JPH10317009A - Production of stainless sintered body - Google Patents

Production of stainless sintered body

Info

Publication number
JPH10317009A
JPH10317009A JP12939997A JP12939997A JPH10317009A JP H10317009 A JPH10317009 A JP H10317009A JP 12939997 A JP12939997 A JP 12939997A JP 12939997 A JP12939997 A JP 12939997A JP H10317009 A JPH10317009 A JP H10317009A
Authority
JP
Japan
Prior art keywords
raw material
sintering
material powder
powder
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12939997A
Other languages
Japanese (ja)
Inventor
Akihito Otsuka
昭仁 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP12939997A priority Critical patent/JPH10317009A/en
Publication of JPH10317009A publication Critical patent/JPH10317009A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a stainless sintered body excellent in corrosion resistance, having high strength and capable of easily obtaining a product with a complicated shape by adding a binder to a raw material powder blended into a specified compsn., executing injection molding, subjecting the obtd. molded body to debindering treatment, subsequently surrounding it by a surrounding body made of carbon and executing sintering in a nonoxidizing atmosphere. SOLUTION: The raw material powder has a blended compsn. contg., by weight, 16 to 20% Cr, 0.6 to 1.5% C, and the balance Fe, and the average grain size of each constituting metal powder is regulated to <=45 μm. As the binder, polyethylene or the like can be used. The debindering after injection molding can easily be executed by using a heating degreasing device. At the time of sintering the debindereddegreased body, it is surounded by a board or a vessel substantially composed of carbon, and sintering is executed in a nonoxygen atmosphere of a vacuum, hydrogen, argon or the like. In this way, the atmosphere of C can be formed, and a decarburizing phemonenon in the surface can effectively be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐食性に優れ、溶
製材のSUS440と同程度の機械的特性を有するステ
ンレス焼結体の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a stainless sintered body having excellent corrosion resistance and mechanical properties comparable to those of SUS440 as an ingot.

【0002】[0002]

【従来の技術】JISに規定されているSUS440
は、Crを16〜18重量%、Cを0.6〜1.2重量
%含有するステンレス鋼であって、JISにおけるSU
S440は、C含有量の違いにより、440A、440
B、440Cに分類されている。これらの合金の特徴
は、焼き入れ硬さが高く、ステンレス鋼中最高の硬さを
有するため、刃物の切れ味、耐磨耗性が特に優れてい
る。同じくCrを含有するステンレスであるSUS42
0Jよりも、Cr含有量が高く、耐食性および耐酸化性
がまさるので、高級刃物、外科用刃物、ゲージ、ベアリ
ング、カムなどの耐食、耐磨耗を要するものに用いら
れ、特に靱性を必要とされる用途には、Cの低い440
A、440Bタイプが使用されている。
2. Description of the Related Art SUS440 defined by JIS
Is stainless steel containing 16 to 18% by weight of Cr and 0.6 to 1.2% by weight of C.
S440 is 440A, 440 due to the difference in C content.
B and 440C. The characteristics of these alloys are that they have high quenching hardness and the highest hardness among stainless steels, so that the sharpness and wear resistance of the cutting tool are particularly excellent. SUS42 which is also stainless steel containing Cr
It has a higher Cr content than 0J and has better corrosion resistance and oxidation resistance. 440 low C
A and 440B types are used.

【0003】上記SUS440製品を製造するには、一
般に溶製材を機械加工する切削加工法や、精密鋳造法が
知られているが、複雑な形状の製品を製造する場合、切
削加工法では鋳造品を加工した板や塊状品から切り出し
て、所定形状まで機械加工を行うため、加工コストが上
昇する上に歩留まりが悪かった。また、精密鋳造法で
は、鋭利な部分の寸法精度が得られず、鋳造時発生する
大小の気孔が内部に残留するなどの鋳造欠陥が生じる等
の問題があった。
[0003] In order to manufacture the above SUS440 product, a cutting method for machining an ingot material and a precision casting method are generally known. However, when manufacturing a product having a complicated shape, a casting method is used in the cutting method. Is cut out from a processed plate or lump and machined to a predetermined shape, so that the processing cost is increased and the yield is poor. Further, the precision casting method has a problem that the dimensional accuracy of a sharp portion cannot be obtained and casting defects such as large and small pores generated during casting remain inside.

【0004】したがってこのような欠点を補うために、
SUS440に相当する合金組成を有するステンレス合
金を粉末冶金法によって製造する試みがなされている。
しかし、通常の粉末冶金法は、原料粉末を金型に装入
し、プレスによって圧縮成形を行う方法であるから、複
雑な形状品を得ることは不可能であり、最終製品形状に
仕上げるためには、切削加工を行う必要もあった。ま
た、プレス時の圧縮性が悪く、成形時にクラックが生じ
る問題があった。さらに、焼結時にCが表面層から蒸発
する現象(脱炭と呼ばれる)が生じ、熱処理後に所望の
表面硬度が得られないという問題点もあった。
Therefore, in order to make up for such disadvantages,
Attempts have been made to produce a stainless alloy having an alloy composition equivalent to SUS440 by powder metallurgy.
However, the usual powder metallurgy method is a method in which raw material powder is charged into a mold and compression-molded by pressing, so that it is impossible to obtain a complicated shaped product. Needed to perform a cutting process. In addition, there is a problem that the compressibility at the time of pressing is poor and cracks occur at the time of molding. Furthermore, there is a problem that a phenomenon in which C evaporates from the surface layer during sintering (called decarburization) occurs, and a desired surface hardness cannot be obtained after heat treatment.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、上記
の現状に鑑みなされたものであって、射出成型法を用い
て、SUS440に相当するように耐食性に優れ、高強
度であるとともに、複雑な形状を有する製品も容易に得
ることができるステンレス焼結体の製造方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and to provide an excellent corrosion resistance and high strength equivalent to SUS440 using an injection molding method. An object of the present invention is to provide a method for manufacturing a stainless sintered body that can easily obtain a product having a complicated shape.

【0006】[0006]

【課題を解決するための手段】上記課題を達成するた
め、本発明は、Crを16〜20重量%、Cを0.6〜
1.5重量%、残部が実質的にFeからなるように配合
された原料粉末に、バインダーを添加してなる組成物を
射出成形し、得られた成形体を脱バインダー処理し、さ
らに実質的に炭素製の囲繞体により前記脱バインダー処
理した成形体を囲い、該成形体を非酸化性雰囲気で焼結
するステンレス焼結体の製造方法を特徴とするものであ
って、前記原料粉末が、合金粉末または異なる組成の粉
末の混合粉末であり、かつ前記核原料粉末の平均粒径
が、45μm以下であることが好ましく、されに前記非
酸化性雰囲気が真空、水素あるいはアルゴン、またはア
ルゴンパーシャル雰囲気であるステンレス焼結体の製造
方法を特徴とする。
In order to achieve the above-mentioned object, the present invention provides a method for producing a steel comprising 16 to 20% by weight of Cr and 0.6 to 20% by weight of C.
A composition obtained by adding a binder to a raw material powder blended so that 1.5% by weight and the remainder substantially consist of Fe is injection-molded, and the obtained molded body is subjected to a binder removal treatment. Surrounding the molded body subjected to the binder removal treatment by a carbon surrounding body, characterized by a method for producing a stainless sintered body by sintering the molded body in a non-oxidizing atmosphere, wherein the raw material powder, An alloy powder or a mixed powder of powders having different compositions, and the core material powder preferably has an average particle diameter of 45 μm or less, and the non-oxidizing atmosphere is vacuum, hydrogen or argon, or an argon partial atmosphere. And a method for producing a stainless sintered body.

【0007】[0007]

【発明の実態の形態】Embodiment of the present invention

(原料粉末)出発材料である金属粉末は、あらかじめ目
的の組成に調整、配合された合金粉末でも良く、また異
なる組成の粉末を目標の組成に調整、配合して得られた
混合粉末でもよい。例えば、Fe−Crの合金粉末にC
粉末を添加する方法も採用できる。
(Raw material powder) The metal powder as a starting material may be an alloy powder adjusted and blended in advance to a target composition, or a mixed powder obtained by adjusting and blending powders of different compositions to a target composition. For example, C is added to Fe-Cr alloy powder.
A method of adding a powder can also be adopted.

【0008】原料粉末におけるCr含有量は、16〜2
0重量%の範囲である。このような組成範囲に限定した
理由は、原料粉末におけるCr含有量が16重量%未満
では得られた焼結体の耐食性、強度が劣り、一方Cr含
有量が20重量%を越えると原料が高価となる。
The Cr content in the raw material powder is 16 to 2
The range is 0% by weight. The reason for limiting to such a composition range is that when the Cr content in the raw material powder is less than 16% by weight, the obtained sintered body has poor corrosion resistance and strength, while when the Cr content exceeds 20% by weight, the raw material is expensive. Becomes

【0009】また、C含有量は0.6〜1.5重量%で
あることが必要であり、好ましくは0.8〜1.3重量
%の範囲である。原料粉末におけるC含有量が0.6重
量%未満では、焼結後の熱処理を実施しても要求される
硬度が得られないため、機械的強度が不十分となり、一
方、C量含有量が1.5重量%を越えると焼結体の耐食
性および靱性に悪影響を及ぼす。
Further, the C content needs to be 0.6 to 1.5% by weight, preferably 0.8 to 1.3% by weight. If the C content in the raw material powder is less than 0.6% by weight, the required hardness cannot be obtained even if heat treatment is performed after sintering, resulting in insufficient mechanical strength. If the content exceeds 1.5% by weight, the corrosion resistance and toughness of the sintered body are adversely affected.

【0010】使用する原料粉末には、0.05〜0.5
重量%程度の酸素が含有されており、後工程の焼結時
に、原料粉末中の酸素が、原料粉末中のC、もしくは添
加したCと反応してCOガスを生成して放出されるため
に焼結後のC量は減少する。したがって、原料粉末中の
Cは、焼結後の焼結体におけるC量がほぼSUS440
に相当する組成範囲である0.6〜1.2重量%となる
ように過剰に添加されている。
The raw material powder to be used is 0.05 to 0.5
About 2% by weight of oxygen, and the oxygen in the raw material powder reacts with C in the raw material powder or added C to generate CO gas and be released during sintering in the subsequent step. The amount of C after sintering decreases. Therefore, the amount of C in the raw material powder is approximately SUS440 in the sintered body after sintering.
Is added excessively so as to be 0.6 to 1.2% by weight, which is a composition range corresponding to.

【0011】一方、出発材料の各種の金属粉末は、平均
粒径で45μm以下が好ましい。平均粒径が45μmを
越える金属粉末では、上記した特定量に配合してなる原
料粉末とバインダーからなる組成物の流動性が低下した
り、焼結体の密度が上昇しにくくなる。なお前記金属粉
末の平均粒径は、小さい程好ましいが現状の技術水準で
は、平均粒径を1μm以下とすることが困難なため、こ
の2〜3μm程度が平均粒径の下限となる。
On the other hand, various metal powders as starting materials preferably have an average particle diameter of 45 μm or less. In the case of a metal powder having an average particle diameter of more than 45 μm, the fluidity of the composition comprising the raw material powder and the binder blended in the above-described specific amount is lowered, and the density of the sintered body is hardly increased. The average particle size of the metal powder is preferably as small as possible, but it is difficult to reduce the average particle size to 1 μm or less in the current state of the art, so that about 2 to 3 μm is the lower limit of the average particle size.

【0012】(バインダー)バインダーとしては、射出
成形粉末冶金用として公知のポリエチレン、ポリプロピ
レン、天然ワックスなどを使用することができる。ま
た、配合原料粉末に対するバインダーの配合量は、配合
後の組成物において25〜60容量%の範囲が好まし
い。
(Binder) As the binder, polyethylene, polypropylene, natural wax, etc., which are known for injection molding powder metallurgy, can be used. The amount of the binder to be added to the compounding raw material powder is preferably in the range of 25 to 60% by volume in the composition after compounding.

【0013】前記した原料粉末とバインダーからなる組
成物を射出成形した後、得られた成形体からバインダー
を除去する方法としては、使用するバインダーの種類に
よって、加熱脱脂、溶媒脱脂、その他の公知の方法が使
用できるが、加熱脱脂装置は他の方法と比較して簡便で
あるために、量産時には、窒素または水素雰囲気あるい
は真空中で行う加熱脱脂が好ましい。
After the composition comprising the above-mentioned raw material powder and the binder is injection-molded, the binder may be removed from the obtained molded body by heating degreasing, solvent degreasing, or other known methods depending on the type of the binder used. Although a method can be used, heat degreasing performed in a nitrogen or hydrogen atmosphere or in a vacuum during mass production is preferable because a heat degreasing apparatus is simpler than other methods.

【0014】(焼結処理)次に脱バインダーした脱脂体
を焼結する場合には、実質的に炭素からなる囲繞体、例
えば板または容器で囲み、非酸化性雰囲気として真空、
水素あるいはアルゴン、またはアルゴンパーシャル(ア
ルゴン雰囲気で減圧)雰囲気などで焼結することが必要
である。炭素製の板および容器のような囲繞体で囲わな
いで焼結を行うと、試料表面で前記したような脱炭現象
が生じ、熱処理後に所望の表面硬度が得られない。しか
し、炭素製の板または容器などで囲うことにより、Cの
雰囲気を作ることができ、表面の脱炭現象を効果的に抑
制できる。
(Sintering treatment) Next, when sintering the debindered degreased body, the degreased body is substantially surrounded by a surrounding body made of carbon, for example, a plate or a container, and is evacuated to a non-oxidizing atmosphere,
It is necessary to perform sintering in hydrogen, argon, or an argon partial (a reduced pressure in an argon atmosphere) atmosphere. If sintering is performed without being surrounded by a surrounding body such as a carbon plate and a container, the above-described decarburization phenomenon occurs on the sample surface, and a desired surface hardness cannot be obtained after heat treatment. However, by surrounding it with a carbon plate or container, an atmosphere of C can be created, and the decarburization phenomenon on the surface can be effectively suppressed.

【0015】[0015]

【実施例】【Example】

(実施例1)原料粉末として平均粒径9μmのFe−1
7.5重量%Cr−1.1重量%C合金粉末を用い、こ
れにワックス系バインダーを40容量%となるように加
え150℃で混練後、ペレット状に造粒した。このペレ
ットを射出成形機を用いて射出圧800kg/cm2の
条件で金型に射出成形した。得られた成形体(幅10m
m、長さ50mm、厚さ5mmの直方体)を300℃ま
で加熱し60分間保持してワックス系バインダーの除去
を行った。その後、この脱バインダー処理した成形体を
炭素製の板で囲み、1270℃で2時間真空中で焼結を
行い、さらに得られた焼結体を真空ガス冷却により焼入
れし、ついで200℃で焼戻しを行った。
(Example 1) Fe-1 having an average particle size of 9 µm as a raw material powder
A 7.5 wt% Cr-1.1 wt% C alloy powder was used, a wax-based binder was added to the powder in an amount of 40% by volume, kneaded at 150 ° C., and granulated into pellets. The pellets were injection-molded into a mold under an injection pressure of 800 kg / cm 2 using an injection molding machine. Obtained compact (width 10m
m, a length of 50 mm and a thickness of 5 mm) was heated to 300 ° C. and held for 60 minutes to remove the wax binder. Thereafter, the molded body subjected to the binder removal treatment is surrounded by a carbon plate, sintered at 1270 ° C. for 2 hours in a vacuum, and the obtained sintered body is quenched by vacuum gas cooling and then tempered at 200 ° C. Was done.

【0016】このようにして得られた熱処理品につい
て、焼結密度、硬度、耐食性、残留炭素量を調べた。こ
の際、焼結密度は比重計で測定し、硬度はロックウェル
硬度計にて荷重150kg(HRC)で測定した。ま
た、耐食性の評価としては、3%NaCl水溶液中に3
0℃で24時間浸漬し、錆の発生を目視により観察して
評価した。その結果を表1に示す。
The heat-treated product thus obtained was examined for sintered density, hardness, corrosion resistance, and residual carbon content. At this time, the sintering density was measured with a hydrometer, and the hardness was measured with a Rockwell hardness meter under a load of 150 kg (HRC). In addition, as for the evaluation of the corrosion resistance, 3% NaCl aqueous solution was used.
It was immersed at 0 ° C. for 24 hours, and the occurrence of rust was visually observed and evaluated. Table 1 shows the results.

【0017】(実施例2)原料粉末として平均粒径11
μmのFe−17.0重量%Cr−0.73重量%C合
金粉末を用い、1300℃で焼結した以外は、実施例1
と同様の手順で熱処理品を調整し、その特性を実施例1
と同様にして評価した。この試験結果を表1に示す。
(Example 2) As a raw material powder, an average particle size of 11
Example 1 with the exception that sintering was performed at 1300 ° C. using μm Fe-17.0 wt% Cr-0.73 wt% C alloy powder.
A heat-treated product was prepared in the same procedure as described above, and the characteristics were adjusted in Example 1.
The evaluation was performed in the same manner as described above. Table 1 shows the test results.

【0018】(実施例3)原料粉末として平均粒径10
μmのFe−19.1重量%Cr合金粉末に平均粒径1
μmのC粉末を1.4重量%添加して混合粉末を得た
後、実施例1と同様の手順で熱処理品を調整し、その特
性を実施例1と同様にして評価した。この試験結果を表
1に示す。
Example 3 Raw material powder having an average particle size of 10
μm Fe-19.1 wt% Cr alloy powder with an average particle size of 1
After adding 1.4% by weight of C powder of μm to obtain a mixed powder, a heat-treated product was prepared in the same procedure as in Example 1, and the characteristics were evaluated in the same manner as in Example 1. Table 1 shows the test results.

【0019】(比較例1)実施例1と同様の原料を使用
して、焼結時に炭素製の板で脱脂体を囲わなかった以外
は、実施例1と同様に処理して熱処理品を調整した後、
実施例1と同様にして評価を行った。これらの結果を表
1に示すが、炭素製の板で脱脂体を囲わなかったため脱
炭し、十分な表面硬度が得られなかった。
(Comparative Example 1) A heat-treated product was prepared in the same manner as in Example 1 except that the same raw material as in Example 1 was used and the degreased body was not surrounded by a carbon plate during sintering. After doing
Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1. Since the degreased body was not surrounded by a carbon plate, decarburization was not performed, and sufficient surface hardness was not obtained.

【0020】(比較例2)実施例2と同様の原料を使用
して、焼結時に炭素製の板で脱脂体を囲わなかった以外
は、実施例2と同様に処理して熱処理品を調整した後、
実施例1と同様にして評価を行った。これらの結果を表
1に示すが、比較例1と同様に十分な表面硬度が得られ
なかった。
(Comparative Example 2) A heat-treated product was prepared in the same manner as in Example 2 except that the same raw material as in Example 2 was used and the degreased body was not surrounded by a carbon plate during sintering. After doing
Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1. As in Comparative Example 1, sufficient surface hardness was not obtained.

【0021】(比較例3)原料粉末として平均粒径11
μmのFe−16.1重量%Cr合金粉末に1μmのC
粉末を0.5重量%添加して混合粉末を得た後、133
0℃で焼結した以外は、実施例1と同様の手順で熱処理
品を調整し、実施例1と同様にして評価を行った。これ
らの結果を表1に示すが、C含有量が少ないため、十分
な表面硬度が得られなかった。
(Comparative Example 3) The raw material powder had an average particle size of 11
μm Fe-16.1 wt% Cr alloy powder to 1 μm C
After adding 0.5% by weight of the powder to obtain a mixed powder, 133
Except for sintering at 0 ° C., a heat-treated product was prepared in the same procedure as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1. However, since the C content was low, sufficient surface hardness was not obtained.

【0022】(比較例4)原料粉末として平均粒径11
μmのFe−16.1重量%Cr合金粉末に1μmのC
粉末を1.7重量%添加して混合粉末を得た後、実施例
1と同様の手順で熱処理品を調整し、実施例1と同様に
して評価を行った。これらの結果を表1に示すが、C含
有量が多いため、耐食性が低下し、耐食試験後の試料表
面がわずかに変色していた。
(Comparative Example 4) As the raw material powder, the average particle size was 11
μm Fe-16.1 wt% Cr alloy powder to 1 μm C
After adding 1.7% by weight of the powder to obtain a mixed powder, a heat-treated product was prepared in the same procedure as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1. The C content was high, so that the corrosion resistance was reduced and the sample surface after the corrosion test was slightly discolored.

【0023】表1から分かる通り本発明の実施例に係る
ステンレス焼結体は、比較例に比べて高硬度と耐食性を
兼ね備え優れているものであった。
As can be seen from Table 1, the stainless sintered body according to the example of the present invention had both high hardness and corrosion resistance as compared with the comparative example.

【0024】[0024]

【発明の効果】以上述べた通り、本発明に係る製造方法
によれば、優れた強度と耐食性を有する焼結体を容易に
かつ安定して製造することができ、また射出成形法を用
いているので、複雑な形状を有する製品でも容易に製造
することができる。
As described above, according to the manufacturing method of the present invention, a sintered body having excellent strength and corrosion resistance can be easily and stably manufactured. Therefore, even a product having a complicated shape can be easily manufactured.

【0025】[0025]

【表1】 [Table 1]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Crを16〜20重量%、Cを0.6〜
1.5重量%、残部が実質的にFeからなるよう配合さ
れた原料粉末に、バインダーを添加してなる組成物を射
出成形し、得られた成形体を脱バインダー処理し、さら
に、実質的に炭素製の囲繞体により前記脱バインダー処
理した成形体を囲い、該成形体を非酸化性雰囲気で焼結
すること特徴とするステンレス焼結体の製造方法。
C. 0.6 to 20% by weight of Cr and 0.6 to 20% by weight of C.
A composition obtained by adding a binder to a raw material powder blended to 1.5% by weight, with the balance being substantially Fe, is subjected to injection molding, and the obtained molded body is subjected to a binder removal treatment. A method for producing a stainless sintered body, comprising: surrounding a molded body subjected to the binder removal treatment with a carbon surrounding body; and sintering the molded body in a non-oxidizing atmosphere.
【請求項2】 前記原料粉末が、合金粉末または異なる
組成の粉末の混合粉末であることを特徴とする請求項1
記載のステンレス焼結体の製造方法。
2. The method according to claim 1, wherein the raw material powder is an alloy powder or a mixed powder of powders having different compositions.
The method for producing a stainless sintered body according to the above.
【請求項3】 前記各原料粉末の平均粒径が、45μm
以下であることを特徴とする請求項1または2記載のス
テンレス焼結体の製造方法。
3. An average particle diameter of each raw material powder is 45 μm.
The method for producing a stainless sintered body according to claim 1 or 2, wherein:
【請求項4】 前記非酸化性雰囲気が真空、水素あるい
はアルゴン、またはアルゴンパーシャル雰囲気であるこ
とを特徴とする請求項1から3のいずれか1項記載のス
テンレス焼結体の製造方法。
4. The method according to claim 1, wherein the non-oxidizing atmosphere is a vacuum, hydrogen, argon, or argon partial atmosphere.
JP12939997A 1997-05-20 1997-05-20 Production of stainless sintered body Pending JPH10317009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12939997A JPH10317009A (en) 1997-05-20 1997-05-20 Production of stainless sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12939997A JPH10317009A (en) 1997-05-20 1997-05-20 Production of stainless sintered body

Publications (1)

Publication Number Publication Date
JPH10317009A true JPH10317009A (en) 1998-12-02

Family

ID=15008611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12939997A Pending JPH10317009A (en) 1997-05-20 1997-05-20 Production of stainless sintered body

Country Status (1)

Country Link
JP (1) JPH10317009A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087361A (en) * 2011-10-24 2013-05-13 Hitachi Powdered Metals Co Ltd Micro component and method of producing the same
JP2014534344A (en) * 2011-10-21 2014-12-18 ポステック アカデミー−インダストリー ファンデーション Iron-based alloy for powder injection molding
CN113145848A (en) * 2021-04-26 2021-07-23 佛山亘易隆科技有限公司 Grinding assembly, manufacturing method thereof and coffee machine
CN113399668A (en) * 2021-06-16 2021-09-17 东莞华晶粉末冶金有限公司 Thermal degreasing binder, feeding and maraging stainless steel and preparation method thereof
CN114101657A (en) * 2021-11-12 2022-03-01 阳江市天骄家庭用品制造有限公司 Sterilized stainless steel feeding and cutting tool and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014534344A (en) * 2011-10-21 2014-12-18 ポステック アカデミー−インダストリー ファンデーション Iron-based alloy for powder injection molding
JP2013087361A (en) * 2011-10-24 2013-05-13 Hitachi Powdered Metals Co Ltd Micro component and method of producing the same
CN113145848A (en) * 2021-04-26 2021-07-23 佛山亘易隆科技有限公司 Grinding assembly, manufacturing method thereof and coffee machine
CN113399668A (en) * 2021-06-16 2021-09-17 东莞华晶粉末冶金有限公司 Thermal degreasing binder, feeding and maraging stainless steel and preparation method thereof
CN114101657A (en) * 2021-11-12 2022-03-01 阳江市天骄家庭用品制造有限公司 Sterilized stainless steel feeding and cutting tool and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3952006B2 (en) Raw material powder for sintering or granulated powder for sintering and sintered body thereof
JP6093405B2 (en) Nitrogen-containing low nickel sintered stainless steel
JPH04231404A (en) Method for powder metallurgy by means of optimized two-times press-two-times sintering
EP3362210B1 (en) Iron based powders for powder injection molding
EP0378702B1 (en) Sintered alloy steel with excellent corrosion resistance and process for its production
JP2003166003A (en) Stainless steel powder for sintering, granulated powder for manufacturing sintered stainless steel, and sintered stainless steel
JPH10317009A (en) Production of stainless sintered body
Gülsoy et al. Effect of FeB additions on sintering characteristics of injection moulded 17-4PH stainless steel powder
JPH11181541A (en) Production of stainless steel sintered body
CA1288620C (en) Process and composition for improved corrosion resistance
JPH04157109A (en) Material for metallic mold
JP2006503981A (en) Method for controlling dimensional changes during sintering of iron-based powder mixtures
JPH10287901A (en) Production of stainless sintered body
JP2001294971A (en) Method for producing stainless steel sintered body
JP2001089824A (en) Manufacture of sintered compact of chromium- molybdenum steel
EP1323840B1 (en) Iron base mixed powder for high strength sintered parts
JP2000129309A (en) Production of austenitic stainless sintered body
JPH0313329A (en) Sintered metal composite material excellent in corrosion resistance, dimensional accuracy and economical efficiency and preparation thereof
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
JP2001152207A (en) Method for producing chromium-nickel-molybdenum steel sintered body
JP4158015B2 (en) Method for producing sintered body and sintered body
JP2786303B2 (en) Method for producing sintered alloy with excellent corrosion resistance and machinability
JPH11303847A (en) Connecting rod having high fatigue strength and excellent toughness and manufacture thereof
JPH0867951A (en) Steel sintered body
JP3341675B2 (en) Iron-based sintered alloy excellent in strength and toughness and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041129