JPS5948942B2 - Method for producing molybdenum-vanadium alloy - Google Patents

Method for producing molybdenum-vanadium alloy

Info

Publication number
JPS5948942B2
JPS5948942B2 JP3334680A JP3334680A JPS5948942B2 JP S5948942 B2 JPS5948942 B2 JP S5948942B2 JP 3334680 A JP3334680 A JP 3334680A JP 3334680 A JP3334680 A JP 3334680A JP S5948942 B2 JPS5948942 B2 JP S5948942B2
Authority
JP
Japan
Prior art keywords
powder
molybdenum
vanadium
producing
vanadium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3334680A
Other languages
Japanese (ja)
Other versions
JPS56130442A (en
Inventor
興造 安田
勝彦 川北
貞男 小畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3334680A priority Critical patent/JPS5948942B2/en
Publication of JPS56130442A publication Critical patent/JPS56130442A/en
Publication of JPS5948942B2 publication Critical patent/JPS5948942B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はモリブデン合金、特にモリブチ゛ンバナジウム
合金の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing molybdenum alloys, particularly molybdenum vanadium alloys.

モリブデンバナジウム合金の製造方法として粉末冶金法
の他に、溶解法等の方法が用いられているが、溶解法に
より製造したモリブデンバナジウム合金は高温安定性に
優れているため耐熱構造体として用いられている。
In addition to powder metallurgy, methods such as melting are used to produce molybdenum-vanadium alloys, but molybdenum-vanadium alloys produced by melting have excellent high-temperature stability and are therefore used as heat-resistant structures. There is.

この溶解法では一般に以下に示すようにしてモリブデン
バナジウム合金が製造される。
In this melting method, a molybdenum vanadium alloy is generally produced as shown below.

すなわち、モリブデン粉末とバナジウム粉末とを主成分
とする粉体を混合し、プレス成型ならびに熱処理により
溶解用インゴットを製造し、これを溶解鋳造することで
モリブデンバナジウム合金を製造している。
That is, a molybdenum-vanadium alloy is produced by mixing powders whose main components are molybdenum powder and vanadium powder, producing an ingot for melting by press molding and heat treatment, and melting and casting the ingot.

しかしこのようにして製造されたモリブデンバナジウム
合金には往々にして第1図に示すような巣1が見られる
However, cavities 1 as shown in FIG. 1 are often found in molybdenum-vanadium alloys produced in this manner.

このような巣1が存在する場合には、機械的強度が低下
し、以後の加工が困難となるとともに、高温安定性も減
少し耐熱構造体材として好ましくない。
If such cavities 1 exist, the mechanical strength decreases, making subsequent processing difficult, and the high temperature stability also decreases, making it undesirable as a heat-resistant structural material.

本発明者は鋭意研究の結果、溶解用インゴットの炭素及
び酸素を炭素が100〜500)iWf’7bつ酸素が
50ppm以下となるように調整することにより巣1の
ないモリブデンバナジウム合金を得ることができること
を見出した。
As a result of intensive research, the present inventor has found that it is possible to obtain a molybdenum-vanadium alloy without voids 1 by adjusting the carbon and oxygen in the melting ingot so that the carbon content is 100 to 500)iWf'7b and the oxygen content is 50 ppm or less. I found out what I can do.

本発明はかかる知見に基づきなされたもので、モリブデ
ン粉末とバナジウム粉末から溶解用インゴットを得この
インゴットをアーク溶解して合金を製造するにあたり、
前記溶解用インゴットの炭素及び酸素を炭素が100〜
500plITlでかつ酸素が50pp以下となるよう
に調整することを特徴とするモリブチ゛ンバナジウム合
金の製造方法を提供しようとするものである。
The present invention was made based on this knowledge, and in producing an alloy by arc melting this ingot by obtaining a melting ingot from molybdenum powder and vanadium powder,
The carbon and oxygen of the melting ingot are carbon 100~
It is an object of the present invention to provide a method for producing a molybutin-vanadium alloy, which is characterized by adjusting the amount of oxygen to 500 pl ITl and 50 pp or less.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

モリブデン粉末およびバナジウム粉末に炭素を炭化モリ
ブチ゛ン粉末又は炭化バナジウム粉末等の化合物状態に
より添加し、これらの粉末を均一に混合する。
Carbon is added to molybdenum powder and vanadium powder in the form of a compound such as molybdenum carbide powder or vanadium carbide powder, and these powders are mixed uniformly.

これは、後に述べる熱処理により炭素が脱炭し、アーク
溶解鋳造品に巣が発生するのを防ぐためである。
This is to prevent carbon from being decarburized by the heat treatment described later and creating cavities in the arc-melted cast product.

次いでこの粉末混合体を例えばラバープレスにより成形
し、この成形体を熱処理して溶解用インゴットとする。
Next, this powder mixture is molded using, for example, a rubber press, and this molded body is heat-treated to form an ingot for melting.

熱処理は、第2図に示すように、例えば、炉芯管2内に
挿入された成形体3を、酸化アルミニウム又はボロンナ
イトライド等の耐熱無機粉末4に被覆した状態で行なう
As shown in FIG. 2, the heat treatment is carried out, for example, with the compact 3 inserted into the furnace core tube 2 coated with heat-resistant inorganic powder 4 such as aluminum oxide or boron nitride.

これは、やはり熱処理時に炭素が脱炭し、アーク溶解鋳
造品に巣が発生するのを防ぐために行なわれる。
This is also done to prevent carbon from decarburizing during heat treatment and creating cavities in the arc-melted cast product.

溶解用インゴットに添加された炭素は、溶解鋳造後のモ
リブチ゛ンバナジウム合今に発生する巣を抑制する作用
を有するが、合金に対して1100pI未満ではこの巣
を抑制するには不充分であり、また500pw(2起え
ると延性が減少して塑性加工性が劣化し実用に供し得な
くなる。
Carbon added to the melting ingot has the effect of suppressing the cavities that occur in the molybutin vanadium alloy after melting and casting, but if it is less than 1100 pI with respect to the alloy, it is insufficient to suppress the cavities, Furthermore, if the temperature rises to 500 pw (2), the ductility decreases and the plastic workability deteriorates, making it impossible to put it into practical use.

さらに、添加された酸素は製造工程において必然的に混
入されるものであるが、50pp[′rlを起えると溶
解鋳造後のモリブチ゛ンバナジウム合今に巣を発生させ
るためこれ以下にするのが望ましい。
Furthermore, added oxygen is inevitably mixed in during the manufacturing process, but if it exceeds 50pp['rl, it will cause cavities to form in the molybutin vanadium composite after melting and casting, so it is best to keep it below this level. desirable.

実施例 1 バナジウム粉末と、炭化モリブチ゛ン粉末と、および残
部モリブデン粉末とを混合し、2000kg/cm□の
静水圧下でプレス成形した後、1800℃の水素雰囲気
中で、成形体を酸化アルミニウム粉末で被覆しながら、
5時間熱処理し溶解用インゴットを得、次にアーク溶解
鋳造を行ないモリブデンバナジウム合金を製造した。
Example 1 Vanadium powder, molybdenum carbide powder, and the remaining molybdenum powder were mixed and press-molded under a hydrostatic pressure of 2000 kg/cm□, and then the molded body was molded with aluminum oxide powder in a hydrogen atmosphere at 1800°C. While covering
Heat treatment was performed for 5 hours to obtain an ingot for melting, and then arc melting and casting was performed to produce a molybdenum vanadium alloy.

結果は試料1〜4として表に示す通りである。The results are shown in the table as samples 1 to 4.

実施例 2 炭化バナジウム粉末と残部モリブデン粉末とを混合し、
かつ成形体を酸化アルミニウム粉末で被覆しなかったこ
とを除いて実施例1と同一条件でモリブデンバナジウム
合金を製造した。
Example 2 Mixing vanadium carbide powder and remaining molybdenum powder,
A molybdenum-vanadium alloy was produced under the same conditions as in Example 1, except that the compact was not coated with aluminum oxide powder.

結果は試料5.6として表に示す通りである。The results are shown in the table as sample 5.6.

実施例 3 バナジウム粉末と炭素粉末および残部モリブデン粉末と
を混合し、他は実施例1と同一条件でモリブデンバナジ
ウム合金を製造した。
Example 3 A molybdenum-vanadium alloy was produced under the same conditions as in Example 1 except that vanadium powder, carbon powder, and the remainder molybdenum powder were mixed.

結果は試料7.8として表に示す通りである。The results are shown in the table as sample 7.8.

比較例 上記実施例1において、炭化モリブデン粉末に換え、炭
素粉末を用い、成形体を酸化アルミニウム粉末で被覆し
ていないことを除いて上記実施例と同一条件でモリブデ
ンバナジウム合金を製造した。
Comparative Example A molybdenum-vanadium alloy was produced under the same conditions as in Example 1 above, except that carbon powder was used instead of molybdenum carbide powder and the compact was not coated with aluminum oxide powder.

結果は試料ABCDとして表に示す通りである。The results are shown in the table as samples ABCD.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は発生した巣の正面図、第2図は成形体を耐熱無
機粉末で被覆した状態を示す説明図。 1・・・・・・巣、3・・・・・・成形体、4・・・・
・・耐熱無機粉末。
FIG. 1 is a front view of a generated cavity, and FIG. 2 is an explanatory diagram showing a molded body coated with heat-resistant inorganic powder. 1... Nest, 3... Molded body, 4...
...Heat-resistant inorganic powder.

Claims (1)

【特許請求の範囲】 1 モリブデン粉末とバナジウム粉末とをそれぞれ主成
分とする粉末を混合し、圧縮成形した後熱処理を施こす
ことにより炭素が100〜50Qppmfかつ酸素がs
oppm以下に調整したインゴットを得、ついでこのイ
ンゴットを真空アーク溶解することを特徴とするモリブ
デンバナジウム合金の製造方法。 2 モリブデン粉末とバナジウム粉末とを混合するにあ
たり炭化モリブデン粉末又は炭化バナジウム粉末あるい
はこれらの混合物を含有させてなる特許請求の範囲第1
項記載のモリブデン−バナジウム合金の製造方法。 3 熱処理は圧縮成形物を無機耐熱粉末で被覆して行な
う特許請求の範囲第1項又は第2項記載のモリブデン−
バナジウム合金の製造方法。
[Claims] 1. Powders containing molybdenum powder and vanadium powder as main components are mixed, compression molded, and then heat treated to produce a carbon content of 100 to 50 Qppmf and an oxygen content of s.
A method for producing a molybdenum-vanadium alloy, which comprises obtaining an ingot adjusted to oppm or less, and then vacuum arc melting the ingot. 2. Claim 1, in which molybdenum carbide powder, vanadium carbide powder, or a mixture thereof is included in mixing molybdenum powder and vanadium powder.
A method for producing a molybdenum-vanadium alloy as described in 2. 3. The heat treatment is performed by coating the compression molded product with an inorganic heat-resistant powder.
Method for producing vanadium alloy.
JP3334680A 1980-03-18 1980-03-18 Method for producing molybdenum-vanadium alloy Expired JPS5948942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3334680A JPS5948942B2 (en) 1980-03-18 1980-03-18 Method for producing molybdenum-vanadium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3334680A JPS5948942B2 (en) 1980-03-18 1980-03-18 Method for producing molybdenum-vanadium alloy

Publications (2)

Publication Number Publication Date
JPS56130442A JPS56130442A (en) 1981-10-13
JPS5948942B2 true JPS5948942B2 (en) 1984-11-29

Family

ID=12383998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3334680A Expired JPS5948942B2 (en) 1980-03-18 1980-03-18 Method for producing molybdenum-vanadium alloy

Country Status (1)

Country Link
JP (1) JPS5948942B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957607U (en) * 1982-10-05 1984-04-14 アイジ−工業株式会社 mounting hardware
JPS59194438U (en) * 1983-06-11 1984-12-24 株式会社 太田興産 Architectural panel corner cover

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957607U (en) * 1982-10-05 1984-04-14 アイジ−工業株式会社 mounting hardware
JPS59194438U (en) * 1983-06-11 1984-12-24 株式会社 太田興産 Architectural panel corner cover

Also Published As

Publication number Publication date
JPS56130442A (en) 1981-10-13

Similar Documents

Publication Publication Date Title
JPS5948942B2 (en) Method for producing molybdenum-vanadium alloy
US3052576A (en) Metal composition having improved oxidation- and corrosion-resistance and magnetic characteristics, and method of preparing same
JP2588889B2 (en) Forming method of Ti-Al based intermetallic compound member
JPH05287402A (en) Production of extra-low oxygen copper and extra-low oxygen copper obtained by this production
JPH06145712A (en) Production of iron base sintered parts low in nitrogen content
JPH10317009A (en) Production of stainless sintered body
JPH0313329A (en) Sintered metal composite material excellent in corrosion resistance, dimensional accuracy and economical efficiency and preparation thereof
JPH0133540B2 (en)
JPH08183661A (en) Production of silicon carbide sintered compact
JPS5819409A (en) Manufacture of isotropic mn-al-c magnet
RU2017583C1 (en) Method of manufacture of briquettes for modification of steel and alloys
JPS59116176A (en) Manufacture of ceramic sintered body
JP2001089824A (en) Manufacture of sintered compact of chromium- molybdenum steel
JPS6179702A (en) Production of sintered soft magnetic iron-silicon parts
JPH03191002A (en) Method for removing binder and for sintering for metal injection molding product
JPH05263104A (en) Method for sintering metallic formed body
JPH0660324B2 (en) Method for manufacturing Ni-Ti based shape memory alloy sintered body
JPS6358897B2 (en)
JPS59162202A (en) Manufacture of sintered soft magnetic material
JPH01317672A (en) Stoke for low pressure casting
JPH06145716A (en) Production of iron base sintered parts low in nitrogen content
JPH03229832A (en) Manufacture of nb-al intermetallic compound
JPH04180546A (en) Iron-cobalt sintered magnetic material and its manufacture
JPS61159539A (en) Manufacture of shape memory alloy
JPS6475604A (en) Method for molding aluminum alloy powder