JPS594951B2 - Overheat protection device for regenerative braking resistor in chopper control system - Google Patents

Overheat protection device for regenerative braking resistor in chopper control system

Info

Publication number
JPS594951B2
JPS594951B2 JP16134680A JP16134680A JPS594951B2 JP S594951 B2 JPS594951 B2 JP S594951B2 JP 16134680 A JP16134680 A JP 16134680A JP 16134680 A JP16134680 A JP 16134680A JP S594951 B2 JPS594951 B2 JP S594951B2
Authority
JP
Japan
Prior art keywords
resistor
regenerative braking
circuit
capacitor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16134680A
Other languages
Japanese (ja)
Other versions
JPS5785585A (en
Inventor
啓二 坂本
敏夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUANATSUKU KK
Original Assignee
FUANATSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUANATSUKU KK filed Critical FUANATSUKU KK
Priority to JP16134680A priority Critical patent/JPS594951B2/en
Publication of JPS5785585A publication Critical patent/JPS5785585A/en
Publication of JPS594951B2 publication Critical patent/JPS594951B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/12Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by short-circuit or resistive braking

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stopping Of Electric Motors (AREA)

Description

【発明の詳細な説明】 本発明は、チョッパ制御方式における回生制動用抵抗の
過熱保護装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an overheat protection device for a regenerative braking resistor in a chopper control system.

チョッパ制御方式は、一定の電圧を制(財)された間隔
をもつて断続的に供給し、供給される電流の平均値を制
仰する方式であろが、高速大電流容量のスイッチング装
置の開発とともに、極めて高頻5 度のチョッパ制(財
)が可能となわ、その結果、広い範囲に]わ正確な電流
制(財)が可能となわ、特に間欠運転に対する弱点がな
いためもあシ、サーボコントロール駆動電動機用にしば
しば使用されている。
The chopper control method is a method in which a constant voltage is intermittently supplied at controlled intervals and the average value of the supplied current is controlled. At the same time, extremely high-frequency chopper control is possible, and as a result, accurate current control over a wide range is possible, especially since there is no weakness to intermittent operation. Often used for servo-controlled drive motors.

10このチョッパ制御方式が電動機の制動用にも使用可
能なことは当然であわ、回生制動、発電制動逆相(又は
逆転)制動等の各種制動方式に現に使用されていろが、
特に、電動機及び、駆動系の有する運動エネルギーを抵
抗中で熱に変換する回生制御5 動方式にあつては、抵
抗器の熱容量を如何にするか、又、抵抗器の過熱保護を
如何にするかについて困難な問題がある。
10 It goes without saying that this chopper control method can also be used for braking electric motors, and it is currently used in various braking methods such as regenerative braking, dynamic braking, and reverse phase (or reverse) braking.
In particular, in the case of a regenerative control system that converts the kinetic energy of the motor and drive system into heat in a resistor, the heat capacity of the resistor should be determined, and the overheating protection of the resistor should be determined. There are difficult questions about this.

チョッパ制(2)方式を使用しない場合における通常の
用途にあつては、回生制動が使用される、頻度は低く、
又、クレーン用等そ20の頻度の高い場合でもデューテ
ィサイクルはおおよそ想定されており、単位時間当り抵
抗に流入する電流の累積量はかなわな精度をもつて推定
可能であるに反し、本来的に間欠的運転がなされるサー
ボコントロール駆動電動機の制動にチョッパ制25(財
)方式が使用される場合は、単位時間当サ抵抗に与えら
れる電流の累積量(正確には電流の二乗の時間に対する
積分値)の想定が困難だからである。したがつて、従来
技術にあつては信頼しうる過熱保護装置が得難かつたこ
とが現実である。30本発明の目的はチョッパ制(財)
される電動機の回生制動用抵抗の信頼しうる過熱保護装
置を提供することにあり、イ回生制動用抵抗に電流を流
すパワートランジスタ等よりなるスイッチング装置に対
しインバータとして動作するインバータ回路を35設け
、口このインバータ回路の一方の電極は電圧降下用抵抗
を介して給電装置(電源)に接続し、ハ電圧降下用抵抗
とインバータ回路との接続点は更に二つに分岐し、二=
方の分岐には、限流抵抗と逆流防止用ダイオードとより
なる並列回路を接続し、ホ他方の分岐には、比較器を接
続し、へ上記の並列回路にはコンデンサを接続し、卜上
記の比較器には基準電圧を印加し、チ上記のスイツチン
グ装置の他方の電極と上記インバータ回路の他方の電極
と前記コンデンサの他方の電極とを互に接続して同電位
とすることを要旨とする。
In normal applications when the chopper system (2) method is not used, regenerative braking is used, but the frequency is low.
In addition, even in the case of high frequency applications such as those for cranes20, the duty cycle is approximately assumed, and the cumulative amount of current flowing into the resistor per unit time can be estimated with reasonable accuracy. When the chopper system is used to brake a servo-controlled drive motor that operates intermittently, the cumulative amount of current applied to the resistor per unit time (more precisely, the integral of the square of the current over time) This is because it is difficult to estimate the Therefore, the reality is that it has been difficult to obtain reliable overheat protection devices in the prior art. 30 The purpose of the present invention is the chopper system (foundation)
An object of the present invention is to provide a reliable overheat protection device for a regenerative braking resistor of an electric motor, which is provided with 35 inverter circuits that operate as an inverter for a switching device such as a power transistor that causes current to flow through the regenerative braking resistor. One electrode of this inverter circuit is connected to the power supply device (power supply) via a voltage drop resistor, and the connection point between the voltage drop resistor and the inverter circuit is further branched into two.
A parallel circuit consisting of a current limiting resistor and a reverse current prevention diode is connected to one branch, a comparator is connected to the other branch, a capacitor is connected to the above parallel circuit, and a capacitor is connected to the above parallel circuit. A reference voltage is applied to the comparator, and the other electrode of the switching device, the other electrode of the inverter circuit, and the other electrode of the capacitor are connected to each other to have the same potential. do.

この構成における特有の作用効果は、イ回生制動用抵抗
に電流が流れている期間のみ、コンデンサが充電され、
口回生制動用抵抗に電流が流れていない期間はこのコン
デンサに蓄えられた電気が限流抵抗とインバータ回路と
を通じて放電し、ハチヨツパ制御の周期をもつて上記の
充放電を繰V)?させ、電圧降下用抵抗と限流抵抗の値
を適当に選択して、コンデンサの電圧が回生制動用抵抗
の温度を代表しうるようになし、二このコンデンサの電
圧をモニターすることにより回生制動用抵抗の温度をモ
ニターし、この抵抗の過熱保護をなすものである。以下
、図面を参照しつつ、本発明の一実施例について説明し
、本発明の構成と特有の効果とを更に明らかにする。第
1図は本発明の一実施例の接続図である。
The unique effect of this configuration is that the capacitor is charged only during the period when current is flowing through the regenerative braking resistor.
During the period when no current is flowing through the regenerative braking resistor, the electricity stored in this capacitor is discharged through the current limiting resistor and the inverter circuit, and the above charging and discharging is repeated with a period of Hachiyotsupa control. The values of the voltage drop resistor and current limiting resistor are selected appropriately so that the voltage of the capacitor can represent the temperature of the regenerative braking resistor, and the voltage of the capacitor is monitored. It monitors the temperature of the resistor and protects it from overheating. Hereinafter, one embodiment of the present invention will be described with reference to the drawings to further clarify the configuration and unique effects of the present invention. FIG. 1 is a connection diagram of an embodiment of the present invention.

図に訃いて、R1は回生制動用抵抗であり,.T,は回
生制動回路閉成用スイツチング装置であり通常パワート
ランジスタが使用される。D1はダイオードであり、そ
のアノードは抵抗R2を介して電源Vccに接続されて
卦り、そのカソードは回生制動用抵抗R1とパワートラ
ンジスタよりなるスイツチング装置T1のコレクタに接
続される。ダイオードD1のアノードは、又、ダイオー
ドD2のアノードにも接続されて楓 ダイオードD2の
カソードは抵抗R3を介して接続されるとともに他のト
ランジスタT2のベースに接続される。以上説明せる抵
抗R2,R3とダイオードDl,D2とトランジスタT
2とで、一つのインバータ回路1NV(一点鎖線で囲ま
れた回路)を構成している。トランジスタT2のコレク
タには抵抗R4を介して電源Vccが接続され、トラン
ジスタT2のエミツタは接地されている。抵抗R4とト
ランジスタT2のコレクタとの接続点は二つに分岐され
、その一つにはダイオードD3のアノードと抵抗R5の
一端とが並列に接続され、ダイオードD3のカソードと
抵抗R5の他端とはコンデンサC1に接続され、コンデ
ンサC1の他の電極は接地される。上記に分岐された他
の一つは比較器COMPの一つの端子に入力?れ、比較
器COMPの他の端子には基準電圧Rが印加される。以
上の回路構成を有する回路の動作を、第2図に示すチヨ
ツパ制倒のタイムチヤートを参照しつつ、説明する。
In the figure, R1 is a regenerative braking resistor. T, is a switching device for closing the regenerative braking circuit, and usually a power transistor is used. D1 is a diode whose anode is connected to the power supply Vcc via a resistor R2, and whose cathode is connected to the collector of a switching device T1 consisting of a regenerative braking resistor R1 and a power transistor. The anode of diode D1 is also connected to the anode of diode D2, and the cathode of diode D2 is connected via resistor R3 and to the base of another transistor T2. Resistors R2 and R3, diodes Dl and D2, and transistor T that can be explained above
2 constitute one inverter circuit 1NV (circuit surrounded by a dashed line). The collector of the transistor T2 is connected to the power supply Vcc via a resistor R4, and the emitter of the transistor T2 is grounded. The connection point between the resistor R4 and the collector of the transistor T2 is branched into two, one of which has the anode of the diode D3 and one end of the resistor R5 connected in parallel, and the cathode of the diode D3 and the other end of the resistor R5. is connected to capacitor C1, and the other electrode of capacitor C1 is grounded. Is the other branched above input to one terminal of the comparator COMP? The reference voltage R is applied to the other terminal of the comparator COMP. The operation of the circuit having the above circuit configuration will be explained with reference to the time chart for suppressing the chopper shown in FIG.

第2図にち〜いて、Tl,T2Vは、夫々、トランジス
タTl,T2の導通状態、不導通状態を示し、C1はコ
ンデンサC1の電圧を示す。まず、パワートランジスタ
T1が閉路して回生制動回路が閉成されると、回生制動
用抵抗R1には制動電流1が流入し、12R,をもつて
表示される熱が発生し抵抗R,の温度は上昇する。それ
とともに、電源、Vccから抵抗R2とダイオードD,
とパワートランジスタT1とを通じて電流が流れる。パ
ワートランジスタT1が開路している状態にあつては、
電源Vccからは抵抗R2とダイオードD2と抵抗R3
とを通じて僅少な電流が流れて卦楓 トランジスタT2
のベースは相当の正電位にあるため、トランジスタT2
は導通状態にある。しかし、パワートランジスタT,が
閉路すると抵抗R3への電流が遮断されトランジスタT
2のベース電位は零電位に降下しトランジスタT2は不
導通状態に移行する。トランジスタT2が不導通状態に
移行すると、電源Vcc一抵抗R4−ダイオードD3−
コンデンサC1一接地の回路が閉成▲れ、コンデンサC
1の電圧は上昇する。この期間は第2図の時間軸にイで
示す期間に対応する。通常のチヨツパ制倒方式に卦いて
はこの期間は501nsec程度である。ここで、抵抗
R,の値を適当に選択することによジ、この期間にち一
けるコンデンサC1の電圧上昇率を回生制動用抵抗R1
の温度上昇率に比較的近似させることができる。この第
2図の時間軸にイで示す期間が終了すると、チヨツパ制
(財)シーケンスにしたがつてパワートランジスタT1
は開路する。
In FIG. 2, Tl and T2V indicate the conductive state and non-conductive state of the transistors Tl and T2, respectively, and C1 indicates the voltage of the capacitor C1. First, when the power transistor T1 is closed and the regenerative braking circuit is closed, a braking current 1 flows into the regenerative braking resistor R1, and heat expressed as 12R, is generated, and the temperature of the resistor R, will rise. At the same time, from the power supply, Vcc, resistor R2 and diode D,
A current flows through the power transistor T1 and the power transistor T1. When the power transistor T1 is open,
From the power supply Vcc, resistor R2, diode D2, and resistor R3
A small amount of current flows through the transistor T2.
Since the base of T2 is at a fairly positive potential, the transistor T2
is in a conducting state. However, when the power transistor T is closed, the current to the resistor R3 is cut off and the transistor T
The base potential of transistor T2 drops to zero potential and transistor T2 transitions to a non-conducting state. When transistor T2 transitions to a non-conducting state, power supply Vcc - resistor R4 - diode D3 -
The circuit between capacitor C1 and ground is closed, and capacitor C
1 voltage increases. This period corresponds to the period indicated by A on the time axis in FIG. In the normal chiyotupa suppression method, this period is about 501 nsec. Here, by appropriately selecting the value of the resistor R, the rate of voltage increase of the capacitor C1 after this period can be controlled by the regenerative braking resistor R1.
can be relatively approximated to the temperature rise rate of When the period indicated by A on the time axis of FIG. 2 ends, the power transistor T1
is open.

ここで回生制動回路は開路され、回生制動用抵抗R1へ
の制動電流Iの流人は中止し、抵抗R1は冷却される。
それとともに、電源Vcc一抵抗R2−ダイオードD1
−パワートランジスタT1一接地の回路は開路され、電
源Vcc一抵抗R2−ダイオードD2一抵抗R3一接地
の回路が閉成され、トランジスタT2のベース電位は上
りこれを導通化する。以上説明せるとシシ、図に卦いで
1NVで示す一点鎖線で囲まれた回路は一つのインバー
タ回路を構成し、パワートランジスタT1の導通・不導
通状態とトランジスタT2の導通・不導通状態とは互に
逆になる。ここで、コンデンサC1 一抵抗R55一ト
ランジスタT2一接地の回路が閉成され、コンデンサC
,に蓄えられた電気は抵抗R5とトランジスタT2とを
通して放電され、コンデンサC1の電圧は次第に低下す
る。この期間は第2図の時間軸に口で.示す期間に対応
する。通常のチヨ ICツパ制(財)方式にあつてはこ
の期間は450msec程度である。ここで、抵抗R5
の値を適当に選択することにより、この期間に}けるコ
ンデンサqの電…降下率を回生制動用抵抗R1の冷却率
に近似させることができる。
1.ここで注意を要することは期間口の終期にむける
コンデンサC,の電圧が期間イの始期に}けるそれと必
らずしも一致しないことである。期間イと期間口の割合
によ漫次第に上昇する場合とほぼ平衡していて上昇しな
い場合とがあることである。2・この期間口が終了する
と、チヨツパ制(財)のシーケンスにしたがつて、パワ
ートランジスタT,は再び閉路し、期間イの状態にもど
り、回生制動用抵抗R,が再加熱されるとともにコンデ
ンサC,の電田も再び上昇する。
Here, the regenerative braking circuit is opened, the flow of braking current I to the regenerative braking resistor R1 is stopped, and the resistor R1 is cooled.
At the same time, power supply Vcc - resistor R2 - diode D1
- The circuit of power transistor T1 - ground is opened, the circuit of power supply Vcc - resistor R2 - diode D2 - resistor R3 - ground is closed, and the base potential of transistor T2 rises to make it conductive. To explain the above, in the figure, the circuit surrounded by the dashed line indicated by 1NV constitutes one inverter circuit, and the conducting/non-conducting state of the power transistor T1 and the conducting/non-conducting state of the transistor T2 are mutually exclusive. The opposite is true. Here, a circuit of capacitor C1, resistor R55, transistor T2, and ground is closed, and capacitor C
, is discharged through resistor R5 and transistor T2, and the voltage of capacitor C1 gradually decreases. This period is shown on the time axis in Figure 2. corresponds to the indicated period. In the normal Chiyo IC Tsupa system, this period is about 450 msec. Here, resistance R5
By appropriately selecting the value of , it is possible to approximate the rate of charge drop of the capacitor q during this period to the cooling rate of the regenerative braking resistor R1.
1. What needs to be noted here is that the voltage of capacitor C toward the end of period A does not necessarily match that at the beginning of period A. Depending on the ratio of period A to period E, there are cases in which it increases gradually, and cases in which it is almost balanced and does not increase. 2. When this period ends, the power transistor T, closes again according to the sequence of the chopping system, returning to the state of period A, the regenerative braking resistor R, is reheated, and the capacitor C, electric field also rises again.

この期間は第2図の時間2軸ハで示す期間に対応する。
この期間ハが終了すると、チヨツパ制(財)のシーケン
スにしたがつて、パワートランジスタT1は再び開路し
、期間口の状態にもどシ、回生匍]動抵抗R1が再冷却
?れるとともにコンデンサC,の5電圧も再び降下する
This period corresponds to the period indicated by C on the time axis of FIG. 2.
When this period ends, the power transistor T1 is opened again according to the flowchart sequence, returning to the state at the beginning of the period, and the regenerative dynamic resistor R1 is re-cooled. At the same time, the voltage across capacitor C also drops again.

この期間は第2図の時間軸二に.示す期間に対応する。
以下、同様にして、期間ホ、へ・・・・・・と進行する
This period is shown on time axis 2 in Figure 2. corresponds to the indicated period.
Thereafter, in the same manner, the period E, H, etc. progresses.

ところで、回生制動用抵抗R,に与えられる単位時間当
ジ熱量は12R1によつて表わ▲れる。しこかも、回生
制動の制動電流1は回転体が運動エネルギーを失なうに
つれて減少する。すなわち、チヨツピングサイクルがイ
、口、・・・・・・と進行するにつれて、各チヨツピン
グサイクル当りの回生制動用抵抗R1の温度上昇率は低
下する。一方、第2図にClVで示すコンデンサC1の
電王上昇率も、コンデンサC1の電圧の絶対値が上昇す
るにつれて流入する電流値が減少するから、次第に低下
し、これら二つの上昇率は定性的には近似させうると考
えられる。更に、本発明が実施される場合は、電動機の
慣性重量をはじめ、すべての定数が固定される関係上、
上記してあると}り、電圧降下用抵抗R4と限流抵抗R
5とを適当に選択することによジ、第2図にClVで示
すコンデンサC1の電圧の変化を回生制動用抵抗R1の
温度に近似させることができる。したがつて、コンデン
サC1の電王を比較器COMPに印加し、同時に基準電
田を与えてふ一けば、比較器COMPの出力として、回
生制動用抵抗P1の温度過上昇を検出することができる
By the way, the amount of heat per unit time given to the regenerative braking resistor R is expressed by 12R1. Moreover, the braking current 1 of regenerative braking decreases as the rotating body loses kinetic energy. That is, as the stepping cycle progresses, the rate of temperature rise of the regenerative braking resistor R1 per each stepping cycle decreases. On the other hand, the rate of increase in the voltage of the capacitor C1 shown in ClV in Fig. 2 also gradually decreases as the absolute value of the voltage of the capacitor C1 increases, the value of the current flowing into the capacitor C1 decreases, and these two rates of increase are qualitatively It is thought that it can be approximated. Furthermore, when the present invention is implemented, all constants including the inertia weight of the electric motor are fixed;
As stated above, voltage drop resistor R4 and current limiting resistor R
By appropriately selecting 5 and 5, it is possible to approximate the change in the voltage of the capacitor C1, indicated by ClV in FIG. 2, to the temperature of the regenerative braking resistor R1. Therefore, by applying the voltage of the capacitor C1 to the comparator COMP and simultaneously applying the reference voltage, it is possible to detect the excessive temperature rise of the regenerative braking resistor P1 as the output of the comparator COMP. .

一方、回生制動用抵抗R1の温度上舛やコンデンサC1
の電圧上昇が、チヨツピングサイクルすなわち期間イと
期間口との割合に依存することは自明である。よつて、
回生制動用抵抗R1の温度過上昇を検出した場合は、チ
ヨツパサイクルを変更して、期間イと期間口の割合を小
さくすれば、回生制動用抵抗R1を過熱から保護するこ
とができる。以上説明せるとふ一楓本発明によれば、チ
ヨツパ制(財)される電動機の回生制動用抵抗の信頼し
うる過熱保護装置を提供することができる。
On the other hand, the temperature rise of the regenerative braking resistor R1 and the capacitor C1
It is obvious that the voltage rise depends on the chopping cycle, that is, the ratio of period A to period In. Then,
When an excessive rise in temperature of the regenerative braking resistor R1 is detected, the chopper cycle is changed to reduce the ratio of the period A and the period ENT to protect the regenerative braking resistor R1 from overheating. In summary, according to the present invention, it is possible to provide a reliable overheat protection device for a regenerative braking resistor of an electric motor that is subjected to chipping.

次に、本発明に係る、チヨツパ制仰方式にち・ける回生
制動用抵抗の過熱保護装置の適用される主回路の数例を
示す。
Next, several examples of main circuits to which the overheat protection device for a regenerative braking resistor based on the chopper control system according to the present invention is applied will be shown.

第3図は、4個のトランジスタQと4個のフライホイー
ルダイオードDとをもつてワード・レオナード回路を構
成して直流電動機Mを可逆的にチヨツパ制仰する回路に
本発明を適用した回路例である。
FIG. 3 shows an example of a circuit in which the present invention is applied to a circuit that configures a Ward-Leonard circuit with four transistors Q and four flywheel diodes D to perform reversible chopper control on a DC motor M. It is.

な}、C2は回生制動電流回路用コンデンサである。第
4図は6個のトランジスタQと6個のフライホイールダ
イオードDとよりなるインバータを電源とした交流電動
機ACMをチヨツパ制倒する回路に本発明を適用しiこ
回路例である。
C2 is a capacitor for the regenerative braking current circuit. FIG. 4 shows an example of a circuit in which the present invention is applied to a circuit for overpowering an AC motor ACM whose power source is an inverter comprising six transistors Q and six flywheel diodes D.

なあ一、C2は回生制動電流回路用コンデンサである。
第3図、第4図とも主回路の動作は公知であり、又、本
発明の構成には直接影響をもたないから、主回路の動作
の説明は省略する。
By the way, C2 is a capacitor for the regenerative braking current circuit.
The operation of the main circuit in both FIGS. 3 and 4 is well known and has no direct influence on the structure of the present invention, so a description of the operation of the main circuit will be omitted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の接続図であり、第2図はチ
ヨツパ制仰のタイムチヤートである。
FIG. 1 is a connection diagram of one embodiment of the present invention, and FIG. 2 is a time chart of the power control.

Claims (1)

【特許請求の範囲】 1 チョッパ制御される電動機の回生制動回路に直列に
接続される回生制動用抵抗と、該回生制動回路を閉成す
るスイッチング装置と、該スイッチング装置に対するイ
ンパータ回路と、該インバータ回路の一方の電極に電圧
降下用抵抗を介して接続される給電装置と、該電圧降下
用抵抗の他方の電極に前記インパータ回路と並列に接続
される限流抵抗と逆流防止用ダイオードとよりなる並列
回路と、該並列回路に直列に接続されるコンデンサと、
前記電圧降下用抵抗の他方の電極から更に分岐して接続
される比較器と、該比較器に基準電圧を供給する基準電
源とよりなり、前記スイッチング装置の他方の電極と前
記インバータ回路の他方の電極と前記コンデンサの他方
の電極とは互に接続されている。 チョッパ制御方式における回生制動用抵抗の過熱保護装
置。
[Claims] 1. A regenerative braking resistor connected in series to a regenerative braking circuit of a chopper-controlled electric motor, a switching device that closes the regenerative braking circuit, an inverter circuit for the switching device, and an inverter. A power supply device connected to one electrode of the circuit via a voltage drop resistor, and a current limiting resistor and a reverse current prevention diode connected to the other electrode of the voltage drop resistor in parallel with the inverter circuit. a parallel circuit, a capacitor connected in series to the parallel circuit,
It consists of a comparator further branched and connected from the other electrode of the voltage drop resistor, and a reference power source that supplies a reference voltage to the comparator, and the other electrode of the switching device and the other electrode of the inverter circuit. The electrode and the other electrode of the capacitor are connected to each other. Overheat protection device for regenerative braking resistor in chopper control system.
JP16134680A 1980-11-18 1980-11-18 Overheat protection device for regenerative braking resistor in chopper control system Expired JPS594951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16134680A JPS594951B2 (en) 1980-11-18 1980-11-18 Overheat protection device for regenerative braking resistor in chopper control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16134680A JPS594951B2 (en) 1980-11-18 1980-11-18 Overheat protection device for regenerative braking resistor in chopper control system

Publications (2)

Publication Number Publication Date
JPS5785585A JPS5785585A (en) 1982-05-28
JPS594951B2 true JPS594951B2 (en) 1984-02-01

Family

ID=15733326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16134680A Expired JPS594951B2 (en) 1980-11-18 1980-11-18 Overheat protection device for regenerative braking resistor in chopper control system

Country Status (1)

Country Link
JP (1) JPS594951B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144546U (en) * 1987-03-13 1988-09-22

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013485A (en) * 1983-07-01 1985-01-23 Matsushita Electric Ind Co Ltd Inverter device for driving induction motor
JP2588385B2 (en) * 1985-03-18 1997-03-05 三菱電機株式会社 Regenerative energy-discharge circuit of motor
DE102021129643A1 (en) 2021-11-15 2023-05-17 Audi Aktiengesellschaft Circuit arrangement with a heat protection circuit for an active discharge circuit, high-voltage component and method for controlling an active discharge circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144546U (en) * 1987-03-13 1988-09-22

Also Published As

Publication number Publication date
JPS5785585A (en) 1982-05-28

Similar Documents

Publication Publication Date Title
JPS60121975A (en) Braking method of dc motor
US4590415A (en) Control apparatus for charging generator
JPS594951B2 (en) Overheat protection device for regenerative braking resistor in chopper control system
US3982169A (en) Excitation system for a self-excited alternator
US6525495B2 (en) Electronic device for controlling the electromagnetic self-braking current in reversible rotating electric commutator machines
US5773965A (en) Switching power supply apparatus for converting a high DC voltage into a low DC voltage
US4146831A (en) Regulated rectifier for alternator-supplied battery charger
JPS59106900A (en) Controller for automotive charging generator
JPS6223557B2 (en)
US3586948A (en) Method and an arrangement of controlling a dc motor on constant speed
GB2247999A (en) Brushless DC motor monitor
US3609494A (en) Speed-controlling apparatus for dc motor
US3323036A (en) Alternator regulator
JP2806929B2 (en) Motor drive control device
JPH0323838Y2 (en)
JPH03239129A (en) Charge controller for vehicle
CN112217429B (en) Brushless motor driving circuit and method
JP2819599B2 (en) DC motor disconnection detection circuit
JP3528525B2 (en) Motor speed control circuit
JP3455665B2 (en) DC motor speed control circuit
JPS5814719Y2 (en) Speed control device for series motor
JPH0731295Y2 (en) Capacitor discharge circuit
SU1117811A1 (en) D.c.drive
RU2097905C1 (en) Motor constant-speed regulator
JPS5951237B2 (en) DC brushless motor