameter of 0.17μ, and Rc=
It was 37.0 dyn/Cm. Membrane: Vinyl chloride 15
% by weight, 10% by weight of polyethylene glycol, and 75% by weight of dimethylformamide were uniformly mixed and cast, dried, and immersed in water to obtain a flat membrane.

この膜は、膜厚200μ、平均孔径0.10μ、Rc=
39.0dyn/Cmであつた。上記2種の平膜をバ
イオエンジニアリング社製フイルターホルダ一( UD
− 6、有効膜面積0.08d)に取付け、実施例9〜
13と同じ被処理液を用いて、線速0.4m/SeC、
平均濾過圧力1.0気圧、ろ過温度40℃、澱縮倍率4
倍にて部分循環濾過した。得られた透過油中のガム質、
水分の結果を表3に示す。
This membrane has a thickness of 200μ, an average pore diameter of 0.10μ, and Rc=
It was 39.0 dyn/Cm. The above two types of flat membranes were placed in a filter holder made by Bio Engineering Co., Ltd. (UD
-6, installed on effective membrane area 0.08d), Example 9~
Using the same liquid to be treated as in 13, linear velocity 0.4 m/SeC,
Average filtration pressure 1.0 atm, filtration temperature 40℃, stagnant magnification 4
Partial circulation filtration was carried out at double magnification. Gum in the obtained permeate oil,
The moisture results are shown in Table 3.

実施例9〜13、比較例3〜7より、膜の特性として平
均孔径が0.05〜 3μ、臨界表面張力Rcが33d
yn/Cm未満が、透油量、脱ガム効果、脱水効果の点
で好ましいことがわかる。
From Examples 9 to 13 and Comparative Examples 3 to 7, the membrane characteristics include an average pore diameter of 0.05 to 3μ, and a critical surface tension Rc of 33d.
It can be seen that less than yn/Cm is preferable in terms of oil permeation amount, degumming effect, and dehydration effect.

実施例 14 内径を1.51にした他は実施例11と同じ膜を用いて
、有効膜面積0.1w1、有効長25cmなるモジユー
ルを作り、実施例2と同じ被処理液を用いて、平均濾過
圧力4.0気圧、ろ過温度45℃、濃縮倍率5.0倍に
て、線速を表4に示す如く種々変化させて部分循環ろ過
した。
Example 14 Using the same membrane as in Example 11 except that the inner diameter was set to 1.51, a module with an effective membrane area of 0.1 w1 and an effective length of 25 cm was made. Using the same liquid to be treated as in Example 2, the average Partial circulation filtration was performed at a filtration pressure of 4.0 atm, a filtration temperature of 45° C., and a concentration ratio of 5.0 times, while varying the linear velocity as shown in Table 4.

いずれの線速においても透過油中のガム質は0.18重
量%、水分は0.15重量%で変化はなかつたが、定常
ろ過伏態での透油量および膜のピンホール発生までの耐
久時間は線速の影響を受け、表4に示す結果が得られた
At any line speed, the gum content and water content in the permeated oil remained unchanged at 0.18% by weight and 0.15% by weight, however, the amount of oil permeated in the steady state of filtration and the occurrence of pinholes in the membrane remained unchanged. The durability time was affected by the linear speed, and the results shown in Table 4 were obtained.

すなわち、線速0.05m/Se味満では透油量が小さ
くて好ましくなく、また3.0m/SeCを越えると膜
の耐久性に劣り、さらにエネルギー消費量も大きくなる
ことから、線速は0.05771/Sec以上3.0m
/SeC以下が好ましいことがわかる。実施例 15 差圧2.5気圧で10秒間の済液逆洗を1回/15分の
ひん度で実施した他は、実施例2と同じ条件で植物性油
の精製を実施した。
In other words, a line speed of 0.05 m/SeC is undesirable because the amount of oil permeation is small, and if it exceeds 3.0 m/SeC, the durability of the membrane will be poor and energy consumption will also increase. 0.05771/Sec or more 3.0m
It can be seen that a value of /SeC or less is preferable. Example 15 Vegetable oil was purified under the same conditions as in Example 2, except that backwashing of the finished liquid for 10 seconds at a differential pressure of 2.5 atm was carried out at a frequency of once/15 minutes.

得られた透過油中のガム質は0.18重量%、水分は0
.15重量%と実施例1と差はなかつたが、定常淵過状
態での平均透油量は7.211/Hrと実施例1の結果
の1.8倍に向上し、顕著な逆洗効果が見られた。
The gum content in the obtained permeated oil was 0.18% by weight, and the water content was 0.
.. 15% by weight, which was no different from Example 1, but the average oil permeation amount under steady flow conditions was 7.211/Hr, which was 1.8 times the result of Example 1, and a remarkable backwashing effect. It was observed.

実施例 16 差圧2,0気圧で30秒間の涙液逆洗を1回/30分の
ひん度で実施した他は、実施例12と同じ条件で植物性
油の精製を実施した。
Example 16 Vegetable oil was purified under the same conditions as in Example 12, except that lachrymal backwashing was carried out once every 30 minutes at a differential pressure of 2.0 atm for 30 seconds.

得られた透過油中のガム質は0.15重量%、水分は0
.12重量%と実施例12と差はなかつたが、定常沢過
状態での平均透油量は8.02/Hrと実施例12の結
果の240倍に向上し、顕著な逆洗効果が見られた。
The gum content in the obtained permeated oil was 0.15% by weight, and the water content was 0.
.. 12% by weight, which was no different from Example 12, but the average oil permeation rate under steady flow conditions was 8.02/Hr, which was 240 times the result of Example 12, and a remarkable backwashing effect was observed. It was done.

実施例 17 ナタネ油の圧さく油40容量%と抽出油40容量%およ
びn−ヘキサン20容量%の混合物に、40℃にて油に
対し1.25重量%の水を少量づつ添加しながら攪拌、
熟成して被処理液を作つた。
Example 17 A mixture of 40% by volume of pressed oil of rapeseed oil, 40% by volume of extracted oil and 20% by volume of n-hexane was stirred at 40°C while adding 1.25% by weight of water to the oil little by little. ,
A liquid to be treated was prepared by aging.

この被処理液中のガム質、水分は、それぞれ油に対し1
.53重量?、1.30重量%であつた。この被処理液
を実施例1と同一のモジユールおよび同一の条件にて部
分循環淵過した。得られた透過油のガム質、水分はそれ
ぞれ油に対し0.58重量%、水分は0.12重量%で
あり、脱ガム効果および脱水効果は良好であつた。
The gum quality and water content in this liquid to be treated are each 1 to 1 oil.
.. 53 weight? , 1.30% by weight. This liquid to be treated was partially circulated and filtered using the same module and under the same conditions as in Example 1. The gum quality and water content of the obtained permeated oil were 0.58% by weight and 0.12% by weight, respectively, based on the oil, and the degumming effect and dehydration effect were good.

このときの透油量(ヘキサンとの混合油)は、定常済過
状態で5.511/Hrであつた。実施例 18 ナタネ油の圧さく油40容量%と抽出油40容量%およ
びn−ヘキサン20容量%の混合物に、40℃にて50
重量%のシユウ酸水溶液を油に対し1.0重量%を少量
づつ添加しながら撹拌し、その後、油に対し3.1重量
%の水を少量づつ添加しながら攪拌、熟成して被処理液
を作つた。
The oil permeation amount (mixed oil with hexane) at this time was 5.511/Hr in a steady state. Example 18 A mixture of 40% by volume of pressed oil of rapeseed oil, 40% by volume of extracted oil and 20% by volume of n-hexane was heated to 50% by volume at 40°C.
A 1.0% by weight aqueous solution of oxalic acid is added to the oil in small portions with stirring, and then 3.1% by weight of water is added to the oil in small portions while stirring and aging to obtain a liquid to be treated. I made it.

この被処理液中のガム質、水分は、それぞれ油に対し1
,32重量%、3.6重量%であつた。この被処理液を
実施例12と同一のモジユールおよび同一の条件で部分
循環ろ過した。
The gum quality and water content in this liquid to be treated are each 1 to 1 oil.
, 32% by weight, and 3.6% by weight. This treated liquid was subjected to partial circulation filtration using the same module and under the same conditions as in Example 12.

得られた透過油のガム質、水分は、それぞれ油に対し0
.10重量%、0.07重量%であり、脱ガム効果およ
び脱水効果は良好であつた。
The gum quality and water content of the obtained permeated oil are 0 relative to the oil.
.. 10% by weight and 0.07% by weight, and the degumming effect and dehydration effect were good.

このときの透油量(ヘキサンとの混合油)は、定常沢過
状態で5.8e/Hrであった。上記同一条件で、さら
に差圧2.5気圧で10秒間のn−ヘキサンによる逆洗
処理を1回/20分のひん度で実施したところ、定常淵
過状態での平均透油量(ヘキサンとの混合油)は7.5
e/Hrと大きくなり、顕著なn−ヘキサンによる逆洗
効果が見られた。
At this time, the amount of oil permeation (mixed oil with hexane) was 5.8 e/Hr in a steady flow state. Under the same conditions as above, backwashing with n-hexane for 10 seconds at a differential pressure of 2.5 atm was carried out at a frequency of once/20 minutes. (mixed oil) is 7.5
e/Hr, and a significant backwashing effect due to n-hexane was observed.

実施例 19 ヒマワリ油に40℃にて0.5重量%の水を少量づつ添
加しなBjら攪拌した後、5℃に急冷して、被処理液を
作つた。
Example 19 0.5% by weight of water was added little by little to sunflower oil at 40°C, stirred, and then rapidly cooled to 5°C to prepare a liquid to be treated.

この被処理液中のガム質は0.31重量%、水分は0.
5重量%であつた。この被処理液を実施例1と同じモジ
ユールにて、脱ガム脱水試験を行なつた。沢過条件は、
線速0.3m/Sec、平均ろ過圧1.0気圧、P過温
度25℃、濃縮倍率8.0倍での部分循環沢過である。
The gum content in this liquid to be treated is 0.31% by weight, and the water content is 0.31% by weight.
It was 5% by weight. This liquid to be treated was subjected to a degumming and dehydration test using the same module as in Example 1. The overflow condition is
Partial circulation filtration was performed at a linear velocity of 0.3 m/Sec, an average filtration pressure of 1.0 atm, a P supertemperature of 25° C., and a concentration ratio of 8.0 times.

得られた透過油中のガム質は0.01重量%以下であり
、水分は0.05重量%で、良好な脱水説ガム効果が見
られた。
The gum quality in the obtained permeated oil was 0.01% by weight or less, and the water content was 0.05% by weight, indicating a good dehydration-induced gum effect.

このときの透過量は、定常済過状態で1.71/Hrで
あつた。実施例 20 ダイズ油に40℃にて50重量%のシユウ酸水溶液を油
に対し0.5重量%少量づつ添加しながら撹拌し、その
後、油に対し3.5重量%の水を少量づつ添加しながら
撹拌、熟成して、被処理液を作つた。
The amount of permeation at this time was 1.71/Hr in a steady state. Example 20 A 50% by weight aqueous oxalic acid solution was added to soybean oil at 40°C in small amounts of 0.5% by weight based on the oil while stirring, and then 3.5% by weight water was added little by little based on the oil. A liquid to be treated was prepared by stirring and aging the mixture.

この被処理液中のガム質は1.42重量%、水分は3.
8重量%であつた。この被処理液を実施例1と同じモジ
ユール、同じ濾過条件にて脱ガム脱水試験を行なつた。
The gum content in this liquid to be treated is 1.42% by weight, and the water content is 3.5% by weight.
It was 8% by weight. This treated liquid was subjected to a degumming and dehydration test using the same module and the same filtration conditions as in Example 1.

得られた透過油中のガム質は0.04重量%、水分は0
.07重量%であり、良好な脱ガム脱水効果が得られて
おり、このときの透油量は、定常ろ過状態で3.81/
Hrであつた。実施例 21 実施例16で得られた透過油に活性白土2.0重量%を
加え、120℃で20分脱色を行つた後、蒸気量5.5
重量%、260℃で90分脱臭を実施して試利Pを得た
The gum content in the obtained permeated oil was 0.04% by weight, and the water content was 0.
.. 07% by weight, a good degumming and dehydration effect was obtained, and the oil permeation amount at this time was 3.81/% in a steady filtration state.
It was hot in Hr. Example 21 2.0% by weight of activated clay was added to the permeated oil obtained in Example 16, and after decolorizing at 120°C for 20 minutes, the amount of vapor was 5.5%.
Deodorization was carried out at 260° C. for 90 minutes to obtain a trial yield P.

比較のため、膜処理前の同一の原油を用いて、従来法で
ある遠心分離法による脱ガム工程、脱酸工程を経て、上
記と同様な条件で脱色・脱臭を実施して試料P’を得た
。試料P.P’の液質を表5に示す。なお、色度は口ピ
ポッド比色計により133.4属薦セルを使用して評価
した。
For comparison, sample P' was obtained by using the same crude oil before membrane treatment, degumming and deoxidizing by the conventional centrifugation method, and decolorizing and deodorizing under the same conditions as above. Obtained. Sample P. Table 5 shows the liquid quality of P'. The chromaticity was evaluated using a Pipod colorimeter using a 133.4 genus cell.

クロロフイルはCX−670にて評価した。曝光特性は
螢光灯6時間照射後の値である。本発明は、従来法の遠
心分離法と比較して、薬品類を消費する脱酸工程を省略
することができ、さらに工程が簡略化されたエネルギー
消費の小さいすぐれた精製方法であり、得られた精製油
の液質は、従来法である遠心分離法によるものと比較し
て遜色のないものである。
Chlorophyll was evaluated using CX-670. The light exposure characteristics are values after irradiation with a fluorescent lamp for 6 hours. Compared to the conventional centrifugation method, the present invention is an excellent purification method that can omit the deoxidizing step that consumes chemicals, has a simplified process, and consumes less energy. The liquid quality of the purified oil is comparable to that obtained by centrifugation, which is a conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における部分循環ろ過法の一例を示す説
明図、第2図は本発明における多段式ろ過法の一例を示
す説明図である。
FIG. 1 is an explanatory diagram showing an example of the partial circulation filtration method according to the present invention, and FIG. 2 is an explanatory diagram showing an example of the multistage filtration method according to the present invention.

Claims (1)

【特許請求の範囲】 1 ガム質を含む粗製植物性油を、水が0.1〜10重
量%共存下で攪拌しながら熟成した後、平均孔径が0.
05〜3μで膜表面の臨界表面張力が33dyn/cm
未満の多孔膜の表面に接触させ、その膜面に対し平行に
線速0.05m/sec〜3m/secで流し、ガム質
を水と共に濃縮分離し、実質的にガム質および水を含ま
ない植物性油を得ることを特徴とする植物性油の膜によ
る精製方法。 2 ガム質を含む粗製植物性油に、該ガム質含量の0.
01〜3.0倍の酸を添加し、かつ水が0.1〜10重
量%共存下で撹拌しながら熟成した後、平均孔径が0.
05〜3μで膜表面の臨界表面張力が33dyn/cm
未満の多孔膜の表面に接触させ、その膜面に対し平行に
線速0.05m/sec〜3m/secで流し、ガム質
を水と共に濃縮分離し、実質的にガム質および水を含ま
ない植物性油を得ることを特徴とする植物性油の膜によ
る精製方法。
[Scope of Claims] 1. Crude vegetable oil containing gum is aged with stirring in the coexistence of 0.1 to 10% by weight of water, and then the average pore size is 0.1 to 10% by weight.
The critical surface tension of the membrane surface is 33 dyn/cm at 05 to 3μ.
The membrane is brought into contact with the surface of a porous membrane of less than A method for refining vegetable oil using a membrane, characterized by obtaining vegetable oil. 2. Crude vegetable oil containing gum has a gummy content of 0.
After adding 0.01 to 3.0 times as much acid and aging with stirring in the coexistence of 0.1 to 10% of water, the average pore size was reduced to 0.00% by weight.
The critical surface tension of the membrane surface is 33 dyn/cm at 05 to 3μ.
The membrane is brought into contact with the surface of a porous membrane of less than A method for refining vegetable oil using a membrane, characterized by obtaining vegetable oil.
JP19066081A 1981-11-30 1981-11-30 Purification method using vegetable oil film Expired JPS5950718B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP19066081A JPS5950718B2 (en) 1981-11-30 1981-11-30 Purification method using vegetable oil film
CA000415848A CA1189087A (en) 1981-11-30 1982-11-18 Method of refining a vegetable oil
DE19823244007 DE3244007C2 (en) 1981-11-30 1982-11-27 Process for refining vegetable oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19066081A JPS5950718B2 (en) 1981-11-30 1981-11-30 Purification method using vegetable oil film

Publications (2)

Publication Number Publication Date
JPS5893798A JPS5893798A (en) 1983-06-03
JPS5950718B2 true JPS5950718B2 (en) 1984-12-10

Family

ID=16261778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19066081A Expired JPS5950718B2 (en) 1981-11-30 1981-11-30 Purification method using vegetable oil film

Country Status (3)

Country Link
JP (1) JPS5950718B2 (en)
CA (1) CA1189087A (en)
DE (1) DE3244007C2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022906A (en) * 1983-07-18 1985-02-05 Asahi Chem Ind Co Ltd Washing method of porous membrane
GB8423229D0 (en) * 1984-09-14 1984-10-17 Unilever Plc Treating triglyceride oil
GB8814732D0 (en) * 1988-06-21 1988-07-27 Unilever Plc Method of refining clyceride oils
US5286886A (en) * 1988-06-21 1994-02-15 Van Den Bergh Foods Co., Division Of Conopco, Inc. Method of refining glyceride oils
GB8914603D0 (en) * 1989-06-26 1989-08-16 Unilever Plc Method for refining virgin olive oil
JPH0774353B2 (en) * 1991-08-26 1995-08-09 日清製油株式会社 Cooking oil production method
FR2760756B1 (en) * 1997-03-17 2003-09-19 Richard De Nyons PROCESS FOR PRODUCING HYPOALLERGENIC VEGETABLE OILS
JP2000219886A (en) * 1999-02-01 2000-08-08 Masatoshi Matsumura Method and apparatus for conversion of vegetable oil (virgin) or waste vegetable oil to fuel for diesel engine
WO2001089674A2 (en) * 2000-05-24 2001-11-29 The Texas A & M University System Degumming of edible oils by ultrafiltration
DE50002182D1 (en) * 2000-07-22 2003-06-18 Hubert Tippkoetter Process for treating used vegetable oils
EP1416037B1 (en) * 2002-10-31 2007-02-21 Carapelli Firenze S.p.A Olive oil physical treatment procedure
DE102006023990B4 (en) * 2006-05-22 2008-07-03 Chmiel, Horst, Prof. Dr.-Ing. Removal of hydrophilic substances from oils by means of membranes
DE102006060107A1 (en) * 2006-12-08 2008-06-12 Westfalia Separator Ag Method for separation of solids from fluid product, involves passing of solids in solid bowl centrifuge and its purification by membrane filtration device
DE102007016157A1 (en) 2007-04-02 2008-10-09 Bayer Technology Services Gmbh Process for the separation of product mixtures from transesterification reactions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1509543A (en) * 1974-05-16 1978-05-04 Unilever Ltd Purification process
GB1564402A (en) * 1975-11-13 1980-04-10 Unilever Ltd Purification process
GB2014184B (en) * 1978-01-10 1982-05-19 Asahi Chemical Ind Method of separating oil from oil-containing liquid

Also Published As

Publication number Publication date
DE3244007C2 (en) 1986-06-12
JPS5893798A (en) 1983-06-03
DE3244007A1 (en) 1983-06-01
CA1189087A (en) 1985-06-18

Similar Documents

Publication Publication Date Title
EP0037836B1 (en) Polyvinylidene fluoride resin hollow filament microfilter and process for producing same
US4545940A (en) Method of dewaxing a vegetable oil
JP5305296B2 (en) Polyamide hollow fiber membrane and method for producing the same
CA2458378C (en) Porous membrane and method of manufacturing the same
JP6110000B2 (en) Microporous porous polyamide hollow fiber membrane and method for producing the same
JPS5950718B2 (en) Purification method using vegetable oil film
KR20090037963A (en) Porous membrane of vinylidene fluoride resin and process for producing the same
JP2004525755A (en) Asymmetric hollow fiber membrane
JP2007289886A (en) Polymeric porous hollow fiber membrane
KR102231827B1 (en) Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor
JPWO2010035754A1 (en) Porous membrane, method for producing porous membrane, method for producing clarified liquid, and porous membrane module
JP5878288B2 (en) Highly permeable polyamide hollow fiber membrane and method for producing the same
JPH04132796A (en) Production of vegetable oil
JP6827030B2 (en) Porous Membrane, Porous Membrane Module, Porous Membrane Manufacturing Method, Clarified Liquid Manufacturing Method and Beer Manufacturing Method
JP2008284471A (en) Polymeric porous hollow fiber membrane
RU2440181C2 (en) Porous membrane from vinylidene fluoride resin and method of its production
JP3805634B2 (en) Porous hollow fiber membrane and method for producing the same
JPH11309355A (en) Polysulfone hollow fiber type blood purifying membrane and its production
WO2019049858A1 (en) Filtration method using porous membrane
JPH0679658B2 (en) Method for producing polyethylene microporous membrane
JPS6227004A (en) Microporous membrane for filtration
JP5894687B2 (en) Highly permeable polyamide hollow fiber membrane and method for producing the same
JP2004121922A (en) Hollow fiber membrane
JP2000334277A (en) Polysulfone-based hollow fiber membrane, its production of and fluid treating device using the same
DE2718155C2 (en)