JPS5941699A - Improved turbo-type vacuum pump - Google Patents

Improved turbo-type vacuum pump

Info

Publication number
JPS5941699A
JPS5941699A JP15212082A JP15212082A JPS5941699A JP S5941699 A JPS5941699 A JP S5941699A JP 15212082 A JP15212082 A JP 15212082A JP 15212082 A JP15212082 A JP 15212082A JP S5941699 A JPS5941699 A JP S5941699A
Authority
JP
Japan
Prior art keywords
film
vacuum
blade
turbine
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15212082A
Other languages
Japanese (ja)
Other versions
JPH0338435B2 (en
Inventor
Shotaro Oka
正太郎 岡
Osamu Tawara
修 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP15212082A priority Critical patent/JPS5941699A/en
Publication of JPS5941699A publication Critical patent/JPS5941699A/en
Publication of JPH0338435B2 publication Critical patent/JPH0338435B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To obtain high vacuum by forming a high-polymeric thin film closely onto the surface of a turbine blade through plasma polymerization method and preventing gas from intruding into between the blade and the film. CONSTITUTION:An air intake port 7 of an air cooling type turbo molecular pump 1 is connected to an object apparatus, and a motor 2 is driven, and then the gas in the apparatus is discharged through the pump 1. The surface of a turbine blade possesses the superior resistance to chemicals, since the surface is coated and protected by a plasma-polymerized polymethacrolein film 11. Since said film 11 is formed from in close adhesion the corresponding monomer in the vacuum environment, there is no possibility for gas to invade into between the film 11 and the blade 10. Therefore, the high vacuum or super high vacuum in the equal degree to that with the turbine blade onto which surface processing is not applied can be obtained.

Description

【発明の詳細な説明】 この発明は、ターボ式真空ポンプに関する。さらに詳し
くは、耐久性に富み、高い真空度が得られる改良された
ターボ式真空ポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a turbo vacuum pump. More specifically, the present invention relates to an improved turbo vacuum pump that is highly durable and provides a high degree of vacuum.

従来から、高真空あるいは超高真空を得る装置として、
ターボ式真空ポンプが知られている。ターボ式真空ポン
プは別名ターボ分子ポンプと称されているものであり、
基本的にタービン、タービ1            
              /I7ン駆動用モーター
、吸気口及び排気口から構成されており、潤滑油が逆流
しにくいタービン排気原理を用いているため他の真空ポ
ンプに比して清浄な高真空あるいは超高真空(通常、l
O〜10Torrオーダーの真空度)が得られるもので
ある。
Conventionally, as a device for obtaining high vacuum or ultra-high vacuum,
Turbo vacuum pumps are known. Turbo vacuum pumps are also known as turbo molecular pumps.
Basically turbine, turbine 1
/ I7 Consists of a drive motor, an intake port, and an exhaust port, and uses a turbine exhaust principle that prevents lubricating oil from flowing back. Compared to other vacuum pumps, it produces a cleaner high vacuum or ultra-high vacuum (normally ,l
A degree of vacuum on the order of 0 to 10 Torr can be obtained.

しかしながら、かようなターボ式真空ポンプを、プラズ
マエツチング装置、スパッタリング装置等の真空ポンプ
として使用した場合には、上記装置からの活性化された
ガス(例えば、N2、アルゴン等」が高速回転(約9万
回転/分)しているタービンのタービン翼(例えばロー
タ翼やステータ翼;通常、耐食性アルミニウムからなる
)に高速で衝突するため、これらの翼が腐食され易く、
長期間使用するとタービン翼(ことに、ロータH)が腐
食に耐え切れず破壊、飛散する惧れがあり、耐久性に問
題があった。このため、第2図に示すよう1こ上記ター
ビン翼(IIの表面を粗面化したのち蒸着等により酸化
アルミ層(通常、30μm程度)aりを形成させさらに
その表面を粗面化しその上にテフロンコーティング(通
常、20pm程度) Q3を湿式で行なったタービン翼
を用いて腐食を防止する提案もなされている。しかし、
かようなテフロン処理を施17たタービン翼を用いたタ
ーボ式真空ポンプによって得られる真空度は10−7〜
10= ’J’orrオーダーであり、テフロン処理を
行なわない場合(10〜10   Torrオーダーツ
に比して約1桁低下するという問題があった。その原因
は、酸化アルミ層の形成やテフロンコーティング処理の
工程において下4All基盤(1lli’1食性アルミ
ニウムノとこれらとの層間あるいは各層間にガスが封じ
込まれ、これが真空下において除々に逸散し真空度を低
下させるためと考えられる(ことに、テフロンは酸素、
炭酸ガス等の透過性が良好なため内部ζこ持ち込まれた
ガス成分は真空下において逸散し易い)。
However, when such a turbo vacuum pump is used as a vacuum pump for a plasma etching device, a sputtering device, etc., the activated gas (e.g., N2, argon, etc.) from the device is rotated at high speed (approx. 90,000 revolutions per minute), the turbine blades (e.g. rotor blades and stator blades; usually made of corrosion-resistant aluminum) are collided at high speed, making these blades susceptible to corrosion.
If used for a long period of time, the turbine blades (particularly the rotor H) may not be able to withstand corrosion and may break or fly off, posing a problem with durability. For this reason, as shown in Fig. 2, the surface of one turbine blade (II) is roughened, and then an aluminum oxide layer (usually about 30 μm) is formed by vapor deposition, etc., and the surface is further roughened. There have also been proposals to prevent corrosion by using turbine blades that have been wet-treated with Teflon coating (usually about 20 pm).However,
The degree of vacuum obtained by a turbo vacuum pump using such Teflon-treated turbine blades is 10-7~
10 = 'J'orr order, and when Teflon treatment is not performed (10 to 10 Torr order), there is a problem that it is about one order of magnitude lower.The cause is the formation of an aluminum oxide layer and the Teflon coating treatment. This is thought to be because gas is trapped between the lower 4All substrate (1lli'monocorrosive aluminum) and these layers or between each layer in the process, and this gradually dissipates under vacuum and lowers the degree of vacuum (particularly, Teflon is oxygen,
Because it has good permeability to carbon dioxide, etc., gas components brought into the interior easily dissipate under vacuum).

この発明は、かような従来の問題点を解消すべくなされ
たものである。
This invention has been made to solve these conventional problems.

カ<シて、この発明によれば、タービン、タービン駆動
用モーター、吸気口及び排気口を備えてなるターボ式真
空ポンプにおいて、タービン翼表面にプラズマ重合法に
よって高分子薄膜を密着形成したことを特徴とする改良
されたターボ式真空ポンプが提供される。
According to the present invention, in a turbo vacuum pump comprising a turbine, a turbine drive motor, an intake port, and an exhaust port, a thin polymer film is closely formed on the surface of the turbine blade by a plasma polymerization method. An improved turbo vacuum pump is provided.

以下、この発明のターボ式真空ポンプの具体例について
説明する。第1図はこの発明の真空ポンプを例示する空
冷式ターボ分子ポンプ(1)の部分断面図を示す。図に
おいて、タービン駆動用モーター(2)により駆動軸(
3)は規定回転数に駆動される。
Hereinafter, specific examples of the turbo vacuum pump of the present invention will be described. FIG. 1 shows a partial sectional view of an air-cooled turbomolecular pump (1) illustrating the vacuum pump of the present invention. In the figure, the turbine drive motor (2) drives the drive shaft (
3) is driven to a specified rotation speed.

駆動軸には、ロータ翼(4a)を備えたロータ部(4)
が取りつけてあり、ロータ翼間にはステータ部(5)に
付設するステータPi(5a)が配置されその間1こは
位1i′2決めのためIこスペー→j−−(5bJが挿
入されている。なお、(6)は潤滑面フィルターを備え
た油タンク、(7)は吸気口、(8)は排気口、(9)
はポンプ内にゴミが入るのを防ぐための保護ネットをそ
れぞれ示す。上記ロータ翼(4)及びステータ翼(5)
は耐食性アルミニウムからなりその各翼の表面ζこは第
3図イこ示すように厚さ約1μmのプラズマ重合ポリメ
タクロレイン膜(11)が密着形成されてなる。
The drive shaft includes a rotor section (4) equipped with rotor blades (4a).
is attached, and a stator Pi (5a) attached to the stator part (5) is arranged between the rotor blades, and a space I →j--(5bJ is inserted between them to determine the position 1i'2). In addition, (6) is an oil tank equipped with a lubricating surface filter, (7) is an intake port, (8) is an exhaust port, and (9) is an oil tank equipped with a lubricating surface filter.
indicates a protective net to prevent dirt from entering the pump. The above rotor blade (4) and stator blade (5)
is made of corrosion-resistant aluminum, and a plasma-polymerized polymethacrolein film (11) with a thickness of about 1 μm is closely formed on the surface of each blade, as shown in FIG.

上記、空冷式ターボ分子ポンプ(月の吸気口(7)を、
対象とする装置に接続し、モーター(2)を駆動させる
ことにより装置内の気体はポンプ(1)を通じて脱気さ
れ、高1f空や超高真空の状態を得ることができる。そ
してロータ翼やステータ翼のようなタービン翼表面は、
ピンホールがなく架橋度の高いプラズマ重合ポリメタク
ロレイン膜(11)によって被覆保護されているため耐
薬品性に優れており、プラズマエツチング装置、スパッ
タリング装置等からの活性化されたガスによって腐食さ
れることはない。さらにかような膜(11)はプラズマ
重合法lこよって貰空雰囲気下においてその場で対応す
るモノマーから密着形成されているため、膜(1])と
翼fllとの間にガスを持ち込む可能性はほとんどない
。従って、得られる真空度も10−8〜10−” To
rrオーダーであり、表面処理を行なっていないタービ
ンNと同程度の高真空、超高真空を得ることができ、前
述したテフロンコーティングのような真空度の低下は認
められない。さらに従来のテフロンコーテイング膜(例
えば、40〜50μm)よりも極めて薄い膜(例えば、
1μm)で優れた耐食性を示すため、タービン翼ことに
ロータ翼の重量をほと4− んど増加させることがないためタービンの回転トルクI
こ悪影響を与えない。
Above, the air-cooled turbomolecular pump (moon intake port (7),
By connecting to the target device and driving the motor (2), the gas inside the device is degassed through the pump (1), making it possible to obtain a high 1f empty or ultra-high vacuum state. The surfaces of turbine blades such as rotor blades and stator blades are
Because it is coated and protected by a plasma-polymerized polymethacrolein film (11) with no pinholes and a high degree of crosslinking, it has excellent chemical resistance and is corroded by activated gas from plasma etching equipment, sputtering equipment, etc. Never. Furthermore, since such a film (11) is formed in close contact with the corresponding monomer on the spot in an air atmosphere by plasma polymerization, it is possible to introduce gas between the film (1) and the blade. There is almost no sex. Therefore, the degree of vacuum obtained is also 10-8 to 10-” To
rr order, it is possible to obtain a high vacuum or an ultra-high vacuum comparable to that of turbine N without surface treatment, and there is no decrease in the degree of vacuum as with the Teflon coating described above. Furthermore, the film is much thinner than the conventional Teflon coating film (e.g. 40 to 50 μm).
1μm), it hardly increases the weight of the turbine blades, especially the rotor blades, and reduces the rotational torque I of the turbine.
This has no negative impact.

かような、この発明のターボ式真空ポンプは、対応する
タービン翼にプラズマ重合法によって高分子薄膜を形成
させることにより得られたものである。このプラズマ重
合法とは、高真空下のモノマー雰囲気下でグロー放電に
よってモノマーを重合させる所謂低温プラズマ重合法を
意味するものであり、得られる高分子の構造、組成及び
膜の均一性の点から低周波放電によるプラズマ重合法を
用いることが好ましい。この際の低周波とは1〜100
 )G(zを意味する。ことにできるだけ高真空下(1
0Torr以上〕で行なえばガスの持ち込みがより減少
される点好ましい。さらに、モノマ“−を入れる前に、
タービン翼を高真空下をこ保持させて充分に基材の脱ガ
スを行なう前処理も好ましい態様の一つである。この際
、用いるモノマーとしては通常、重合性官能基を有する
化合物ことにエチレン、スチレン、メタクロレイン、テ
トラフルオロエチレン、ヘキサフルオロプロペン等の工
チレン性不飽和結合を有する有機化合物が適当であり、
これ以外にポリアミド等の合成樹脂作製用の千ツマ−な
どが適用でき、さらに通常の組合法では重合しないパラ
フィン、ベンゼン、アセトン等もプラズマ重合法(こよ
って重合できるので使用可能である。これらのうち、適
当な条件下でメタクロレインを使用すると、有機溶媒の
超音波洗浄奢こおいても全(変化せず、アツチの炎に対
しても全く変化しない程、山薬品性、耐熱性に優れた保
挿膜が得られるため好ましい態様の一つである。
Such a turbo vacuum pump of the present invention is obtained by forming a polymer thin film on a corresponding turbine blade using a plasma polymerization method. This plasma polymerization method refers to the so-called low-temperature plasma polymerization method in which monomers are polymerized by glow discharge in a monomer atmosphere under high vacuum, and is important in terms of the structure and composition of the resulting polymer and the uniformity of the film. It is preferable to use a plasma polymerization method using low frequency discharge. The low frequency in this case is 1 to 100
) G (means z. Especially under high vacuum (1
It is preferable to carry out the process at a temperature of 0 Torr or higher, since the amount of gas carried in can be further reduced. Furthermore, before adding the monomer “-,
Pretreatment in which the turbine blade is held under high vacuum to sufficiently degas the base material is also a preferred embodiment. In this case, suitable monomers are usually compounds having a polymerizable functional group, and organic compounds having an ethylene unsaturated bond such as ethylene, styrene, methacrolein, tetrafluoroethylene, hexafluoropropene, etc.
In addition to this, it is also possible to use 100% polymers for producing synthetic resins such as polyamide, and furthermore, paraffin, benzene, acetone, etc., which cannot be polymerized by ordinary combination methods, can be polymerized by plasma polymerization (this method can be used). Among them, when methacrolein is used under appropriate conditions, it has excellent chemical resistance and heat resistance, so that it does not change even when exposed to ultrasonic cleaning using an organic solvent, and does not change at all even when exposed to hot flames. This is one of the preferred embodiments because it provides a durable membrane.

なお、これらのモノマー上方は通常、0.1〜3’ro
rrが適当であり、約I Torrがより好ましい。
Note that the upper part of these monomers is usually 0.1 to 3'ro
rr is suitable, with about I Torr being more preferred.

この発明において、タービン翼表面に上記プラズマ重合
膜を被覆する具体的な方法としては、タービンを前記プ
ラズマ重合条件下ζこセットし放電を行なってその表面
にプラズマ重合膜を形成させるのが簡便であるが、少な
くともタービン翼ことに高速回転するロータ翼表面に保
穫膜を形成させればよ(、部分的にプラズマ重合条件に
付してもよい。より実用的な方法としてはタービン翼の
構成正位であるff14図iこ示ずロータMIJング圓
をぞれぞれ第5FAに示すように、真空容器(15)内
の支柱(19)に固定し、該容器09内を真空配管0η
て少なくとも10−”f’orr以下の高衰空としかつ
モノマーaωを揮発させてモノマー雰囲気とI7、RF
電源c′!Ω目こより、放tit ?[f、極(18)
と放電対極となるロータ買リング04)との間(こ放電
を行なうこと番こよりロータ漂(4aJ(こ高分子薄膜
を密着形成させる方法が挙げられる。
In the present invention, as a specific method for coating the surface of the turbine blade with the plasma polymerized film, it is easy to set the turbine under the plasma polymerization conditions and generate a discharge to form the plasma polymerized film on the surface. However, at least it is possible to form a protective film on the surface of the turbine blade, especially the rotor blade that rotates at high speed (or it may be partially subjected to plasma polymerization conditions.A more practical method is to As shown in the 5th FA, the rotor MIJ ring (not shown) of ff14 in the normal position is fixed to the pillar (19) in the vacuum container (15), and the inside of the container 09 is connected to the vacuum pipe 0η.
to create a high attenuation atmosphere of at least 10-"f'orr or less, and volatilize the monomer aω to form a monomer atmosphere and I7, RF
Power c′! Omega Koyori, release tits? [f, pole (18)
In order to perform this discharge, a method of forming a thin polymer film in close contact with the rotor drift (4aJ) is used.

このようEこして得られた高分子薄膜被覆ロータ翼リン
グを組合せてロータ部を構成し、これを用いることによ
り、この発明のターボ式真空ポンプか得られる。また、
ステータ翼の高分子薄膜の被覆も同様にプラズマ重合法
(こよって行なうことができる。なお、図中、I21)
は密閉用のO−リングである。この際の各種条件は前述
の通りであり、放電電極σ(至)とロータ蔚リング(I
41間の適当な間隔は例えば約25mmであり、放電時
間は意図する膜厚番こよっても異なるが、通常、充分な
耐食性の膜を得る番こは約30〜1.80秒が適当であ
る。
By combining the rotor blade rings coated with the polymer thin film obtained in this way to form a rotor part, and using this, the turbo vacuum pump of the present invention can be obtained. Also,
The coating of the polymer thin film on the stator blades can also be done by the plasma polymerization method (I21 in the figure).
is an O-ring for sealing. The various conditions at this time are as described above, including the discharge electrode σ (to) and the rotor ring (I).
A suitable distance between the two is, for example, about 25 mm, and the discharge time varies depending on the intended film thickness, but usually about 30 to 1.80 seconds is appropriate to obtain a film with sufficient corrosion resistance. .

以上述べたように、この発明のターボ式真空ボ 7− ンブは、そのタービン翼表面にプラズマ重合法によるピ
ンホールフリーで密着性の優れた高分子薄膜が被覆形成
されているため、真空度を低下させることなく優れた耐
久性を示すものである。才た、従来のコーティングに比
して、タービン翼表面の粗面化を行なうことなく乾式1
程で短時間で簡便にコートできるため処理工程が簡便で
工業上有利である。さらに従来に比して極めて薄い膜に
よりり〜ビン翼の充分な耐食性が得られるため、タービ
ン翼の重量増加は実質的に無視でき、回転トルク等への
影響もない。
As described above, the turbo vacuum bomb of the present invention has a pinhole-free polymer thin film with excellent adhesion formed on the surface of the turbine blade by plasma polymerization, so that the vacuum level can be reduced. It shows excellent durability without any deterioration. Compared to conventional coatings, it is possible to apply dry coating without roughening the turbine blade surface.
Since coating can be done simply and in a short time, the treatment process is simple and industrially advantageous. Further, since sufficient corrosion resistance of the turbine blade can be obtained by using an extremely thin film compared to the conventional film, an increase in the weight of the turbine blade can be substantially ignored, and there is no effect on rotational torque or the like.

なお、プラズマ重合薄膜を形成後、その表面を、窒素ガ
ス、酸素ガス、弗化メタン等のガスの雰囲気下、プラズ
マ処理して膜中にN、0.Fなどの成分を導入し、膜の
耐薬品性、耐食性、耐熱性等をさらに向上させることも
可能である。
After forming the plasma-polymerized thin film, its surface is plasma-treated in an atmosphere of gas such as nitrogen gas, oxygen gas, or fluorinated methane to add N, 0. It is also possible to further improve the chemical resistance, corrosion resistance, heat resistance, etc. of the film by introducing a component such as F.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明のターボ式真空ポンプを例示する部
分断面図、第2図は、従来のターボ式真= 8− 空ポンプのタービン飽表面構造を例示する模式的部分断
面図、第3図は、この発明のターボ式真空ポンプを例示
する第2図相当図、第4図は、ターボ式真空ポンプのロ
ータ翼リングを例示する斜視図、第5図は、この発明の
ターボ式真空ポンプの製造工程を例示する構成説明図で
ある。 (1)・・ターボ分子ポンプ、 (2)・・・タービン駆動用モーター、(3)・・駆動
軸、    (4)・・ロータ部、(4a)・・・ロー
タ翼、  (5)・・・ステータ部、(5a)・・ステ
ータ翼、(5b)・・・スペーサー、(6)・・油タン
ク、    (7)・・・吸気口、(8)・・排気口、
    (9)・・・保護ネット、aO+・・・タービ
ン翼、 [11・・プラズマ重合メタクロレイン膜、(12)・
・・酸化アルミ層、 !+31・・・テフロンコーティング、(117・・ロ
ータ翼リング、但)・・・真空容器、(10・・・モノ
マー、   (171・・・真空配管、(181・・・
放電電極、   弱・・支柱、001− RF [源、
    (211−0−U ング。 −11− 第1図 口 寸 鍜
FIG. 1 is a partial cross-sectional view illustrating the turbo vacuum pump of the present invention, FIG. 2 is a schematic partial cross-sectional view illustrating the turbine saturated surface structure of a conventional turbo vacuum pump, and FIG. 2 is a view corresponding to FIG. 2 illustrating the turbo vacuum pump of the present invention, FIG. 4 is a perspective view illustrating the rotor blade ring of the turbo vacuum pump, and FIG. 5 is a view corresponding to FIG. FIG. 2 is a configuration explanatory diagram illustrating the manufacturing process of FIG. (1)...turbo molecular pump, (2)...turbine drive motor, (3)...drive shaft, (4)...rotor section, (4a)...rotor blade, (5)...・Stator part, (5a)...Stator blade, (5b)...Spacer, (6)...Oil tank, (7)...Intake port, (8)...Exhaust port,
(9)...protective net, aO+...turbine blade, [11...plasma polymerized methacrolein film, (12)...
...Aluminum oxide layer! +31...Teflon coating, (117...rotor blade ring, however)...vacuum container, (10...monomer, (171...vacuum piping, (181...)
Discharge electrode, weak... support, 001- RF [source,
(211-0-U ng. -11- Figure 1 mouth dimensions

Claims (1)

【特許請求の範囲】[Claims] (1)  タービン、タービン駆動用モーター、吸気口
及び排気口を備えてなるターボ式真空ポンプにおいて、
タービン翼表面にプラズマ重合法によって高分子薄膜を
密着形成したことを特徴とする改良されたターボ式真空
ポンプ。
(1) In a turbo vacuum pump comprising a turbine, a turbine drive motor, an intake port, and an exhaust port,
An improved turbo vacuum pump characterized by a thin polymer film closely formed on the surface of the turbine blade by plasma polymerization.
JP15212082A 1982-08-31 1982-08-31 Improved turbo-type vacuum pump Granted JPS5941699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15212082A JPS5941699A (en) 1982-08-31 1982-08-31 Improved turbo-type vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15212082A JPS5941699A (en) 1982-08-31 1982-08-31 Improved turbo-type vacuum pump

Publications (2)

Publication Number Publication Date
JPS5941699A true JPS5941699A (en) 1984-03-07
JPH0338435B2 JPH0338435B2 (en) 1991-06-10

Family

ID=15533493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15212082A Granted JPS5941699A (en) 1982-08-31 1982-08-31 Improved turbo-type vacuum pump

Country Status (1)

Country Link
JP (1) JPS5941699A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0799999A3 (en) * 1996-04-05 1998-04-22 VARIAN S.p.A. A rotor for turbomolecular pump
WO2003106844A1 (en) * 2002-06-13 2003-12-24 Nansheng Wu A ultrahigh vacuum pump and a hydraulic method for compressing gas into water in three dimensions
JPWO2008136084A1 (en) * 2007-04-23 2010-07-29 株式会社島津製作所 Turbo molecular pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0799999A3 (en) * 1996-04-05 1998-04-22 VARIAN S.p.A. A rotor for turbomolecular pump
WO2003106844A1 (en) * 2002-06-13 2003-12-24 Nansheng Wu A ultrahigh vacuum pump and a hydraulic method for compressing gas into water in three dimensions
JPWO2008136084A1 (en) * 2007-04-23 2010-07-29 株式会社島津製作所 Turbo molecular pump
JP5141684B2 (en) * 2007-04-23 2013-02-13 株式会社島津製作所 Turbo molecular pump

Also Published As

Publication number Publication date
JPH0338435B2 (en) 1991-06-10

Similar Documents

Publication Publication Date Title
KR101939412B1 (en) Moisture resistant coating for barrier films
JPS6094106A (en) Manufacture of compound membrane
WO2011071117A1 (en) Coating composition for engine parts and engine part using same
US5904469A (en) Rotor for turbomolecular pump
JP2015010229A (en) Fluorinated polymer based coatings and methods for applying the same
US6488992B1 (en) Product having a thin film polymer coating and method of making
JPS5941699A (en) Improved turbo-type vacuum pump
EP1273802A1 (en) Vacuum pump
JP6249326B2 (en) High efficiency oil pump
JPH09303289A (en) Surface treatment method for molecular pump
JP4030637B2 (en) Method for producing surface-modified rubber, surface-modified rubber and sealing material
JP4224330B2 (en) Barrier film
JPS61103521A (en) Selective permeable compound film for gas and its preparation
WO2021069848A1 (en) Method for covering the inner surface of a tank
JP6452124B2 (en) Oil pump
JPH03199699A (en) Turbo-molecular pump
JP2011026998A (en) Fuel pump
JPH051049B2 (en)
Sharma et al. Adhesion of glow discharge polymers
JPS59190575A (en) Low torque seal
JPH07155571A (en) Organic vapor separating membrane
JPS61103506A (en) Preparation of compound semipermeable membrane
JP2837205B2 (en) Vacuum equipment
JPH08281868A (en) Corrosion-resistant structure
JP2018194007A (en) Oil pump