JPS594372B2 - Method for producing easily graphitizable carbon material raw material - Google Patents

Method for producing easily graphitizable carbon material raw material

Info

Publication number
JPS594372B2
JPS594372B2 JP51122928A JP12292876A JPS594372B2 JP S594372 B2 JPS594372 B2 JP S594372B2 JP 51122928 A JP51122928 A JP 51122928A JP 12292876 A JP12292876 A JP 12292876A JP S594372 B2 JPS594372 B2 JP S594372B2
Authority
JP
Japan
Prior art keywords
coal
solvent
reaction
temperature
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51122928A
Other languages
Japanese (ja)
Other versions
JPS5348096A (en
Inventor
秀彦 杉村
寿 村上
俊勝 大坪
憲二 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Coke Co Ltd
Original Assignee
Mitsui Coke Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Coke Co Ltd filed Critical Mitsui Coke Co Ltd
Priority to JP51122928A priority Critical patent/JPS594372B2/en
Publication of JPS5348096A publication Critical patent/JPS5348096A/en
Publication of JPS594372B2 publication Critical patent/JPS594372B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 本発明はすべての炭種の石炭類すなわち、石炭、褐炭、
リグナイト、草炭等を原料とし、易黒鉛化性炭素材原料
としての溶剤精製炭の製造法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention applies to all types of coal, including coal, lignite,
This invention relates to a method for producing solvent-refined charcoal as a graphitizable carbon material raw material using lignite, grass charcoal, etc. as a raw material.

炭素材は大別して、異方性炭素材と等方性炭素材に分け
られる。
Carbon materials can be broadly classified into anisotropic carbon materials and isotropic carbon materials.

現在、工業的には異方性炭素材とりわけ易黒鉛化性コー
クスは特別な処理をほどこされたコールタール又は特殊
な組成を有する石油系重質油から製造されている。
Currently, anisotropic carbon materials, particularly graphitizable coke, are manufactured industrially from specially treated coal tar or petroleum-based heavy oil having a special composition.

等方性炭素材、とりわけ、高密度等方性炭素材は工業的
には異方性炭素材を微粉砕し、これをフィラーとして加
圧成型することにより製造されている。
Isotropic carbon materials, particularly high-density isotropic carbon materials, are industrially manufactured by pulverizing anisotropic carbon materials and press-molding the finely ground anisotropic carbon materials as fillers.

しかし将来世界的に炭素材需給が窮屈になることが予想
され炭素材の高価格化および品質低下が考えられる。
However, it is predicted that the supply and demand for carbon materials will become tight worldwide in the future, leading to higher prices and lower quality of carbon materials.

したがって、高品位の炭素材原料を量的に安定して供給
する必要にせまられている。
Therefore, there is an urgent need to stably supply high-grade carbon material raw materials in quantity.

従来炭素材の性状は原料によりほぼ一義的に決定ずけら
れていた。
Conventionally, the properties of carbon materials were determined almost exclusively by the raw materials.

したがって所望する性状を有する炭素材を得るために種
々な工夫がなされてきた。
Therefore, various efforts have been made to obtain carbon materials having desired properties.

たとえば、コールタールや石油系重質油から易黒鉛化性
炭素材を得るために、コールタールより不溶性固形分を
分離除去する方法や、石油系重質油の特定留分や溶剤分
別物を用いる方法が実用化されている。
For example, in order to obtain easily graphitizable carbon material from coal tar or petroleum heavy oil, there is a method that separates and removes insoluble solids from coal tar, or a method that uses a specific distillate or solvent fractionation product of petroleum heavy oil. The method has been put into practical use.

本発明は石炭類を水素加圧雰囲気下戻化水素溶剤に溶解
後脱灰溶剤回収し溶剤精製炭を製造する方法において、
其の反応条件を適宜選択することにより易黒鉛化性炭素
材原料を従来法に比し容易に安価に安定して提供する方
法である。
The present invention provides a method for producing solvent-refined coal by dissolving coal in a reconstituted hydrogen solvent under a hydrogen pressurized atmosphere and recovering a deashing solvent.
By appropriately selecting the reaction conditions, this method provides a graphitizable carbon material raw material more easily and stably at a lower cost than conventional methods.

元来石炭は難黒鉛化性炭素材原料である。Coal is originally a non-graphitizable carbon material raw material.

その原因としては多くの無機成分を含有すること、およ
び有機質の構造単位は三次元的に架橋結合し、炭化時の
分子の配向を困難なものにしているからである。
This is because it contains many inorganic components, and the organic structural units are three-dimensionally cross-linked, making it difficult to orient the molecules during carbonization.

したがって、石炭を易黒鉛化性炭素材原料へと転化する
には無機成分の除去、および三次元的架橋結合を解消す
る必要がある。
Therefore, in order to convert coal into a graphitizable carbon material raw material, it is necessary to remove inorganic components and eliminate three-dimensional crosslinking.

さらに、三次元的架橋結合の切断に加えて、脂肪族側鎖
の脱離を適当に制御することが必要である。
Furthermore, in addition to the cleavage of three-dimensional crosslinks, it is necessary to appropriately control the elimination of aliphatic side chains.

石炭は3環ないし4環の縮合芳香族と脂肪族側鎖とから
成る構造単位が三次元的に結合した高分子である。
Coal is a polymer in which structural units consisting of 3- or 4-ring fused aromatics and aliphatic side chains are bonded three-dimensionally.

したがって、これらを軽度の分解を行い溶剤抽出後脱灰
して得られる溶剤精製炭は石炭の化学構造をほぼそのま
ま継承しているため、その炭化物は石炭と同様難黒鉛化
性である。
Therefore, the solvent-refined coal obtained by mild decomposition, solvent extraction, and deashing has almost the same chemical structure as coal, and its carbide is non-graphitizable like coal.

さらに分解反応を進めると、溶剤精製炭を構成する分子
は架橋結合を切断し、脂肪族側鎖の脱離した縮合多環芳
香族炭化水素になる。
When the decomposition reaction proceeds further, the molecules constituting the solvent-refined coal break the crosslinks and become condensed polycyclic aromatic hydrocarbons from which aliphatic side chains have been eliminated.

縮合多環芳香族炭化水素は熱的に安定であることと、そ
れらが平面構造を有することから、液相炭化初期段階に
おける分子の再配列、積層および続いて起きる脱水素反
応により黒鉛構造の形成が容易になる。
Because condensed polycyclic aromatic hydrocarbons are thermally stable and have a planar structure, a graphite structure is formed through molecular rearrangement, stacking, and subsequent dehydrogenation during the initial stage of liquid phase carbonization. becomes easier.

また黒鉛化物の乱層構造の原因となる有機金属化合物お
よび灰分等が含まれていないので易黒鉛化性炭素材原料
として好ましい。
Furthermore, it is preferable as a raw material for easily graphitizable carbon material because it does not contain organometallic compounds, ash, etc. that cause the turbostratic structure of graphitized materials.

一般に石油系重質油を原料としてニードルコークスを製
造する場合石油中の有機金属化合物からの金属がコーク
ス中に残留し、とりわけニッケル、バナジウムは高濃度
で濃縮されるので、これを電極用炭素材として用いるこ
とは望ましくない。
Generally, when needle coke is produced using petroleum-based heavy oil as a raw material, metals from organometallic compounds in petroleum remain in the coke, and nickel and vanadium in particular are concentrated at high concentrations, so they are used as carbon material for electrodes. It is not desirable to use it as

また石油系残渣油に石油系分解油等を配合し特殊な組成
を有する石油系重質油から易黒鉛化性炭素材を製造する
方法が知られているが、この場合も特殊なティレイドコ
ーキングを組合せる必要があるばかりか、ニードルコー
クスの収率は低いものである。
There is also a known method for producing graphitizable carbon materials from petroleum-based heavy oil with a special composition by blending petroleum-based cracked oil with petroleum-based residual oil. Not only is it necessary to combine the two, but the yield of needle coke is low.

これら石油系重質油からニードルコークスを製造するこ
との困難さは、石油系重質油が本質的に芳香族性に乏し
いことに由来するものである。
The difficulty in producing needle coke from these petroleum-based heavy oils stems from the fact that petroleum-based heavy oils are inherently poor in aromaticity.

上記の石油系重質油に比較し、脂肪族側鎖の少ない縮合
多環芳香族炭化水素から構成され、有機金属化合物およ
び灰分を含有しない溶剤精製炭は高純度易黒鉛化性炭素
材原料として望ましい性状を具備している。
Compared to the petroleum-based heavy oils mentioned above, solvent-refined coal is composed of condensed polycyclic aromatic hydrocarbons with fewer aliphatic side chains and does not contain organometallic compounds or ash, and is used as a raw material for high-purity graphitizable carbon materials. It has desirable properties.

また石炭液化反応の主反応を構造単位からの脂肪族側鎖
の脱離反応および架橋結合の解離反応とすることにより
石炭の液化はより穏かな条件で行うことができる。
Furthermore, by making the main reactions of the coal liquefaction reaction the elimination reaction of aliphatic side chains from structural units and the dissociation reaction of crosslinking bonds, coal liquefaction can be carried out under milder conditions.

即ち本発明によれば、石炭の水添溶解反応条件を適宜選
択することに依り所望の化学構造を有し目的に適する溶
剤精製炭を製造することが出来るのである。
That is, according to the present invention, solvent-refined coal having a desired chemical structure and suitable for the purpose can be produced by appropriately selecting the hydrogenation and dissolution reaction conditions for coal.

さらに、詳細に本発明を説明すると、石炭を適当な粒度
に粉砕したのち、炭化水素系溶剤たとえば石炭乾留ター
ル、芳香族性石油系重質油あるいは本工程中発生する石
炭の分解生成物のうち、沸点範囲180℃ないし400
℃の留分と、石炭/溶剤比(重量ベース)が1:1ない
し1:10になる如く混合してスラリーとし、この混合
スラリーを水素分圧10Kp/ff1以上好ましくは5
0ないし200 Ky/artの圧力下に300℃ない
し500℃の温度で好ましくは420ないし460°C
温度で1分間以上好ましくは30分ないし300分間、
加熱溶解する。
Further, to explain the present invention in detail, after pulverizing coal to an appropriate particle size, a hydrocarbon solvent such as coal carbonization tar, aromatic petroleum heavy oil, or coal decomposition products generated during this process is used. , boiling point range 180℃~400℃
℃ fraction and the coal/solvent ratio (weight basis) is 1:1 to 1:10 to form a slurry, and this mixed slurry is heated to a hydrogen partial pressure of 10 Kp/ff1 or more, preferably 5
at a temperature of 300°C to 500°C, preferably 420 to 460°C, under a pressure of 0 to 200 Ky/art.
temperature for more than 1 minute, preferably 30 minutes to 300 minutes,
Heat and dissolve.

水素加圧は石炭成分を水添分解し解重合することによっ
て、本来非溶解成分であったものを溶解成分に変化させ
可溶成分を増大せしめ、石炭溶解率の向上に資すると同
時に有機硫黄を硫化水素に変化させ、溶剤精製炭の硫黄
除去に極めて有効である。
By hydrogenolyzing and depolymerizing coal components, hydrogen pressurization changes what was originally an insoluble component into a soluble component, increasing the soluble component, contributing to improving the coal dissolution rate, and at the same time removing organic sulfur. It is extremely effective in removing sulfur from solvent-refined coal by converting it into hydrogen sulfide.

原料として用いる石炭によって、石炭溶解の最適条件は
異なる。
The optimal conditions for coal melting differ depending on the coal used as a raw material.

一般に石炭のは反応温度を300〜500℃とする場合
、その温度における溶解率は反応時間が長くなるととも
に漸時増加し、ついにその温度における最高値に達する
Generally, when the reaction temperature of coal is 300 to 500°C, the dissolution rate at that temperature gradually increases as the reaction time increases, and finally reaches the maximum value at that temperature.

この間溶解した石炭分子の熱分解および縮重合が同時に
進行する。
During this time, thermal decomposition and polycondensation of the dissolved coal molecules proceed simultaneously.

溶解率が最高に達するまでは芳香環骨格の開裂により芳
香環環数が減少し、それにともない置換基割合が増加す
ると同時に、架橋結合の切断により構造単位質量、平均
分子数および一分子中の構造単位数の減少をきたす。
Until the dissolution rate reaches its maximum, the number of aromatic rings decreases due to cleavage of the aromatic ring skeleton, and as a result, the proportion of substituents increases, and at the same time, the structural unit mass, average number of molecules, and structure in one molecule increase due to the cleavage of crosslinks. This results in a decrease in the number of units.

溶解率が最高になったのちもさらに反応時間を長くする
と溶剤精製炭の熱分解により脂肪族側鎖の脱離反応が起
るとともに溶解した石炭分子の一部は再縮重合する。
If the reaction time is further increased even after the dissolution rate has reached its maximum, an elimination reaction of aliphatic side chains will occur due to thermal decomposition of the solvent-refined coal, and a portion of the dissolved coal molecules will undergo re-condensation polymerization.

本発明では、反応温度における溶解率が最高に達したの
ち、その温度よりもさらに温度を上昇させ一部縮重合を
伴いながら溶解石炭からの脂肪族側鎖の脱離反応を促進
し、溶解石炭をより芳香族化することを特徴としている
In the present invention, after the dissolution rate reaches the maximum at the reaction temperature, the temperature is further raised above that temperature to promote the elimination reaction of aliphatic side chains from the molten coal while partially causing condensation polymerization. It is characterized by making it more aromatic.

すなわち該温度における溶解率が最高に達したのち、さ
らに反応温度を該温度より5〜20℃上昇させ反応時間
を30分以上さらに継続して水添溶解反応を行う。
That is, after the dissolution rate reaches the maximum at the temperature, the reaction temperature is further raised by 5 to 20° C. and the reaction time is continued for 30 minutes or more to carry out the hydrogenation dissolution reaction.

反応温度の上昇が5℃未満であると、溶解石炭からの脂
肪族側鎖の脱離反応に長時間を要して経済的でない。
If the rise in reaction temperature is less than 5° C., the elimination reaction of aliphatic side chains from molten coal takes a long time, which is not economical.

また20℃を越えると溶解石炭の熱分解反応を活発化し
てコーキングを起こす。
Moreover, if the temperature exceeds 20°C, the thermal decomposition reaction of the molten coal will be activated and coking will occur.

更に反応温度を5〜20℃上昇したあとの反応時間が3
0分未満では溶解石炭の縮重合が不十分であり、溶解し
た石炭分子の芳香族化が進行しない。
The reaction time after further increasing the reaction temperature by 5 to 20℃ is 3.
If it is less than 0 minutes, the condensation polymerization of the molten coal will be insufficient, and the aromatization of the molten coal molecules will not proceed.

溶解率が最高になった後の反応の際にも水素圧は保つ必
要がある。
It is necessary to maintain hydrogen pressure even during the reaction after the dissolution rate has reached its maximum.

水素は脱離した脂肪族ラジカルあるいは芳香族ラジカル
の停止反応に寄与し、熱分解に伴う急速なコーキングを
抑制する。
Hydrogen contributes to the termination reaction of eliminated aliphatic radicals or aromatic radicals, and suppresses rapid coking associated with thermal decomposition.

以上の処理を行うことにより、溶解した石炭からの脂肪
族側鎖の脱離反応は促進され、溶解した石炭分子は芳香
族化する。
By carrying out the above treatment, the elimination reaction of aliphatic side chains from the melted coal is promoted, and the melted coal molecules become aromatic.

脱灰後、溶剤を回収して得られた石炭液化物の芳香族性
は上記の処理により増大し、炭化歩留は向上し、黒鉛化
度の秀れた炭素材を得ることが出来る。
After deashing, the aromaticity of the coal liquefied product obtained by recovering the solvent is increased by the above treatment, the carbonization yield is improved, and a carbon material with an excellent graphitization degree can be obtained.

以上の如く水添溶解反応条件を設定させることにより溶
剤精製炭の化学構造を変えることが出来る。
By setting the hydrogenation and dissolution reaction conditions as described above, the chemical structure of solvent-refined coal can be changed.

従って易黒鉛化性炭素材の原料としての溶剤精製炭を容
易に安定して製造することが出来るのである。
Therefore, it is possible to easily and stably produce solvent-refined charcoal as a raw material for graphitizable carbon materials.

以下実施例により本発明を説明するが、これにより制約
されるものではない。
The present invention will be explained below with reference to Examples, but is not limited thereto.

実施例 攪拌機付0.51オートクレーブに60メツシユ以下に
粉砕した豪州症リグナイト50gと沸点範囲200ない
し400°Cのタール系油を150y加え、攪拌混合し
てスラリー化した。
EXAMPLE 50 g of Australian lignite crushed to 60 mesh or less and 150 y of tar-based oil having a boiling point range of 200 to 400° C. were added to a 0.51 autoclave equipped with a stirrer and stirred and mixed to form a slurry.

オートクレーブ内に水素ガスを60Ky/ff1Gまで
圧入し、内容物を410℃まで3℃/minで昇温し、
その温度で30分間反応を行った。
Hydrogen gas was pressurized to 60 Ky/ff1G into the autoclave, and the contents were heated to 410°C at a rate of 3°C/min.
The reaction was carried out at that temperature for 30 minutes.

この時リグナイトの溶解率は最高に達した。At this time, the dissolution rate of lignite reached its maximum.

その後反応温度を425℃に上昇し其の温度で30分(
サンプルA)、90分(サンプルB)、210分(サン
プルC)、夫夫反応を継続した。
After that, the reaction temperature was raised to 425°C and the reaction was continued at that temperature for 30 minutes (
The husband-husband reaction was continued for sample A), 90 minutes (sample B), and 210 minutes (sample C).

反応終了後室温まで冷却し内容物をとり出した。After the reaction was completed, it was cooled to room temperature and the contents were taken out.

内容物を減圧濾過した後、真空蒸留を行い溶剤を回収し
た。
After filtering the contents under reduced pressure, vacuum distillation was performed to recover the solvent.

得られた溶剤精製炭の物性を表1に、さらにそれぞれの
溶剤精製炭を430℃で2時間加熱したものの物性を表
2に、およびその偏光顕微鏡写真を夫々第1図〜第3図
に示す。
The physical properties of the obtained solvent-refined charcoal are shown in Table 1, the physical properties of each solvent-refined charcoal heated at 430°C for 2 hours are shown in Table 2, and the polarized light micrographs are shown in Figs. 1 to 3, respectively. .

溶剤精製炭の熱処理物をさらに430℃で22時間加熱
したところ針状コークスが得られた。
When the heat-treated solvent-refined coal was further heated at 430° C. for 22 hours, needle coke was obtained.

このコークスを1350℃および2800℃で焼成しそ
れぞれの性状を表3に示す。
This coke was fired at 1350°C and 2800°C, and the properties of each are shown in Table 3.

比較例 実施例と同じ方法で内容物を410℃まで3℃/min
で昇温し410℃に達した時の溶剤精製炭(サンプルD
)、その後30分間その温度で反応を行い最高溶解率に
達した時の溶剤精製炭(サンプルE)の物性を表4に、
さらにそれぞれの溶剤精製炭を430℃で2時間加熱し
たものの物性を表5に、その偏光顕微鏡写真を夫々第4
図〜第5図に示す。
Comparative Example The contents were heated to 410°C at 3°C/min in the same manner as in the Example.
Solvent refined coal (Sample D) when the temperature was raised to 410℃
), and the physical properties of the solvent-refined coal (sample E) when the reaction was then carried out at that temperature for 30 minutes and the maximum dissolution rate was reached are shown in Table 4.
Furthermore, the physical properties of each solvent-refined coal heated at 430°C for 2 hours are shown in Table 5, and the polarized light micrographs are shown in Table 4.
It is shown in Figs.

溶剤精製炭の熱処理物をさらに430℃で22時間加熱
した後1350℃および2800℃で焼成したそれぞれ
の性状を表6に示す。
Table 6 shows the properties of the heat-treated solvent-refined coal that was further heated at 430°C for 22 hours and then fired at 1350°C and 2800°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は本発明による溶剤精製炭の偏
光顕微鏡写真。 第4図、第5図は比較例による試験の偏光顕微鏡写真で
ある。
FIGS. 1, 2, and 3 are polarized light micrographs of solvent-refined coal according to the present invention. FIGS. 4 and 5 are polarized light micrographs of tests according to comparative examples.

Claims (1)

【特許請求の範囲】[Claims] 1 石炭類を水素加圧雰囲気にて炭化水素溶剤に溶解し
、次いで未溶解成分を分離し溶剤を除去して溶剤精製炭
を製造する方法において、石炭類と溶剤からなるスラリ
ーを300℃〜500’Cの温度範囲に加熱し、石炭の
溶解率が該温度における最高値に達した後、該温度より
5〜20℃高い温度で30分以上反応をさらに継続する
ことを特徴とする易黒鉛化性炭素材原料の製造方法。
1 In a method of producing solvent-refined coal by dissolving coal in a hydrocarbon solvent in a hydrogen pressurized atmosphere, then separating undissolved components and removing the solvent, a slurry consisting of coal and a solvent is heated at 300°C to 500°C. Graphitization characterized by heating to a temperature range of 'C, and after the melting rate of coal reaches the maximum value at that temperature, the reaction is further continued for 30 minutes or more at a temperature 5 to 20 degrees C higher than the temperature. A method for producing a carbon material raw material.
JP51122928A 1976-10-15 1976-10-15 Method for producing easily graphitizable carbon material raw material Expired JPS594372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51122928A JPS594372B2 (en) 1976-10-15 1976-10-15 Method for producing easily graphitizable carbon material raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51122928A JPS594372B2 (en) 1976-10-15 1976-10-15 Method for producing easily graphitizable carbon material raw material

Publications (2)

Publication Number Publication Date
JPS5348096A JPS5348096A (en) 1978-05-01
JPS594372B2 true JPS594372B2 (en) 1984-01-30

Family

ID=14848069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51122928A Expired JPS594372B2 (en) 1976-10-15 1976-10-15 Method for producing easily graphitizable carbon material raw material

Country Status (1)

Country Link
JP (1) JPS594372B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559037Y2 (en) * 1974-01-24 1980-02-27

Also Published As

Publication number Publication date
JPS5348096A (en) 1978-05-01

Similar Documents

Publication Publication Date Title
AU772094B2 (en) Method of making a reinforced carbon foam material and related product
NZ247709A (en) Process for producing solvated mesophase pitch and carbon artifacts therefrom
JPS59131692A (en) Manufacture of meso phase pitch
CN110041952B (en) Mesophase pitch and preparation method thereof
CA2202525C (en) Process for isolating mesophase pitch
US4640761A (en) Process for preparing pitch
CA1267861A (en) Process for producing crude coal-tar pitches having improved properties and use of same
MXPA97003289A (en) Process to insulate pez mesofas
US4427531A (en) Process for deasphaltenating cat cracker bottoms and for production of anisotropic pitch
US4554148A (en) Process for the preparation of carbon fibers
KR101381050B1 (en) Method for preparation of carbonaceous substance derived from coal
JPS594372B2 (en) Method for producing easily graphitizable carbon material raw material
CN113604241B (en) Method for preparing needle coke by medium-low temperature coal tar pitch composite extraction modification
US4117098A (en) Process for manufacturing a carbonaceous material
KR101353457B1 (en) Method of preparing needle cokes
KR101359266B1 (en) Method for Preparing of Coal Pitch
JPH0149316B2 (en)
US4014781A (en) Method for producing pitch and coke
JPS58156023A (en) Production of carbon fiber
SU1055338A3 (en) Method for dissolving coal
CN113684057B (en) Process for producing needle coke blending raw material for joint by using naphthenic asphalt and aromatic-rich fuel oil
JPS5910717B2 (en) Production method of heavy oil for high-grade carbon material raw material
JPS60106882A (en) Method for refining heavy bituminous substance
CN117683558A (en) Solvent and solvent deasphalting process for solvent deasphalting of catalytic cracking slurry oils
JPH10316972A (en) Production of needle coke