JPS5941446A - High strength and anti-wear silicon nitride base sintered body - Google Patents

High strength and anti-wear silicon nitride base sintered body

Info

Publication number
JPS5941446A
JPS5941446A JP15157582A JP15157582A JPS5941446A JP S5941446 A JPS5941446 A JP S5941446A JP 15157582 A JP15157582 A JP 15157582A JP 15157582 A JP15157582 A JP 15157582A JP S5941446 A JPS5941446 A JP S5941446A
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
wear
binder phase
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15157582A
Other languages
Japanese (ja)
Inventor
Mikio Fukuhara
幹夫 福原
Kenji Fukazawa
深沢 建二
Yoshitaka Maekawa
前川 善孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP15157582A priority Critical patent/JPS5941446A/en
Publication of JPS5941446A publication Critical patent/JPS5941446A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled silicon nitride base sintered body suitable for machine engineering work, especially, a cutting tool, an anti-wear material and a corrosion resistant material, containing MgO, Y2O3, one kind or more ferrous metal and a bonding phase reinforcing agent comprising one kind or more single or a composite metal compound of a transition metal respectively in a predetermined ratio. CONSTITUTION:A high strength and anti-wear silicon nitride base sintered body comprising, on the basis of wt%, 0.5-10% MgO, 0.5-10% Y2O3, 0.1-5% one kind or more Fe, Ni or Co, 0.1-10% bonding phase reinforcing agent comprising one kind or more a single metal compound and a composite metal compound comprising carbide, nitride or the like of a transition metal belonged to the group IVa, Va, VIa and the remainder Si3N4 and inevitagle impurities. This silicon nitride base sintered body can be possibly used as a cuting tool, an anti- wear material and a corrosion resistance material applying the corrosion resistance inherently possessed by Si3N4 and further in a use of conventional ceramics including a structural material. Therefore, it can be decided that said sintered body is extremely high in industrial value.

Description

【発明の詳細な説明】 本発明は、機械工作用セラミックス特に切削工具、耐摩
耗材料及び耐食性材料に適する高強度耐摩耗性窒化珪素
基焼結体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-strength, wear-resistant silicon nitride-based sintered body suitable for ceramics for machining, particularly cutting tools, wear-resistant materials, and corrosion-resistant materials.

窒化硅素は、耐熱性、耐熱衝撃性、高温での機械的強度
、耐酸化性、化学薬品に対する耐食性及び溶融金属に対
する耐食性が優れていると共に硬さも高いことから高温
電気絶縁材料、電子部品材料、理化学裏品、金属工業用
耐火物、原子炉用材R1MHD発電用材料及びジェット
エンジン、ロケットノズル、タービン翼等の高温構造用
部品にと広い用途で応用されている。
Silicon nitride has excellent heat resistance, thermal shock resistance, mechanical strength at high temperatures, oxidation resistance, corrosion resistance to chemicals, and corrosion resistance to molten metal, and is also highly hard, so it is used as a high-temperature electrical insulating material, an electronic component material, It has a wide range of applications, including physical and chemical products, refractories for the metal industry, nuclear reactor materials, R1MHD power generation materials, and high-temperature structural parts such as jet engines, rocket nozzles, and turbine blades.

S i 3N4は、共有結合性の強い*貿であるために
イオン結合性の強いAzzOaやZr(h等の酸化物に
比較して尚密度焼結体を得ることが困難である。
Since S i 3N4 has a strong covalent bond, it is difficult to obtain a dense sintered body compared to oxides such as AzzOa and Zr(h), which have a strong ionic bond.

このためにS i 3N4の高密度焼結体を得る方法は
、5isN4にAt20a、AtN、 MgU、Y2O
3等の焼結助剤を添加して加圧焼結する方法が一般に行
なわれている。焼結助剤七硲〃0したS i 3N4系
焼結体の内、ジェットエンジン、ロケットノズル及びタ
ービン翼等の高温構造用部品全主体に開発されて来たサ
イアロン系焼結体が最も多く提案されている。サイアロ
ン系焼結体は、S i 3N4に焼結助剤としてA4A
O3又はAtN 全添加固溶した焼結体及びSi3N4
に焼結助剤としてAz203又はktNとY2O3等の
低添加物全添加したAt固溶のS i 3N4系として
総称されている。これらのサイアロン系焼結体は、S 
i 3N4格子中にイオン結合性の強いAz203又は
AtNが固溶しているためにS i 3N4本来の共有
結合性が低下して焼結体の特性を劣化させると共に焼結
過程においてkt元素が関与した脆弱なガラス相がサイ
アロン(81AzON)粒子の粒界に残存して焼結体の
高温特性を激減させると云う欠点がある。
For this purpose, the method for obtaining a high-density sintered body of S i 3N4 is to add At20a, AtN, MgU, Y2O to 5isN4.
A commonly used method is to add a sintering aid such as No. 3 and perform pressure sintering. Of the S i 3N4 sintered bodies containing 70% sintering aid, the Sialon sintered bodies, which have been developed for all high-temperature structural parts such as jet engines, rocket nozzles, and turbine blades, are the most commonly proposed. has been done. The sialon-based sintered body is made by adding A4A as a sintering aid to S i 3N4.
O3 or AtN fully added solid solution sintered body and Si3N4
It is generally referred to as an At solid solution Si3N4 system in which low additives such as Az203 or ktN and Y2O3 are added as sintering aids. These sialon-based sintered bodies are S
Because Az203 or AtN, which has strong ionic bonding properties, is dissolved in the i3N4 lattice, the original covalent bonding properties of Si3N4 are reduced, deteriorating the properties of the sintered body, and the kt element is involved in the sintering process. There is a drawback that the brittle glass phase remains at the grain boundaries of Sialon (81AzON) particles and drastically reduces the high temperature properties of the sintered body.

切削工具の刃先先端は、切削中に高温圧縮、熱衝撃、酸
化、腐食、すきとり摩耗、凝着摩耗及び引かき摩耗のよ
うな複雑な形態が複合して生じる。
During cutting, the tip of a cutting tool's cutting tool undergoes a combination of complex forms such as high-temperature compression, thermal shock, oxidation, corrosion, clearance wear, adhesive wear, and scratch wear.

このような切削工具材料にサイアロン系焼結体ケ使用す
ると乾式切削条件ではサイアロン系焼結体の粒界に残存
してい心カフス相のためAzzOa糸セラミックスに比
較して高温における耐摩耗性が劣る傾向に有り、水溶性
切削油を用いた湿式切削条件ではサイアロンを構成して
いる元素からA4N成分が加水分解して分解蒸発し著し
い工具損傷全誘発するために耐摩耗性が劣ると云う欠点
がある。
When sialon-based sintered bodies are used in such cutting tool materials, under dry cutting conditions, the core cuff phase remains at the grain boundaries of the sialon-based sintered bodies, resulting in inferior wear resistance at high temperatures compared to AzzOa yarn ceramics. Under wet cutting conditions using water-soluble cutting oil, the A4N component of the elements that make up Sialon hydrolyzes and decomposes and evaporates, causing significant tool damage, resulting in poor wear resistance. be.

サイアロン系焼結体とは別の研究開発として、Si3N
4材料を切削工具に応用しようと云う試みが特開昭49
−113803で行なわれている。この特開昭49−1
.13803は、8iaN4に焼結助剤としてMgOと
Y2O3を使用し、MgOとY2O3のスピネル化合物
1si3N4中に固溶すること′ft特徴とした焼結体
である。しかしながらMgOとY2O3は単純2元共晶
型の相状態図を示し、MgO・Y2O3のスピネル型化
合物は存在しないことf Tresvyatski i
等(Izr 、 AKad 、 Nauk 5SSR,
Neorg ; Mater。
As research and development separate from sialon-based sintered bodies, Si3N
An attempt was made to apply these four materials to cutting tools in 1972.
-113803. This JP-A-49-1
.. 13803 is a sintered body characterized by using MgO and Y2O3 as sintering aids in 8iaN4 and dissolving them in a spinel compound 1si3N4 of MgO and Y2O3. However, MgO and Y2O3 show a simple binary eutectic phase diagram, and spinel-type compounds of MgO/Y2O3 do not exist.
etc. (Izr, AKad, Nauk 5SSR,
Neoorg; Mater.

7 [11] 2020 (i971))が報告してい
る。仮りに、イオン結合性の強いMgO・Y2O3なる
スピネル化合物が5i3Nn中に固溶したとしてもS 
i 3N4本来の共有結合性は劣化し、鋳鋼全切削する
ときのように苛酷な切削条汗でri性米のAt203系
セラミツクスより優れた性能を得ることが不可能である
。事実、特開昭49−113803では、軽切削に属す
るkl−8i合金を切削速度300 rn/mi n 
、切り込み1.5朋、送り速度0.3朋/ r e v
なる切削条件で2分間切削した場合、横逃げ面摩耗量が
0.15〜0.2fiと極めて大きい傾向にあり、高速
切削工具用セラミックスとしては実用的に問題がある。
7 [11] 2020 (i971)). Even if a spinel compound called MgO・Y2O3 with strong ionic bonding properties were dissolved in 5i3Nn, S
The original covalent bonding property of i3N4 deteriorates, and it is impossible to obtain performance superior to that of At203 series ceramics, which are resistant to corrosion, due to severe cutting sweat such as when completely cutting cast steel. In fact, in Japanese Patent Application Laid-Open No. 49-113803, the kl-8i alloy, which belongs to light cutting, was cut at a cutting speed of 300 rn/min.
, depth of cut 1.5 mm, feed speed 0.3 mm/r e v
When cutting for 2 minutes under the following cutting conditions, the amount of side flank wear tends to be extremely large at 0.15 to 0.2fi, which is a practical problem as a ceramic for high-speed cutting tools.

本発明は、上eのような欠点及び問題点金解決し、従来
の切削工具用材料で使用されている切削速度領域から更
に従来の切削工具用材料では実用不可能な高速切削領域
までも使用可能な工具材料全提供することを目的にした
ものである。
The present invention solves the drawbacks and problems mentioned above, and can be used in the cutting speed range used with conventional cutting tool materials, and even in the high speed cutting range that is impractical with conventional cutting tool materials. The aim is to provide all possible tool materials.

本発明の高強度耐摩耗性窒化珪素基焼結体は、酸化マグ
ネシウムを0.5〜10車斌チと酸化イツトリウムtm
0.5〜10重量襲とFc、Ni、 Co ノ甲から選
ばれ、化少なくとも1橿以上の金属to、1〜5市欧チ
と4a、5a、6a族遷移金属の炭化物、窒化物、炭窒
化物、炭酸化物、窒酸化物、炭窒酸化物の単−金属化合
物及び複合金属化@物の中から選ばれた少なくと%i個
以上の結合相強化剤rO,1〜10車坩チと残り鼠化硅
素と不可避不純物と全混合、焼浩し−C得られる焼結体
である。
The high-strength wear-resistant silicon nitride-based sintered body of the present invention contains 0.5 to 10 h of magnesium oxide and yttrium oxide tm.
Selected from 0.5 to 10 weight groups, Fc, Ni, Co, metals of at least 1 or more, 1 to 5 weight groups, and carbides, nitrides, and carbons of group 4a, 5a, and 6a transition metals. At least %i binder phase reinforcing agents selected from mono-metal compounds and composite metallizations of nitrides, carbonates, nitoxides, carbonitoxides, 1 to 10 The remaining silicon nitride and unavoidable impurities are completely mixed and sintered to obtain a sintered body of -C.

本発明は、5i31’J4と8 i sN4 の焼結助
剤である結合相に高温強度金高める効果は弱いが焼結性
促進に寄与するMgOと焼結性促進効果は弱いが高温強
度金高めるY2O3f添加することにより緻密な焼結体
が得られること全確認し、このSi3N4−Mg0−Y
2O3系、SS鉢体緻密性を低下させずに8isN4−
MgO−Y20B系焼結体の欠点である高温における耐
摩耗性を向上させる方法を種々研究した結果完成したも
のである。
The present invention uses MgO, which is a sintering aid for 5i31'J4 and 8i sN4, as a binder phase that has a weak effect of enhancing high-temperature strength with gold, but contributes to promoting sinterability, and MgO, which has a weak effect of promoting sinterability but enhances high-temperature strength. It was fully confirmed that a dense sintered body could be obtained by adding Y2O3f, and this Si3N4-Mg0-Y
2O3 system, SS pot body compactness without reducing 8isN4-
This was completed as a result of various research into ways to improve wear resistance at high temperatures, which is a drawback of MgO-Y20B sintered bodies.

即ち本発明の高強度耐摩耗性窒化珪素基焼結体は、5i
3N4i緻密な焼結体にするために焼結助剤である結合
相にMgOとY2O32添加し、このMg+)とY2O
3からなる結合相の高温における耐摩耗性を同上させる
ために結合相強化剤として4 as 5 as6a族遷
移全遷移金属物、窒化物、炭窒化物、炭酸化物、窒叡化
物の単−金属化合物及び複合金属化合物の中から選ばれ
た少なくとも1種以上を分散させ、更罠これらの粕せ相
強化剤を結合相中に分散させることKよって生じる焼結
体の緻密性の低下及び強度低下に対して結合相強化剤と
の結合性、濡れ性が優れしかも8i3N4と反応して結
合性の向上に役立つFe、Ni、Coの中から選ばれた
少なくと41種以上の金属を添加することを特徴とした
緻密で高温強度及び高温における耐摩耗性の優れ尼焼結
体である。このような本発明の高強度耐摩耗性窒化硅素
基焼結体は、結合相であるMgOとY2O3がSi3N
4  の焼結性を促進して緻密な焼結体にすると共にこ
れらのMgOとY2O3が結合相強化剤の1部全酸化す
ることによって結合相と結合相強化剤との結合性が増大
し、Fe、Ni、Coの中から選ばれた少なくとも1種
以上の金属が結合相強化材とS i 3N4とにそれぞ
れ反応して結合相強化剤とS i 3N4との結合性を
増大させる。このように結合性が増大することによって
焼結体が緻密になり、強度の向上に結びつき、しかも結
合相中に分散した結合相強化剤が高温における耐摩耗性
の向上に役立っているものと考えられる。
That is, the high-strength, wear-resistant silicon nitride-based sintered body of the present invention has a 5i
3N4i In order to make a dense sintered body, MgO and Y2O32 are added to the binder phase, which is a sintering aid, and this Mg+) and Y2O
In order to improve the wear resistance at high temperatures of the binder phase consisting of 3, monometallic compounds of 4 as 5 as 6a group transition all-transition metals, nitrides, carbonitrides, carbonates, and nitrides are used as binder phase strengtheners. Dispersing at least one selected from the group consisting of composite metal compounds and composite metal compounds, and further dispersing these grain phase reinforcing agents in the binder phase. On the other hand, it is recommended to add at least 41 kinds of metals selected from Fe, Ni, and Co, which have excellent bondability and wettability with the binder phase strengthener and also react with 8i3N4 to help improve bondability. This sintered body is characterized by its denseness and excellent high-temperature strength and high-temperature wear resistance. In the high-strength wear-resistant silicon nitride-based sintered body of the present invention, the binder phase MgO and Y2O3 are Si3N
4 promotes the sinterability of the binder to form a dense sintered body, and the MgO and Y2O3 partially oxidize the binder phase strengthener, thereby increasing the bonding property between the binder phase and the binder phase strengthener. At least one metal selected from Fe, Ni, and Co reacts with the binder phase reinforcing agent and S i 3N4 to increase the bonding property between the bonding phase reinforcing agent and S i 3N4. We believe that this increase in bonding makes the sintered body denser, leading to improved strength, and that the binder phase strengthening agent dispersed in the binder phase helps improve wear resistance at high temperatures. It will be done.

本発明の高頻度耐厚托注窒化硅素基焼結体は、出発原料
として出来るたけ微細(平的粒径で5μ以下が望ましい
)で酸素含有量の少ないS i 3N4粉末を使用する
ことが望ましく、結合相であるMgOとY2O3とFe
、Ni、Coの中から選ばれた少なくともtat以上の
金属と結合相強化剤である4a。
For the high-frequency, thick-injected silicon nitride-based sintered body of the present invention, it is preferable to use Si 3N4 powder as fine as possible (desirably 5μ or less in average particle size) and with a low oxygen content as the starting material. , bonded phase MgO, Y2O3 and Fe
4a, which is a binder phase strengthening agent, with a metal selected from among , Ni, and Co and having at least tat.

5a、6a  族遷移金属の炭化物、窒化物、炭窒化物
、炭酸化物、窒酸化物、炭窒酸化物の単−金属化合物及
び複合金属化合物の中から選ばれた少なくとも1種以上
をそれぞれ単独に添加、混合してもよいが焼結体の組織
におけるS i 3N4粒子の粗大化、棒状化を抑制す
るために結合相と結合相強化剤との複合化合物と金属と
を出発原料として8i3N4にそれぞれ添加混合する方
法、又は結合相と結合相強化剤と金属との複合化合物を
出発原料としてS i 3N4に添加、混合する方法が
望ましい。
At least one selected from monometallic compounds and composite metal compounds of carbides, nitrides, carbonitrides, carbonates, nitrides, and carbonitrides of group 5a and 6a transition metals, respectively. Although it may be added or mixed, in order to suppress coarsening and rod-like formation of Si3N4 particles in the structure of the sintered body, a composite compound of a binder phase and a binder phase reinforcing agent and a metal may be added to 8i3N4 as starting materials. A method of adding and mixing, or a method of adding and mixing a composite compound of a binder phase, a binder phase reinforcing agent, and a metal as a starting material to S i 3N4 is preferable.

本発明の高強度耐摩耗性窒化珪素基焼結体は、Atが含
有するとSi 3N4の粒界相にガラス質相が残存し、
切削工具として必要な焼結体の特性全低下させるために
出発原料粉末に含有する不純物としてもAt含■重r便
刀少なくする必要が有り、製造過程中においてもA4の
混入を避けるのが望ましい。例えば、1俣料を混合粉砕
するときに使用する容器及びボール等の材質は、Atの
含有した材料全使用しないtlうが望ましい。S j 
sNaは、α−8i 3N4とβ−8i3N4が確認さ
れているが本発明の高強度耐摩耗性窒化珪素基焼結体は
主としてα−8i3N42出発原料として使用してもよ
く、又はα−8i 3N4とβ−8i3N4  の混合
したものを出発原料として使用してもよく、或いは主と
してβ−8i 3N4 f出発原料として使用してもよ
く、更にはα−8i 3N4および/またはβ−8i 
3N4と非晶質窒化硅素の混合したものを出発原料とし
て使用してもよい。焼結方法は、真空又は非酸化性雰囲
気において普通焼結(無加圧焼結)、通電加圧焼結、ホ
ットプレス等の方法が有り、これらの焼結方法と静水圧
加圧法(HIP) 2組合せて焼結体の緻密化全促進す
ることもできる。
When the high-strength wear-resistant silicon nitride-based sintered body of the present invention contains At, a glassy phase remains in the grain boundary phase of Si3N4,
In order to completely reduce the characteristics of the sintered body necessary for cutting tools, it is necessary to reduce the At content as an impurity contained in the starting raw material powder, and it is desirable to avoid the contamination of A4 during the manufacturing process. . For example, it is desirable that the materials used for the containers, balls, etc. used when mixing and pulverizing one piece of raw material do not contain At-containing materials. S j
As for sNa, α-8i 3N4 and β-8i3N4 have been confirmed, but the high-strength wear-resistant silicon nitride-based sintered body of the present invention may be used mainly as a starting material for α-8i3N42, or α-8i 3N4 A mixture of α-8i 3N4 and β-8i3N4 may be used as a starting material, or a mixture of β-8i 3N4 and β-8i3N4 may be used as a starting material, or a mixture of α-8i 3N4 and/or β-8i
A mixture of 3N4 and amorphous silicon nitride may be used as the starting material. Sintering methods include normal sintering (pressureless sintering), energized pressure sintering, and hot pressing in a vacuum or non-oxidizing atmosphere, and these sintering methods and hydrostatic pressing (HIP) The densification of the sintered body can be totally promoted by combining the two.

こ\で数値限定した理由について説明する。Here I will explain the reason for limiting the numerical values.

結合相であるMgOは、0.5重量%未満では焼結性促
進効果が弱く、lO惠量%を越えて多くなると焼結後M
g含M低級硅酸塩が多くなって焼結体の高温強度が低下
するためにMgO含有量は0.5〜10重:着チと決め
た。
MgO, which is a binder phase, has a weak effect of promoting sinterability when it is less than 0.5% by weight, and when the amount exceeds 10% by weight, MgO after sintering
Since the high-temperature strength of the sintered body decreases due to an increase in g-containing M lower silicates, the MgO content was determined to be 0.5 to 10 weights.

結合相であるY2O3は、0,5重量−未満では焼結体
の高温強度向上に効果響く、io重重量%超越て多くな
るとY2O3とMgO全合計した結合相量が多くなり高
温における耐摩耗性低下となるためにY2O3含有量は
0.5〜10重量%と決めた。
When Y2O3, which is a binder phase, is less than 0.5% by weight, it is effective in improving the high-temperature strength of the sintered body, but when it increases beyond io% by weight, the total amount of binder phase (Y2O3 and MgO) increases, which improves wear resistance at high temperatures. The Y2O3 content was determined to be 0.5 to 10% by weight in order to reduce the weight.

Fe、Ni、CaO中から選ばれた少なくとも1種以上
の金属は、0.1重景−未満では結合相強化剤とS i
 3N4の結合性の媒介的作用が弱くなるために焼結体
の強度低下となり、5重量%を越えて多くなると高温に
おける耐摩耗性低下となるために金属添加量は0.1〜
5電量チと決めた。この金属添加量は、結合相強化剤の
50%望ましくは30チ以下にするのが良い。
At least one metal selected from Fe, Ni, and CaO is less than 0.1 mm thick, and the binder phase reinforcing agent and Si
The strength of the sintered body decreases because the mediating effect of the bonding properties of 3N4 becomes weaker, and if the amount exceeds 5% by weight, the wear resistance at high temperatures decreases, so the amount of metal added is 0.1~
I decided on 5 electric power. The amount of metal added is preferably 50% of the binder phase reinforcing agent, preferably 30% or less.

結合相強化剤でめる4a、5a、6a族遷移金属の炭化
物、窒化物、炭窒化物、炭酸化物、窒酸化物の単−金属
化合物及び複合金属化合物の中から選ばれた少なくとも
1僕以上は、0.1重量−未満では結合相中に分散して
置温における耐摩耗性を高める効果が弱く、10重′j
#t%全越えて多くなると金属添加量にも関係するが耐
熱衝撃性が低下するので結合相強化剤は01〜10if
E量チと決めた。
At least one metal compound selected from the group 4a, 5a, and 6a group transition metals carbides, nitrides, carbonitrides, carbonates, and nitrides of monometallic compounds and composite metal compounds that can be treated with a binder phase strengthening agent. If the weight is less than 0.1%, the effect of dispersing it in the binder phase and increasing the wear resistance at room temperature is weak;
If the amount exceeds #t%, the thermal shock resistance will decrease, although it depends on the amount of metal added, so the binder phase reinforcement should be 01 to 10if.
I decided on the amount of E.

この結合相強化剤は、結合相量の50%以下にするのが
望ましい。
It is desirable that the amount of this binder phase reinforcing agent be 50% or less of the amount of the binder phase.

次に、゛実施例に従って本発明の高強度耐摩耗性窒化珪
素基焼結体を具体的に説明する。
Next, the high-strength, wear-resistant silicon nitride-based sintered body of the present invention will be specifically described according to Examples.

実施例1 平均粒径1μノ5iaN4とMgO1Y203、Fe1
Ni、Co及び4a、5a、6a族遷移金属の単一金属
化合物の粉末全使用して第1表に示した割合に各試料を
配合し、配合したそれぞれの試料tヘキサン溶媒中WC
基超硬@金製ポールと共にステンレス容器にて混合粉砕
した。得られた混合粉末から溶媒を蒸発除去後、t3N
粉末で被覆したカーボンモールド中に充填し、N2ガス
で炉内全置換後150〜4四%の成形圧力、1700〜
1900℃の温度、60〜120分の時間で加圧焼結し
た。各試料の製造条件を第1表VC月くし、侍りれた焼
結体の緒特性を第2表に示した。第2衣の結果、本発明
の副強度耐摩耗性屋化1珪素IN焼結本は、高密度化、
高硬匿化が達成されたと共に耐熱衝撃性に優れているこ
とが確認でさた。こ\で行なった熱衝撃試験は、試料を
各温度で20分保持後約20℃(常温〕の水中に試料ケ
浸漬して試料にクラックが発生しているか否か確認し、
各試料にクラックが発生しないで朗え得る最高の温度を
示した。
Example 1 Average particle size 1μ 5iaN4, MgO1Y203, Fe1
Using all powders of single metal compounds of Ni, Co, and group 4a, 5a, and 6a transition metals, each sample was blended in the proportions shown in Table 1, and each of the blended samples was WC in hexane solvent.
The base carbide was mixed and ground in a stainless steel container with a gold pole. After removing the solvent from the obtained mixed powder by evaporation, t3N
After filling a carbon mold coated with powder and replacing the entire furnace with N2 gas, the molding pressure was 150~44%, 1700~
Pressure sintering was performed at a temperature of 1900° C. for a time of 60 to 120 minutes. The manufacturing conditions for each sample are shown in Table 1, and the properties of the sintered bodies are shown in Table 2. As a result of the second coating, the secondary strength of the present invention is densification,
It was confirmed that high hardness and hardness were achieved as well as excellent thermal shock resistance. The thermal shock test conducted here involves holding the sample at each temperature for 20 minutes, then immersing it in water at approximately 20℃ (room temperature) to check whether or not cracks have occurred in the sample.
The maximum temperature at which each sample can be heated without cracking is shown.

\ 第2表 実施例2 結合相であるM g JとY2O3及び結合相強化、剤
である4a、5a、5ai畑−移金属の哨−金属化合物
と複合金属化合物の各粉末を使用して所定の割合に配合
し、真空中1400〜1600℃1時間加熱後粉砕混合
して結合相と結合相強化剤とからなる複合化合物粉末を
作った。この複合化合物粉末と平均粒径1μのSi3N
4粉末とFe、 N i、 Co粉末を使用して第3表
に示した割合に各試料を配合し、実施例1と同様な方法
で混合粉砕した後焼結した。
\ Table 2 Example 2 Mg J and Y2O3 as binder phases and 4a, 5a, and 5ai as binder phase reinforcement agents - Transfer metals - Specified using powders of metal compounds and composite metal compounds A composite compound powder consisting of a binder phase and a binder phase reinforcing agent was prepared by heating in vacuum at 1,400 to 1,600° C. for 1 hour, and then pulverizing and mixing. This composite compound powder and Si3N with an average particle size of 1μ
4 powder and Fe, Ni, Co powder in the proportions shown in Table 3, each sample was mixed and ground in the same manner as in Example 1, and then sintered.

各試料の製造条件全第3表に示し、得られた焼結体の諸
特性を第4表に示した。焼結体の諸特性は実施例1と同
様にして求めた。
All manufacturing conditions for each sample are shown in Table 3, and various properties of the obtained sintered body are shown in Table 4. Various properties of the sintered body were determined in the same manner as in Example 1.

第4表 実施例3 結合相であるMgOとY2O3と結合相強化剤である4
a、5a、5a族遷移金属の単一金属化合物と複合金属
化合物及びFe、Ni、Co金属の各粉末を使用して所
定の割合V(配合し、真空中1400〜1500℃1時
間加熱後粉砕混合して結合相と結合相強化剤と金属とか
らなる複合化合物粉末を作った。この複合化合物粉末と
平均粒径5μの5isN4粉末を使用して第5表に示し
た割合に各試料を配合し、実施例1と同様な方法で混合
粉砕した後焼結した。各試料の製造条件を第5表に示し
、得られた焼結体の諸性性金弟6表に示し友。焼結体の
諸物件は実施例tと同様にして求めた。
Table 4 Example 3 MgO and Y2O3 as binder phases and 4 as binder phase reinforcement
A, 5a, 5a group transition metal single metal compound and composite metal compound and Fe, Ni, Co metal powders were mixed in a predetermined ratio V (mixed, heated in vacuum at 1400 to 1500°C for 1 hour, and then pulverized. A composite compound powder consisting of a binder phase, a binder phase reinforcing agent, and a metal was prepared by mixing. Using this composite compound powder and 5isN4 powder with an average particle size of 5μ, each sample was mixed in the proportions shown in Table 5. The mixture was mixed and crushed in the same manner as in Example 1, and then sintered.The manufacturing conditions for each sample are shown in Table 5, and the properties of the obtained sintered body are shown in Table 6. Various properties of the body were obtained in the same manner as in Example t.

\ 第  6 表 実施例4 実施例1の内、第1表で示した試料番号3.5の焼結体
と実施例2の内、第3表で示した試料番号10の焼結体
と実施例3の内、第5表で示した試料番号16の焼結体
tそれぞれCI8基準5NP432形状に成形した本発
明の高強度耐摩耗性窒化珪素基焼結体と市販のAzz0
3系セラミックス及びサイアロン系セラミックスを同一
形状に成形して比較用に加えて次の(へ)及び(ロ)条
件にて切削試験全行なった。
\ Table 6 Example 4 The sintered body of sample number 3.5 shown in Table 1 of Example 1 and the sintered body of sample number 10 shown in Table 3 of Example 2 were carried out. Of Example 3, the sintered body of sample number 16 shown in Table 5, the high-strength, wear-resistant silicon nitride-based sintered body of the present invention molded into CI8 standard 5NP432 shape, and the commercially available Azz0
3 series ceramics and Sialon series ceramics were molded into the same shape for comparison purposes, and all cutting tests were conducted under the following conditions (f) and (b).

(へ)旋削試験条件 被剛材   Fe12 チップ形状 SNP 432ホーニング 0.lX−3
0゜切削速度  600111/1llin切込今  
 1.5mm。
(f) Turning test conditions Rigid material Fe12 Chip shape SNP 432 Honing 0. lX-3
0゜Cutting speed 600111/1llin depth of cut now
1.5mm.

送り速度  0.711/ rev 切削時間  3Qmin (ハ)フライス削り試験条件 被削材   f!”CD55 チップ形状 SNP 432ホーニング 0.1×−菊
“切削速K   140rQ/1nir(切込み   
1.5朋 送り速E   O,18y+m/ tooth(5)及
び(i3)条件による切削試験結果を第7表に示した。
Feed rate 0.711/rev Cutting time 3Qmin (c) Milling test conditions Work material f! "CD55 Chip shape SNP 432 Honing 0.1x-Chrysanthemum"Cutting speed K 140rQ/1nir (Depth of cut
Table 7 shows the cutting test results under the conditions of 1.5 mm feed rate E O, 18 y+m/tooth (5) and (i3).

第7表の結果、本発明の高強度耐摩耗性窒化珪素基焼結
体は、従来のAt203系セラミツクス及びサイアロン
系セラミックスに比較して耐摩耗性及び耐欠損性共に著
しく優れていることが確認できた。又、本発明の高強度
耐摩耗性窒化珪素基焼結体は、夜来の切削工具材料では
一般に無理と考見られていた高速、高送りの苛酷な切削
条件でも充分に実用出来新しい切削加工領域への道を拓
くことが期待できる。
The results in Table 7 confirm that the high-strength, wear-resistant silicon nitride-based sintered body of the present invention has significantly superior wear resistance and chipping resistance compared to conventional At203-based ceramics and Sialon-based ceramics. did it. In addition, the high-strength, wear-resistant silicon nitride-based sintered body of the present invention can be put to practical use even under severe cutting conditions such as high speed and high feed, which was generally thought to be impossible with conventional cutting tool materials, and can open up new cutting processing fields. It is hoped that this will pave the way for

第7表 以上の実施例1.2.3.4から本発明の高強度耐摩耗
性窒化珪素基焼結体は、切IQ11工具、齢1摩耗用材
料及び5iaN4本来がもっている耐食性全応用した耐
食性全応用には構造用材料を含めた従来のセラミックス
の用途にも使用出来る可能性力;有り、工業的価値が非
常に高いものと判断出来る。
From Examples 1.2.3.4 in Table 7 and above, the high-strength, wear-resistant silicon nitride-based sintered body of the present invention can be used to fully utilize the corrosion resistance inherent in cutting IQ11 tools, age 1 wear materials, and 5iaN4. It has the potential to be used in all conventional ceramic applications including structural materials, and can be judged to have very high industrial value.

Claims (1)

【特許請求の範囲】 酸化マグネシウム’i 0.5〜10重量−と酸化イツ
トリウム’r0.5〜10重量%とFe、 Ni、 C
。 の中から選ばれた少なくとも111N以上の金属を0.
1〜5重量%と4a、5a、63族遷移金属の炭化物、
式化物、炭窒化物、炭酸化物、窒酸化物、炭窒酸化物の
単−金属化合物及び複合金属化合物の中から選ばれた少
なくとも1種以上の結合相強化剤全0,1〜10重t%
と残り窒化硅素と不可避不純物全含有する組成でるるこ
とを特徴とする高強度耐摩耗性窒化珪素基焼結体。
[Claims] Magnesium oxide 'i 0.5 to 10% by weight, yttrium oxide 'r 0.5 to 10% by weight, and Fe, Ni, C
. A metal of at least 111N or more selected from 0.
1 to 5% by weight and carbides of group 4a, 5a, and 63 transition metals,
At least one binder phase reinforcing agent selected from mono-metal compounds and composite metal compounds of formula compounds, carbonitrides, carbonates, nitrides, and carbonitrides, totaling 0.1 to 10 weight tons. %
A high-strength, wear-resistant silicon nitride-based sintered body characterized by having a composition containing all of the remaining silicon nitride and unavoidable impurities.
JP15157582A 1982-08-31 1982-08-31 High strength and anti-wear silicon nitride base sintered body Pending JPS5941446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15157582A JPS5941446A (en) 1982-08-31 1982-08-31 High strength and anti-wear silicon nitride base sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15157582A JPS5941446A (en) 1982-08-31 1982-08-31 High strength and anti-wear silicon nitride base sintered body

Publications (1)

Publication Number Publication Date
JPS5941446A true JPS5941446A (en) 1984-03-07

Family

ID=15521512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15157582A Pending JPS5941446A (en) 1982-08-31 1982-08-31 High strength and anti-wear silicon nitride base sintered body

Country Status (1)

Country Link
JP (1) JPS5941446A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186265A (en) * 1985-02-13 1986-08-19 株式会社クボタ Silicon nitride sintered body and manufacture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673670A (en) * 1979-11-14 1981-06-18 Ford Motor Co Manufacture of high effeciency cutting tool
JPS5675546A (en) * 1979-11-22 1981-06-22 Toshiba Corp Silicon nitride-containing sintered body
JPS5717466A (en) * 1980-06-30 1982-01-29 Sumitomo Electric Industries Si3n4 sintered body for tool and manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673670A (en) * 1979-11-14 1981-06-18 Ford Motor Co Manufacture of high effeciency cutting tool
JPS5675546A (en) * 1979-11-22 1981-06-22 Toshiba Corp Silicon nitride-containing sintered body
JPS5717466A (en) * 1980-06-30 1982-01-29 Sumitomo Electric Industries Si3n4 sintered body for tool and manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186265A (en) * 1985-02-13 1986-08-19 株式会社クボタ Silicon nitride sintered body and manufacture

Similar Documents

Publication Publication Date Title
EP0262654B2 (en) Silicon nitride sintered material for cutting tools and process for making the same
JPS60246268A (en) Sialon base ceramic
JPH0292868A (en) High-strength sintered material of boron nitride-base of cubic system
JPS5941446A (en) High strength and anti-wear silicon nitride base sintered body
JPH0460077B2 (en)
JPS598670A (en) High tenacity silicon nitride base sintered body
JPS5939768A (en) Abrasion resistant silicon nitride base sintered body
JPH0531514B2 (en)
JPH0832584B2 (en) Alumina-based ceramic cutting tool with high toughness
JPS6215505B2 (en)
JPS59232971A (en) Abrasion resistant sialon base ceramics
JP2564857B2 (en) Nickel-Morbuden compound boride sintered body
JPH01203260A (en) Production of silicon carbide whisker reinforced ceramics
JPS6259568A (en) Ceramic material excellent in precise processability
JPS62235260A (en) Si3n4 base composite material
JPH03275565A (en) Silicon nitride-based sintered material having high toughness and strength
WO2007038889A1 (en) Ceramic matrix composite cutting blade for wood machining and the method of manufacturing the cutting blade
JPH0379308B2 (en)
JPH0158150B2 (en)
JPS6246513B2 (en)
JPH01119558A (en) Alumina-based sintered compact for cutting tool and its production
JPS6183681A (en) Manufacture of cubic boron nitride base sintered body for cutting tool
JPH01215754A (en) Sintered material based on aluminum oxide and its production
JPS6360164A (en) Silicon nitride sintered body for cutting tool and manufacture
JPS6257596B2 (en)