JPS5945640B2 - Method for manufacturing SiC whiskers - Google Patents

Method for manufacturing SiC whiskers

Info

Publication number
JPS5945640B2
JPS5945640B2 JP57051391A JP5139182A JPS5945640B2 JP S5945640 B2 JPS5945640 B2 JP S5945640B2 JP 57051391 A JP57051391 A JP 57051391A JP 5139182 A JP5139182 A JP 5139182A JP S5945640 B2 JPS5945640 B2 JP S5945640B2
Authority
JP
Japan
Prior art keywords
sic whiskers
silicon source
weight
carbon black
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57051391A
Other languages
Japanese (ja)
Other versions
JPS58172297A (en
Inventor
実夫 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKAI KAABON KK
Original Assignee
TOKAI KAABON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKAI KAABON KK filed Critical TOKAI KAABON KK
Priority to JP57051391A priority Critical patent/JPS5945640B2/en
Publication of JPS58172297A publication Critical patent/JPS58172297A/en
Publication of JPS5945640B2 publication Critical patent/JPS5945640B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/005Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Description

【発明の詳細な説明】 SiCウィスカーは、比強度、比弾性率、耐熱性、化学
的安定性などの面に優れた物性を有することから、金属
あるいはプラスチックの複合強化材として期待されてい
るが、これが広く実用化されるためには材料価格が低置
でなければならない。
[Detailed Description of the Invention] SiC whiskers have excellent physical properties such as specific strength, specific modulus of elasticity, heat resistance, and chemical stability, so they are expected to be used as composite reinforcing materials for metals or plastics. In order for this to be widely put into practical use, material costs must be kept low.

本発明は、極めて安価なけい素源原料を用いて高収率に
SiCウィスカーを得る方法に関するもので、低床原価
による高品位SiCウィスカー製造法の提供を目的とす
る。
The present invention relates to a method for obtaining SiC whiskers in high yield using extremely inexpensive silicon source materials, and aims to provide a method for producing high-quality SiC whiskers at a low floor cost.

すなわち、本発明は、5i02およびNa2Oを主成分
とするカレントまたはこれとけい砂との混合物をけい素
源原料とし、これに炭材としてDBP吸油量50ml/
100 ft以上の粒子凝集構造を有するファーネス
カーボンブラックを60〜400重量%の害拾で混合し
たのち非酸化性雰囲気下で1300〜1800℃の温度
に加熱することを構成的特徴とする。
That is, in the present invention, a current containing 5i02 and Na2O as main components or a mixture of this and silica sand is used as a silicon source raw material, and DBP oil absorption of 50 ml/day is added to this as a carbon material.
The structural feature is that furnace carbon black having a particle agglomerated structure of 100 ft or more is mixed at a concentration of 60 to 400% by weight and then heated to a temperature of 1300 to 1800° C. in a non-oxidizing atmosphere.

けい素源原料に供されるカレットは、通常、ガラス製造
時に原材料の1つとしてバッチに混合される屑ガラスの
粉砕物で、極めて安価な工業材である。
Cullet, which is used as a silicon source material, is usually a crushed glass scrap that is mixed into a batch as one of the raw materials during glass manufacturing, and is an extremely inexpensive industrial material.

この構成成分はガラスの組成によって変動するが、定常
生産品をソースとするものは組成、成分および性質がほ
とんど一定である。
This component varies depending on the composition of the glass, but the composition, components, and properties of glass sourced from regularly produced products are almost constant.

本発明では、SiO2およびNa2Oを主成分とする組
成のカレットが選択使用され、とくに少くとも50%の
SiO2成分を含む粒度150メツシユ以下の微粉末が
有効に適用される。
In the present invention, cullet having a composition mainly composed of SiO2 and Na2O is selectively used, and in particular, a fine powder having a particle size of 150 mesh or less containing at least 50% SiO2 component is effectively applied.

炭材には、石油系あるいは石炭系の重質炭化水素油を熱
分解して得られるファーネスカーボンブラックのうちス
トラフチア−の指標となるDBP吸油量が50m1/1
00f以上のものが使用される。
Among the furnace carbon black obtained by thermally decomposing petroleum-based or coal-based heavy hydrocarbon oil, the carbon material has a DBP oil absorption of 50 m1/1, which is an indicator of straftia.
00f or higher is used.

ファーネスカーボンブラックは、コークス粉、黒鉛粉の
ような通常の炭材物質とは異質の表面性状と粒子構造を
有しており、それ自体炭材としての適格性を備えている
が、とくにDBP吸油量50m17100ft以上の粒
子凝集構造をもつものは、S I Cウィスカーの生成
反応を迅速、円滑に進行させると共に結晶の伸長に必要
な内部空間を形成するために有効に作用して、生成収率
の増大化をもたらす。
Furnace carbon black has a different surface texture and particle structure from ordinary carbonaceous materials such as coke powder and graphite powder, and is suitable as a carbonaceous material in itself, but it is especially suitable for DBP oil absorption. Particles with an agglomerated structure with a particle size of 50m2 or more, 17100ft or more act effectively to make the SIC whisker production reaction proceed quickly and smoothly, as well as to form the internal space necessary for crystal elongation, thereby increasing the production yield. bring about an increase.

ファーネスカーボンブラック炭材は、けい素源原料に対
し60〜400重量%の割合で混合する必要があり、こ
の配合範囲を下廻ると微粒子状のSiC結晶が多量に生
成し、実質的にウィスカー収率の減退を招く。
Furnace carbon black carbonaceous material needs to be mixed at a ratio of 60 to 400% by weight with respect to the silicon source material, and if the mixture is below this range, a large amount of fine particulate SiC crystals will be generated, and whisker collection will be substantially reduced. resulting in a decline in the rate.

また、上記範囲を越える炭材の配合はウィスカー収率の
増大化には作用せず、寧ろ残留炭材の増加に伴う後処理
を煩雑にする。
Furthermore, blending of carbonaceous material exceeding the above range does not work to increase the whisker yield, but rather complicates post-treatment due to an increase in residual carbonaceous material.

けい素源原料と炭材は、十分均一に混合する。The silicon source material and the carbon material are mixed sufficiently and uniformly.

該原料系には、更に生成空間形成材としてNaC1、N
aF、KCIなどのアルカリ金属ハロゲン化物またはM
gCl2、CaF2などのアルカリ土類金属ハロゲン化
物を共存させておくと、加熱時、原料系内部にウィスカ
ー成長に有効な空間を形成するとともにけい素源原料の
気化を促進するフラックスとして機能し、生成収率と結
晶の伸長を一層助長する効果を与える。
The raw material system further contains NaCl and N as generation space forming materials.
Alkali metal halides such as aF, KCI or M
If alkaline earth metal halides such as gCl2 and CaF2 are allowed to coexist, they will form an effective space for whisker growth inside the raw material system during heating, and will also function as a flux that promotes the vaporization of the silicon source material, reducing the formation Provides the effect of further promoting yield and crystal elongation.

これらの生成空間形成材は、けい素源原料に対し45〜
200重量%の配合比で原料系に混合するか、底部に敷
きつめる等の手段によって共存させる。
These generation space forming materials have a ratio of 45 to
It is mixed into the raw material system at a blending ratio of 200% by weight, or made to coexist by spreading it on the bottom.

原料物質は、黒鉛のような耐熱性材料で構成された反応
容器に充填したのち加熱される。
The raw materials are filled into a reaction vessel made of a heat-resistant material such as graphite and then heated.

反応容器の加熱は、例えば周囲をコークス粒などのカー
ボンバッキング材で被包して通電加熱する方法を用い、
非酸化性雰囲気下で1300〜1800℃、望ましくは
1500〜1750℃の温度に少くとも2時間保持する
ことによりおこなわれる。
The reaction vessel can be heated, for example, by wrapping the periphery with a carbon backing material such as coke grains and heating it with electricity.
This is carried out by maintaining the temperature at 1300 to 1800°C, preferably 1500 to 1750°C, for at least 2 hours in a non-oxidizing atmosphere.

加熱過程で原料物質中のけい素成分と炭材成分は気相反
応により微小繊維状のSiCウィスカーに転化し、最終
的にカーボンブラック粒子構造の内部あるいは相互空間
の全域に亘って綿状に密生する。
During the heating process, the silicon component and carbonaceous component in the raw material are converted into microfiber-like SiC whiskers through a gas phase reaction, and finally they grow densely in a cotton-like manner throughout the interior or interspace of the carbon black particle structure. do.

生成物中に残留する未反応の炭材成分は、焼却処理によ
り除去する。
Unreacted carbonaceous components remaining in the product are removed by incineration.

焼却処理後の生成物は、少量の微粒子状SiCを含むほ
かは全て淡緑白色を呈するSiCウィスカーで、けい素
源原料に対する生成収率は理論収率に近似する。
The product after the incineration treatment is all pale green-white SiC whiskers except for a small amount of particulate SiC, and the production yield with respect to the silicon source material is close to the theoretical yield.

また、ウィスカーの性状は、直径0、2〜0.5 μm
、長さ30〜300μmの良好なアスペクト比をもつ
格子欠陥のないβ型単結晶である。
In addition, the whisker properties are 0.2 to 0.5 μm in diameter.
It is a β-type single crystal with a length of 30 to 300 μm and a good aspect ratio and no lattice defects.

このように本発明によれば、極めて安価なけい素源原料
を用いて高性能のSiCウィスカーを生成収率よく製造
することができるから、工業的規模において低原価に生
産することができる。
As described above, according to the present invention, high-performance SiC whiskers can be produced with good production yield using extremely cheap silicon source materials, and therefore can be produced at low cost on an industrial scale.

以下、本発明を実施例に基いて説明する。The present invention will be explained below based on examples.

実施例 l 5i0275%、Na2024%、その他CaO1AI
203などの成分1%を含有する組成のカレント(粒度
150メツシユ以下)をけい素源原料とし、これに炭材
としてDBP吸油f (J I S −A法)130m
l/100f、よう素吸着量104〜/2の特性を有す
るll5AF−Hs級ファーネスカーボンブラック〔“
5EAST 5H“、東海カーボン■製〕を配合比率
を変えて十分均一に混合した。
Example l 5i0275%, Na2024%, other CaO1AI
A current (particle size of 150 mesh or less) containing 1% of components such as 203 is used as a silicon source raw material, and DBP oil absorption f (JIS-A method) 130 m is added to this as a carbon material.
115AF-Hs class furnace carbon black with characteristics of l/100f and iodine adsorption amount of 104~/2 [“
5EAST 5H'', manufactured by Tokai Carbon ■] were mixed sufficiently uniformly by changing the blending ratio.

ついで混合原料の各50.Ofを内径70mm、高さ1
50mmの高純度黒鉛製反応容器に軽く充填し、反応容
器の上部に黒鉛蓋を付してアチソン型電気炉に移したの
ち、周囲をコークス粒バッキングで被包した。
Next, 50% of each of the mixed raw materials. Of is inner diameter 70mm, height 1
A 50 mm high-purity graphite reaction vessel was lightly filled, a graphite lid was attached to the top of the reaction vessel, and the mixture was transferred to an Acheson type electric furnace, and the surrounding area was covered with a coke grain backing.

炉を通電昇温し、炉内を非酸化性雰囲気に保持しながら
1650℃の温度に4時間加熱して反応を完結した。
The reaction was completed by heating the furnace at a temperature of 1650° C. for 4 hours while maintaining the inside of the furnace in a non-oxidizing atmosphere.

加熱処理後、反応容器から内容物を集収し、大気中で7
00℃の温度で熱処理して未反応の残留炭材成分を燃焼
除去した。
After heat treatment, collect the contents from the reaction vessel and store in the atmosphere for 7 days.
A heat treatment was performed at a temperature of 00°C to burn off unreacted residual carbonaceous components.

得られた生成物は、概ね直径0.2〜0.5μm、長さ
30〜80μmの性状を有する淡緑白色の藻草状短繊維
で、X線回折の結果、β−8iCの原子間距離2.51
人、1.54人の波長位置に極太ピークを示す格子欠陥
のないβ型SiCウィスカーであることが確認された。
The obtained product is pale greenish-white algae-like short fibers with a diameter of approximately 0.2 to 0.5 μm and a length of 30 to 80 μm, and as a result of X-ray diffraction, the interatomic distance of β-8iC is 2. .51
It was confirmed that the whiskers were β-type SiC whiskers with no lattice defects showing an extremely thick peak at a wavelength of 1.54 nm.

生成結果を適用した原料配合条件に対応させて表■に示
した。
The production results are shown in Table 3 in correspondence with the applied raw material blending conditions.

表■の結果は、炭材配合比が本発明範囲内にある例(’
RunA2〜5)において粒子状SiC混在度の少ない
SiCウィスカーが高収率で生成することを示すもので
ある。
The results in Table ■ show an example ('
This shows that in Runs A2 to A5), SiC whiskers containing less particulate SiC are produced in high yield.

実施例 2 実施例1と同組成のカレント100重量部に5i02含
有量98.2%のけい砂粉末(粒度150メツシュ)4
5重量部を混合したけい素源原料にDBP吸油量(JI
S−A法) 75m17100?よう素吸着量87■/
グの特性を有するHAF−Ls級ファーネスカーボンブ
ラック炭材 C5EAST300“、東海カーボン■製〕を300重
量部約−に混合した。
Example 2 Silica sand powder with a 5i02 content of 98.2% (particle size 150 mesh) was added to 100 parts by weight of a current having the same composition as in Example 1.
DBP oil absorption (JI
S-A method) 75m17100? Iodine adsorption amount 87■/
Approximately 300 parts by weight of HAF-Ls class furnace carbon black carbonaceous material C5EAST300'', manufactured by Tokai Carbon ■, which has the characteristics of

この原料系を実施例1と同一の条件で加熱処理した。This raw material system was heat treated under the same conditions as in Example 1.

得られた生成物は、5%程度の微粒子状SiCを含むほ
かは、直径0.2〜0.5μm1長さ30〜80μmの
性状を有する純粋なβ型SiCウィスカーで、けい素源
原料中のSi分に対する生成収率は90%であった。
The obtained product is a pure β-type SiC whisker with a diameter of 0.2 to 0.5 μm and a length of 30 to 80 μm, except that it contains about 5% of fine particulate SiC, and is The production yield based on Si content was 90%.

実施例 3 実施例10カレツト粉末とカーボンブラックか妊らなる
原料系のうちRunA3のものに、更にカレント粉末に
対し種々の割合で精製NaC1、Mg C12を添加し
て混合共存させたのち実施例1と同一条件で加熱処理し
た。
Example 3 Example 10 Among the raw material systems consisting of cullet powder and carbon black, to Run A3, purified NaCl and Mg C12 were added in various proportions to the current powder and allowed to coexist, and then Example 1 Heat treatment was performed under the same conditions as .

生成したSiCウィスカーは実施例1と同様のβ型主体
の純粋な単結晶であったが、NaC1゜MgCl2の共
存比率がけい素源原料に対して45〜200重量%の範
囲において生成反応が改善され、アスペクト比の増大と
若干の収率向上傾向が認められた。
The generated SiC whiskers were pure single crystals mainly composed of β type as in Example 1, but the generation reaction was improved when the coexistence ratio of NaC1゜MgCl2 was in the range of 45 to 200% by weight based on the silicon source material. It was observed that the aspect ratio increased and the yield slightly improved.

これらの結果を表■に示した。なお、NaF、CaF2
等その他のアルカリ金属またはアルカリ土類金属ハロゲ
ン化物を混合した場合にも、大略同様の結果が得られた
These results are shown in Table ■. In addition, NaF, CaF2
Approximately similar results were obtained when other alkali metal or alkaline earth metal halides were mixed.

Claims (1)

【特許請求の範囲】 1 SiO2およびNa2Oを主成分とするカレットま
たはこれとけい砂との混合物をけい素源原料とし、これ
に炭材としてDBP吸油量50m1/100グ以上の粒
子凝集構造を有するファーネスカーボンブラックを60
〜400重量%の割合で混合したのち非酸化性雰囲気下
で1300〜1800℃の温度に加熱することを特徴と
するSiCウィスカーの製造方法。 2 けい素源原料に対し、45〜200重量%のアルカ
リ金属またはアルカリ土類金属の7・ロゲン化物を共存
させる特許請求の範囲第1項記載のSiCウィスカーの
製造方法。
[Scope of Claims] 1. A furnace which uses cullet mainly composed of SiO2 and Na2O or a mixture thereof with silica sand as a silicon source raw material, and has a particle agglomerated structure with a DBP oil absorption of 50 m1/100 g or more as a carbon material. 60 carbon black
A method for producing SiC whiskers, which comprises mixing at a ratio of ~400% by weight and then heating to a temperature of 1,300 to 1,800°C in a non-oxidizing atmosphere. 2. The method for producing SiC whiskers according to claim 1, wherein 45 to 200% by weight of an alkali metal or alkaline earth metal 7-halogenide is allowed to coexist with respect to the silicon source material.
JP57051391A 1982-03-31 1982-03-31 Method for manufacturing SiC whiskers Expired JPS5945640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57051391A JPS5945640B2 (en) 1982-03-31 1982-03-31 Method for manufacturing SiC whiskers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57051391A JPS5945640B2 (en) 1982-03-31 1982-03-31 Method for manufacturing SiC whiskers

Publications (2)

Publication Number Publication Date
JPS58172297A JPS58172297A (en) 1983-10-11
JPS5945640B2 true JPS5945640B2 (en) 1984-11-07

Family

ID=12885635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57051391A Expired JPS5945640B2 (en) 1982-03-31 1982-03-31 Method for manufacturing SiC whiskers

Country Status (1)

Country Link
JP (1) JPS5945640B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279421A (en) * 1986-05-28 1987-12-04 Matsushita Graphic Commun Syst Inc Electronic filing device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127700A (en) * 1984-11-21 1986-06-14 Tokai Carbon Co Ltd Manufacture of sic whisker
FR2611694B1 (en) * 1987-02-23 1989-05-19 Pechiney Electrometallurgie PROCESS FOR THE PREPARATION OF SILICON CARBIDE TRICHITES
JPH01131100A (en) * 1987-11-12 1989-05-23 Toyota Motor Corp Production of silicon carbide whisker
CN111646471B (en) * 2020-06-22 2021-12-17 内蒙古海特华材科技有限公司 Preparation method of nano silicon carbide particles based on KCl shape regulator
CN111825093B (en) * 2020-07-31 2022-05-06 哈尔滨工业大学 Preparation method of SiC nano powder particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279421A (en) * 1986-05-28 1987-12-04 Matsushita Graphic Commun Syst Inc Electronic filing device

Also Published As

Publication number Publication date
JPS58172297A (en) 1983-10-11

Similar Documents

Publication Publication Date Title
US4500504A (en) Process for preparing silicon carbide whiskers
US4849196A (en) Process for producing silicon carbide whiskers
Fukuoka et al. Preparation and structure of a new germanium clathrate, Ba24Ge100
Amroune et al. Formation of Al2O3–SiC powder from andalusite and carbon
EP0170362B1 (en) Process for producing silicon carbide whisker
JPH02289497A (en) Manufacturing process for silicon carbide whisker and nucleating agent
US4690811A (en) Process for preparing silicon carbide whiskers
JPS599516B2 (en) Method for manufacturing silicon carbide whiskers
US5221526A (en) Production of silicon carbide whiskers using a seeding component to determine shape and size of whiskers
JPS5945640B2 (en) Method for manufacturing SiC whiskers
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
JPH0253400B2 (en)
US5080879A (en) Process for producing silicon carbide platelets and the platelets so produced
CA1214309A (en) Process for preparing metal carbides and precursors thereof
JPS599518B2 (en) SIC whisker manufacturing method
JP2683397B2 (en) Method for manufacturing SiC whiskers
EP0179670A2 (en) Production of silicon carbide cobweb whiskers
JPS6310120B2 (en)
KR970001524B1 (en) Process for the preparation of silicon carbide powder
JPH0313166B2 (en)
JPS63170207A (en) Production of high-purity silicon carbide powder
JPS6126600A (en) Preparation of beta type silicon carbide whisker
CA2004280A1 (en) Process for producing silicon carbide platelets and the platelets so-produced
JPS63248798A (en) Production of silicon carbide whisker
JPS63159297A (en) Production of silicon carbide whisker