JPS5940786B2 - Manufacturing method for ceramic sintered bodies - Google Patents

Manufacturing method for ceramic sintered bodies

Info

Publication number
JPS5940786B2
JPS5940786B2 JP55036893A JP3689380A JPS5940786B2 JP S5940786 B2 JPS5940786 B2 JP S5940786B2 JP 55036893 A JP55036893 A JP 55036893A JP 3689380 A JP3689380 A JP 3689380A JP S5940786 B2 JPS5940786 B2 JP S5940786B2
Authority
JP
Japan
Prior art keywords
polyzirconocarbosilane
gas
ceramic
molding
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55036893A
Other languages
Japanese (ja)
Other versions
JPS56134557A (en
Inventor
聖使 矢島
清人 岡村
良雄 長谷川
武民 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP55036893A priority Critical patent/JPS5940786B2/en
Priority to US06/245,849 priority patent/US4556526A/en
Priority to CA000373752A priority patent/CA1161068A/en
Priority to DE8181301290T priority patent/DE3164100D1/en
Priority to EP81301290A priority patent/EP0037249B1/en
Publication of JPS56134557A publication Critical patent/JPS56134557A/en
Publication of JPS5940786B2 publication Critical patent/JPS5940786B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 本発明は耐熱性セラミックスの焼結成形体の製法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a sintered body of heat-resistant ceramics.

さらに詳しくは、本発明は公知の耐熱性セラミックスに
添加剤としてポリジルコノカルボシランを混和し、成形
し、この成形と同時に又は成形した後に、真空中、不活
性ガス、還元性ガス、炭化水素ガスのうちから選ばれる
少なくとも1種からなる雰囲気中で加熱焼結することか
らなる耐熱性セラミックス焼結成形体の製法に関するも
のである。
More specifically, the present invention involves mixing polyzirconocarbosilane as an additive with known heat-resistant ceramics, molding the mixture, and simultaneously or after the molding, inert gas, reducing gas, hydrocarbon, etc. The present invention relates to a method for producing a heat-resistant ceramic sintered body, which comprises heating and sintering in an atmosphere containing at least one gas selected from among gases.

従来、耐熱性にすぐれたセラミックスとして多面に使用
されている焼結成形体としては、例えばA1203tB
4Al203tB402,5i02などの酸化物、si
c+’ric、wc1134cなどの炭化物、S i3
N4.BN、AlNなどの窒化物、T i B2 、
Z r B2などの硼化物、さらにはMo S 12
j ws 12 j Cr S t2などの珪化物、お
よびこれらの複合化合物が知られている。
Conventionally, sintered bodies that have been used in many ways as ceramics with excellent heat resistance include, for example, A1203tB.
Oxides such as 4Al203tB402, 5i02, si
Carbide such as c+'ric, wc1134c, S i3
N4. Nitride such as BN, AlN, T i B2,
Borides such as Z r B2 and even Mo S 12
Silicides such as j ws 12 j Cr S t2 and composite compounds thereof are known.

これらのセラミックス焼結成形体は、それぞれの粉粒体
の成形加工および極めて高温での加熱焼結によって製造
されてきた。
These ceramic sintered bodies have been manufactured by molding the respective powders and heating and sintering them at extremely high temperatures.

最近比較的低い加圧や焼結温度で、空孔の少ない高密度
焼結体を製造する研究が盛んである。
Recently, there has been active research into producing high-density sintered bodies with few pores using relatively low pressure and sintering temperatures.

すなわち、前記適切な添加剤を使用することでセラミッ
クスの自己焼結性を向上せしめると同時に焼結体の粒の
異常成長を抑止して、粒間に空孔が残存することを防ぐ
上、添加剤により粒界を高密度に充填することができる
ので、経済的に有利に高密度焼結体を得ることができる
ためである。
In other words, by using the above-mentioned appropriate additives, the self-sintering properties of ceramics can be improved, and at the same time, the abnormal growth of grains in the sintered body can be suppressed to prevent pores from remaining between the grains. This is because grain boundaries can be filled with a high density by the agent, and a high-density sintered body can be economically advantageously obtained.

従来使用されている添加剤としては、例えば、Al2O
3にはMgOやNiOを、ZrO2にはCaOやTiO
2を、Si3N4にはAl2O3や¥203を、SiC
にはBやSiやCを、TiCにはNiやWCを、ZrB
21ンこはZrO2やCr B2を添加剤として用いて
おり、どちらかというと酸化物系の添加剤が多いが、他
に金属元素単体で添加するもの、さらには例えば炭化物
に対して他の炭化物、硼化物に対して他の硼化物を添加
することも少なくない。
Conventionally used additives include, for example, Al2O
3 contains MgO or NiO, and ZrO2 contains CaO or TiO.
2, Al2O3 or ¥203 for Si3N4, SiC
B, Si or C for TiC, Ni or WC for TiC, ZrB
No. 21 uses ZrO2 and CrB2 as additives, and many of them are oxide-based additives, but there are also other additives that are added as single metal elements, and for example, other carbides. , Other borides are often added to boride.

これらの添加剤が選定される理由は、自己焼結性に乏し
いセラミックスの焼結を助成するように、基地セラミッ
クスと添加剤との間の相反窓を生起させるため、もしく
は添加剤が高温において塑性化したり液相となったりす
るため焼結が進行し易くなるからである。
These additives are selected because they create a reciprocity window between the base ceramic and the additive to assist in the sintering of ceramics with poor self-sintering properties, or because the additive becomes plastic at high temperatures. This is because sintering progresses more easily because it becomes a liquid phase or becomes a liquid phase.

しかしながら、前述した従来の添加剤には次のような欠
点がある。
However, the conventional additives mentioned above have the following drawbacks.

添加剤とセラミックス基地の固相反応を利用する高密度
焼結体においては、添加物とセラミックスの反応による
第2.第3相が出現し、これが主として結晶粒界に存在
しており、高温になるとこれらの粒界構成物から塑性変
形が生じ易く、高温強度を目的とした焼結体とはなり難
いことが多い。
In a high-density sintered body that utilizes a solid phase reaction between additives and a ceramic matrix, a second reaction occurs between the additive and the ceramic matrix. A third phase appears and exists mainly at grain boundaries, and at high temperatures plastic deformation tends to occur from these grain boundary constituents, making it difficult to form sintered bodies that aim for high-temperature strength. .

例えば、S A3 N4にMgOを添加した場合は、第
2相としてS + M g Oaなるガラス質相ができ
、これが粒界を埋めることにより高密度化は達成される
が、高温におけるこの焼結体の機械的強度は、前記ガラ
ス質相が軟化するため1000℃前後から急速に低下す
る欠点を有している。
For example, when MgO is added to S A3 N4, a glassy phase called S + M g Oa is formed as a second phase, and high density is achieved by filling the grain boundaries. The mechanical strength of the body has a disadvantage that it rapidly decreases from around 1000° C. due to the softening of the glassy phase.

さらに、添加剤の塑性化や液相化を利用する高密度焼結
体においても、前記と同様に高温における粒界での塑性
変形や液体流動により、強度の低下が著しくなる欠点を
有している。
Furthermore, even in high-density sintered bodies that utilize plasticization or liquid phase of additives, they have the same drawback that the strength decreases significantly due to plastic deformation and liquid flow at grain boundaries at high temperatures. There is.

一方、上記のような高温強度の低下を招かない添加剤と
しては、ガラス質になり易い酸化物や液相になり易い金
属単体を除いたものが有望であるが、固体粉末状の炭化
物系や硼化物系は一般に自己焼結性が悪いためこれを添
加剤として使用しても充分な高密度化の効果は期待でき
ない。
On the other hand, as additives that do not cause the above-mentioned reduction in high-temperature strength, it is promising to use additives that exclude oxides that tend to become glassy or simple metals that tend to turn into a liquid phase. Since boride-based materials generally have poor self-sintering properties, sufficient densification cannot be expected even if they are used as additives.

本発明は、高温において塑性変形をもたらさず、さらに
は焼結過程で稠密に粒界を充填するとともに基地セラミ
ックスの焼結性を向上させ、しかもセラミックスの粗粒
成長を抑止するような性質を有する新しい添加剤を用い
ることにより、従来のセラミックス焼結成形体に比べて
低密度であるにもかかわらず、従来のセラミックス焼結
成形体と同等もしくはそれ以上の室温並びに高温での機
械強度&(優れた耐熱性セラミックス焼結成形体を製造
する方法を提供することを目的とするものである。
The present invention has properties that do not cause plastic deformation at high temperatures, densely fill grain boundaries during the sintering process, improve the sinterability of the base ceramic, and suppress coarse grain growth of the ceramic. By using new additives, despite having a lower density than conventional ceramic sintered bodies, it has the same or higher mechanical strength at room temperature and high temperature and (excellent heat resistance) than conventional ceramic sintered bodies. An object of the present invention is to provide a method for producing a sintered ceramic body.

次に、本発明に使用する添加剤であるポリジルコノカル
ボシラン及びその製法について説明する。
Next, polyzirconocarbosilane, which is an additive used in the present invention, and its manufacturing method will be explained.

すなわち、前記のポリジルコノカルボシランは、主とし
て一般式 (但し、式中のRは水素原子、低級アルキル基、又はフ
ェニル基を示す) で表わされる主鎖骨格を有する数平均分子量が200〜
10,000のポリカルボシランと、一般式 Z r X4 (但し、式中のXは炭素数1〜20個を有するアルコキ
シ基、フェノキシ基又はアセチルアセトキシ基を示す) で表わされる有機ジルコニウム化合物とから誘導された
数平均分子量700〜100,000のポリジルコノカ
ルボシランであって、該ポリジルコノカルボシランのケ
イ素原子の少なくとも一部が酸素原子を介してジルコニ
ウム原子と結合しており、そして該ポリジルコアカルボ
シランにおける+5i−CH2+の構造単位の全数対+
Zr−0+の構造単位の全数の比率が2=1乃至200
: 1の範囲内にある重合体である。
That is, the above-mentioned polyzirconocarbosilane mainly has a main chain skeleton represented by the general formula (wherein R represents a hydrogen atom, a lower alkyl group, or a phenyl group) and has a number average molecular weight of 200 to 200.
10,000 polycarbosilane and an organic zirconium compound represented by the general formula Z r A derived polyzirconocarbosilane having a number average molecular weight of 700 to 100,000, wherein at least a portion of the silicon atoms of the polyzirconocarbosilane are bonded to zirconium atoms via oxygen atoms, and Total number of +5i-CH2+ structural units in polyzyl core carbosilane +
The ratio of the total number of structural units of Zr-0+ is 2 = 1 to 200
: A polymer within the range of 1.

またこのような重合体には、次に図示するような1官能
性重合体、2官能性重合体、3官能性重合体及び4官能
性重合体がある。
Further, such polymers include monofunctional polymers, difunctional polymers, trifunctional polymers, and tetrafunctional polymers as illustrated below.

(但し、R及びXは前記と同じ意味を有する)また本発
明に使用されるポリジルコノカルボシランは、前記ポリ
カルボシランと前記有機ジルコニウム化合物とを、ポリ
カルボシランの (−8t CH2+の構造単位の全数対有機ジルコニ
ウム化合物の(Zr−0+の構造単位の全数の比率が2
:1乃至200:1の範囲内となる量比に加え、反対に
対して不活性な雰囲気中において加熱反応して得られる
(However, R and The ratio of the total number of units to the total number of structural units of the organic zirconium compound (Zr-0+) is 2
:1 to 200:1, and on the contrary, obtained by heating reaction in an inert atmosphere.

本発明で添加剤として使用するポリジルコノカルボシラ
ンは、粘稠液あるいは粉末として得ることができる。
The polyzirconocarbosilane used as an additive in the present invention can be obtained as a viscous liquid or powder.

そして粉末として得られる場合も、これを加熱または溶
解により容易に粘稠液とすることができるため、従来の
粉末状添加剤とは異なリ、基地セラミックス粒体中で全
体に渉って均一に分布できる。
Even if it is obtained as a powder, it can be easily made into a viscous liquid by heating or melting, so unlike conventional powder additives, it can be uniformly distributed throughout the base ceramic granules. Can be distributed.

また、このポリジルコノカルボシランは、真空中、不活
性ガス、還元性ガス、炭酸水素ガスのうちから選ばれる
何れか1種以上の雰囲気中で、800〜2300℃の加
熱温度で焼成されることにより、活性度の高い5iyZ
r、CyOや揮発性物質を生成し、これらが基体たるセ
ラミックス、、と接触することによりセラミックスの焼
結性を向上させることができる。
Further, this polyzirconocarbosilane is fired at a heating temperature of 800 to 2300°C in a vacuum, in an atmosphere of one or more selected from inert gas, reducing gas, and hydrogen carbonate gas. As a result, highly active 5iyZ
r, CyO and volatile substances are produced, and when these come into contact with the ceramic base, the sinterability of the ceramic can be improved.

さらに、前記活性度の高(1)S ] t Zr 7
C、より生成するS t C> Z r C。
Furthermore, the highly active (1) S ] t Zr 7
C, generated from S t C> Z r C.

SiCとZrCの固溶体およびZrC1−)((0<x
< 1)s 13N4(N2中加熱の場合にわずかに生
成)、C等の高融点物質や基体たるセラミックスと反応
して生成する各種高融点物質が、主として粒界に存在し
てセラミックス粒体の異常な粒成長を抑止し、さらに粒
界を充填する前記高融点物質は高温における機械的強度
に極めてすぐれているため、焼結体全体の高温における
強度の低下をもたらさないなどのすぐれた利点が得られ
る。
Solid solution of SiC and ZrC and ZrC1-)((0<x
< 1) s High melting point substances such as 13N4 (slightly produced when heating in N2) and C, and various high melting point substances produced by reaction with the ceramic base, exist mainly in the grain boundaries and form a part of the ceramic grains. The high melting point substance that suppresses abnormal grain growth and fills the grain boundaries has extremely high mechanical strength at high temperatures, so it has excellent advantages such as not causing a decrease in the strength of the entire sintered body at high temperatures. can get.

前述のように、添加剤として使用されるポリジルコノカ
ルボシランは、加熱により熱分解し、1部の炭素、水素
、酸素、ケイ素およびジルコニウムを含む有機物は揮発
成分として揮散し、残存する炭素、酸素、ケイ素および
ジルコニウムは基体のセラミックスと反応して化合物を
生成しセラミックス粉末粒子の間隙を充填するようにな
る。
As mentioned above, polyzirconocarbosilane used as an additive is thermally decomposed by heating, organic substances containing some carbon, hydrogen, oxygen, silicon, and zirconium are volatilized as volatile components, and the remaining carbon, Oxygen, silicon, and zirconium react with the base ceramic to form a compound that fills the gaps between the ceramic powder particles.

この反応は約500℃より始まり約1500℃で完了す
る。
The reaction begins at about 500°C and is completed at about 1500°C.

この間セラミックス粒子も自己焼結するが、この焼結に
際して前記添加剤は結合剤として作用するばかりでなく
、焼結助剤、粒成長抑制剤としても作用する。
During this time, the ceramic particles are also self-sintered, and during this sintering, the additives not only act as a binder but also act as a sintering aid and grain growth inhibitor.

加熱工程でセラミックス粒界に形成される各種化合物の
大きさは通常100A以下という極めて小さな粒子から
構成されているので、焼結体の耐熱衝撃性はすぐれたも
のになっている。
Since the various compounds formed at the ceramic grain boundaries during the heating process are composed of extremely small particles, usually 100A or less, the sintered body has excellent thermal shock resistance.

また、これら化合物は主にSiC。ZrC,SiCとZ
rCの固溶体およびZrC1−X(0<x< 1 )
S iaN+ (N2中加熱の場合にわずかに生成)C
等であるので、高温機械的強度、耐酸化性、耐食性、耐
熱衝撃性に極めてすぐれており、化学的に安定な性質を
有しているので、焼結体全体にもこれらのすぐれた性質
が反映される。
Moreover, these compounds are mainly SiC. ZrC, SiC and Z
Solid solution of rC and ZrC1-X (0<x<1)
S iaN+ (slightly produced when heated in N2)C
etc., it has excellent high-temperature mechanical strength, oxidation resistance, corrosion resistance, and thermal shock resistance, and has chemically stable properties, so the entire sintered body also has these excellent properties. reflected.

本発明においては、前記添加剤をセラミックス粉末に対
して通常0.05〜20重量%の範囲で添加し混和する
In the present invention, the additives are usually added and mixed in a range of 0.05 to 20% by weight to the ceramic powder.

この添加量は後述するように加圧焼結する方法によって
異なるが、0.05重重量上り添加量が少ないと高強度
な焼結体が得難く、20重重量上り多く添加すると焼結
体に一部スウエリングを生じ、強度が劣化するので添加
量は通常0.05〜20重量%の範囲内とすることが有
利である。
The amount of this addition varies depending on the pressure sintering method as described below, but if the addition amount is 0.05 weight or less, it will be difficult to obtain a high-strength sintered body, and if it is added 20 weight or more, the sintered body will Since some swelling occurs and the strength deteriorates, it is usually advantageous for the amount added to be within the range of 0.05 to 20% by weight.

また本発明にセラミックスとして公知の耐熱性セラミッ
クスが用いられ、例えばA ll 20s t B e
O。
Further, in the present invention, known heat-resistant ceramics are used as ceramics, for example, All 20s t B e
O.

MgOt Z r02 t S io2などの酸化物、
SiC。
Oxides such as MgOt Z r02 t S io2,
SiC.

T i CtWCt B4Cなどの炭化物、Si3N4
゜BN、AlNなどの窒化物、TiB2.ZrB2など
の硼化物、及びMo S i2 、 WS j2 、
CrSi2などの珪化物、さらにこれらの複合化合物
があげられる。
Carbide such as T i CtWCt B4C, Si3N4
゜Nitrides such as BN and AlN, TiB2. Borides such as ZrB2, and Mo Si2, WS j2,
Examples include silicides such as CrSi2, and composite compounds thereof.

これらの耐熱性セラミックスはその形状には特に制限さ
れないが、通常、粉末状に粉砕して使用するのが有利で
ある。
The shape of these heat-resistant ceramics is not particularly limited, but it is usually advantageous to use them by pulverizing them into powder.

さらに、本発明における前記ポリジルコノカルボシラン
と前記セラミックスの混合物の焼結は、真空中、不活性
ガス、還元性ガス、炭化水素ガスのうちから選ばれる少
なくとも1種からなる雰囲気中において、800〜23
00℃に加熱することによって行われる。
Furthermore, in the present invention, the mixture of the polyzirconocarbosilane and the ceramics is sintered in a vacuum, in an atmosphere consisting of at least one selected from inert gas, reducing gas, and hydrocarbon gas. ~23
This is done by heating to 00°C.

ここで不活性ガスとして窒素ガス、炭酸ガス、アルゴン
ガスなど、還元性ガスとして水素ガス、一酸化炭素ガス
など、炭化水素ガスとしてメタンガス、エタンガス、プ
ロパンガス、ブタンガスなどがそれぞれあげられる。
Here, the inert gases include nitrogen gas, carbon dioxide gas, argon gas, etc., the reducing gases include hydrogen gas, carbon monoxide gas, etc., and the hydrocarbon gases include methane gas, ethane gas, propane gas, butane gas, etc.

また焼結温度は800〜2300°Cが好ましく、80
0℃以下では混和したポリジルコノカルボシランの無機
化が完結せず、また2300℃以上では混和したポリジ
ルコノカルボシランの無機化物中のSiCの分解が起る
ので好ましくない。
The sintering temperature is preferably 800 to 2300°C, and 80°C to 2300°C.
If it is below 0°C, the mineralization of the mixed polyzirconocarbosilane will not be completed, and if it is above 2300°C, SiC in the mineralized product of the mixed polyzirconocarbosilane will decompose, which is not preferable.

次に焼結を行なう方法としては、大別してセラミックス
粒子と前記ポリジルコノカルボシランとの混和物を成形
した後加熱焼結する方法または前記混和物の成形と焼結
を同時に行なうホットプレス法を使用することができる
The next sintering method can be roughly divided into a method in which a mixture of ceramic particles and the polyzirconocarbosilane is molded and then heated and sintered, or a hot press method in which molding and sintering of the mixture are performed simultaneously. can be used.

前記成形と焼結とを別々に行なう方法においてセラミッ
クス粉体と添加剤との混和物を成形するには、金型プレ
ス法、ラバープレス法、押出し法、シート法を用いて1
00〜5000kg/crAの圧力で加圧し所定の形状
のものを得ることができる。
In order to mold the mixture of ceramic powder and additives in the method of separately performing molding and sintering, a mold press method, a rubber press method, an extrusion method, or a sheet method is used.
It is possible to obtain a predetermined shape by applying pressure of 00 to 5000 kg/crA.

次に前記成形体を焼結することによって本発明の耐熱性
セラミックス焼結成形体を得ることができる。
Next, the heat-resistant ceramic sintered compact of the present invention can be obtained by sintering the compact.

また、ホットプレス法で焼結を行なう場合は、黒鉛、ア
ルミナ、窒化硼素などからなる押型のうちから夫々のセ
ラミックス基地と反応を起こさないものを選び、2〜2
000ky/iの圧力で、セラミックス粉体と添加剤と
の混和物を加圧しながら同時に加熱し焼結体とすること
ができる。
In addition, when performing sintering using the hot press method, select a mold made of graphite, alumina, boron nitride, etc. that does not react with the respective ceramic base, and
At a pressure of 000 ky/i, a mixture of ceramic powder and additives can be pressed and heated at the same time to form a sintered body.

なお、本発明の好ましい実施態様として、ポリジルコノ
カルボシランとセラミックスの混和物を、成形、焼成す
る前に、真空中、不活性ガス、還元性ガス、炭化水素ガ
スのうちから選ばれる少なくとも1種からなる雰囲気中
で800℃以下で予備加熱する。
In a preferred embodiment of the present invention, the mixture of polyzirconocarbosilane and ceramics is heated in a vacuum with at least one gas selected from among an inert gas, a reducing gas, and a hydrocarbon gas before being molded and fired. Preheat at below 800° C. in an atmosphere consisting of seeds.

このような処理を行うとセラミックス焼結成形体の体積
収縮がすくなく、寸法精度のすぐれた成形体を得ること
ができる。
By carrying out such a treatment, the volumetric shrinkage of the ceramic sintered body is minimized, and a molded body with excellent dimensional accuracy can be obtained.

さらに本発明の好ましい別の実施態様として、本発明の
方法により、一旦、焼結を完了したセラミックス成形体
に、液体のポリジルコノカルボシランを浸漬、噴霧、塗
布などの操作により含浸させ、またポリジルコノカルボ
シランが固体状のものとして得られる場合には、加熱や
溶媒に溶解させることにより液状とした後に前記操作に
より含浸させ、また必要により加圧して前記含浸の度合
を高めた後、真空中、不活性ガス、還元性ガス、炭化水
素ガスのうちから選ばれるいずれか少なくとも1種の雰
囲気中で800°C〜2300℃の温度範囲で加熱する
一連の処理を少なくとも1回施すことによって、より高
密度で且つ高強度の焼結成形体とすることができる。
Furthermore, as another preferred embodiment of the present invention, according to the method of the present invention, a sintered ceramic molded body is impregnated with liquid polyzirconocarbosilane by dipping, spraying, coating, etc. When polyzirconocarbosilane is obtained as a solid, it is made into a liquid by heating or dissolving in a solvent, and then impregnated by the above operation, and if necessary, pressurized to increase the degree of impregnation, and then By performing a series of treatments at least once in a vacuum, in an atmosphere of at least one selected from inert gas, reducing gas, and hydrocarbon gas in a temperature range of 800°C to 2300°C. , a sintered compact with higher density and higher strength can be obtained.

前記のように含浸させるポリジルコノカルボシランは液
状とする必要があるため、これらの化合物が室温あるい
は比較的低い加熱温度で液状で得られる場合は、そのま
まのものを、あるいは必要により粘性を下げるため少量
のベンゼン、トルエン、キシレン、ヘキサン、エーテル
、テトラヒドロフラン、ジオキサン、クロロホルム、メ
チレンクロリド、石油エーテル、石油ベンジン、リグロ
イン、フロン、DMSOlDMFその他ポリジルコノカ
ルボシランを可溶する溶媒を用いて溶解したものを実用
することができる。
Since the polyzirconocarbosilane to be impregnated as described above needs to be in liquid form, if these compounds can be obtained in liquid form at room temperature or at a relatively low heating temperature, they can be used as is or with the viscosity reduced if necessary. Therefore, a small amount of benzene, toluene, xylene, hexane, ether, tetrahydrofuran, dioxane, chloroform, methylene chloride, petroleum ether, petroleum benzine, ligroin, Freon, DMSO, DMF, and other solvents that can dissolve polyzirconocarbosilane are used to dissolve it. can be put into practical use.

さらに別の本発明の方法の実施態様においては、本発明
の最初の混和物を作る工程で、ポリジルコノカルボシラ
ンと混和せしむるべきセラミックスを粉末として、ポリ
ジルコノカルボシランを真空中、不活性ガス、還元性ガ
ス、炭化水素ガスのうちから選ばれた少くとも1種から
なる雰囲気中で焼成した後、粉砕することによって得ら
れるセラミックス粉末を使用することによって、高密度
且つ高強度の焼結成形体を得ることができる。
In yet another embodiment of the method of the invention, in the step of making the first blend of the invention, the ceramic to be mixed with the polyzirconocarbosilane is powdered and the polyzirconocarbosilane is mixed in a vacuum. By using ceramic powder obtained by pulverizing after firing in an atmosphere consisting of at least one selected from inert gas, reducing gas, and hydrocarbon gas, high-density and high-strength ceramics can be produced. A sintered shaped body can be obtained.

この場合のセラミックス粉末は主としてSiC。The ceramic powder in this case is mainly SiC.

ZrC,SiCとZrCとの固溶体およびZ r C1
−X (o<x< 1 )より成り、と(7)他にC2
S la N4 (N2中加熱の場合に生成)がわずか
に含まれる。
ZrC, solid solution of SiC and ZrC, and Z r C1
−X (o<x<1), and (7) in addition to C2
A small amount of S la N4 (produced when heating in N2) is included.

本発明により得られたセラミックス成形体は耐熱性を利
用した用途の他に例えばB4 C、T iB2 tZ
r B2成形体の場合は中性子吸収材として利用できる
In addition to applications utilizing heat resistance, the ceramic molded body obtained by the present invention can be used for applications such as B4 C, TiB2 tZ, etc.
r In the case of a B2 molded body, it can be used as a neutron absorbing material.

この他に (1)建築用材料−パネル、ドーム、トレーラ−ハウス
、壁、天井材、床材、クーリングタワー、浄化槽、汚水
タンク、給水タンク、給湯用配管、排水管ミ熱変換用ヒ
ートパイプ等 (2)航空機、宇宙開発用機器材−胴体、翼、ヘリコプ
タ−のドライブシャフト、ジェットエンジンのコンプレ
ッサー、ロータ、ステータ、ブレード、コンプレッサー
ケーシング、ハウジング、ノーズコーン、ロケットノズ
ル、ブレーキ材、タイヤコード等 (3)船舶用材料−ボート、ヨツト、漁船、作業用船等 (4)路上輸送機器材料−車輌の前頭部、側板、水タン
ク、便所ユニット、座席、自動車のボディ、コンテナ、
道路機器、ガードレール、パレット、タンクローリ−用
タンク、自転車、オートバイ等 (5)耐食機器材料−タンク類、塔類ダクト、スタッフ
類、パイプ類等 (6)電気材料−面発熱体、パリスクー、点火器、熱電
対等 (7)スポーツ用品−ボート、洋弓、スキー、スノーモ
ビル、水上スキー、グライダ−機体、テニスラケット、
ゴルフシャフト、ヘルメット、バット、レーシングジャ
ケット等 (8)機械要素−ガスケット、パツキン、ギア、ブレー
キ材、摩耗材、研摩研削材等 (9)医療用機器材料−義足、義肢等 (10)音響用機器材料−カンチレバー、トーンアーム
、スピーカーコーン、ボイスコイル などに利用することができる。
In addition, (1) Building materials - panels, domes, trailer houses, walls, ceiling materials, floor materials, cooling towers, septic tanks, sewage tanks, water supply tanks, hot water supply piping, drainage pipes, heat pipes for heat conversion, etc. 2) Equipment materials for aircraft and space development - fuselages, wings, helicopter drive shafts, jet engine compressors, rotors, stators, blades, compressor casings, housings, nose cones, rocket nozzles, brake materials, tire cords, etc. (3) ) Marine materials - boats, yachts, fishing boats, work boats, etc. (4) Road transport equipment materials - vehicle front head, side panels, water tanks, toilet units, seats, car bodies, containers,
Road equipment, guardrails, pallets, tanks for tank lorries, bicycles, motorcycles, etc. (5) Corrosion-resistant equipment materials - tanks, tower ducts, staffs, pipes, etc. (6) Electrical materials - surface heating elements, pariscours, igniters , thermocouples, etc. (7) Sports equipment - boats, bows, skis, snowmobiles, water skis, gliders, tennis rackets,
Golf shafts, helmets, bats, racing jackets, etc. (8) Mechanical elements - gaskets, packings, gears, brake materials, wear materials, abrasive materials, etc. (9) Medical equipment materials - prosthetic legs, prosthetic limbs, etc. (10) Audio equipment Materials - Can be used for cantilevers, tone arms, speaker cones, voice coils, etc.

以下実施例によって本発明を説明する。The present invention will be explained below with reference to Examples.

参考例 1 51の三ロフラスコに無水キシレン2.51とナトリウ
ム400gとを入れ、窒素ガス気流下でキシレンの沸点
まで加熱し、ジメチルジクロロシラン11を1時間で滴
下した。
Reference Example 1 2.51 g of anhydrous xylene and 400 g of sodium were placed in a 51-sized three-lough flask, heated to the boiling point of xylene under a nitrogen gas stream, and dimethyldichlorosilane 11 was added dropwise over 1 hour.

滴下終了後、10時間加熱還流し沈殿物を生成させた。After the dropwise addition was completed, the mixture was heated under reflux for 10 hours to form a precipitate.

この沈殿を濾過し、まずメタノールで洗浄した後、水で
洗浄して、白色粉末のポリジメチルシラン420gを得
た。
This precipitate was filtered and washed first with methanol and then with water to obtain 420 g of white powder polydimethylsilane.

他方、ジフェニルジクロロシラン759gとホウ酸12
4gを窒素ガス雰囲気下、n−ブチルエーテル中、10
0〜120℃の温度で加熱し、生成した白色樹脂状物を
、さらに真空中400℃で1時間加熱することによって
530gのポリボロジフェニルシロキサンを得た。
On the other hand, 759 g of diphenyldichlorosilane and 12 g of boric acid
4 g in n-butyl ether under nitrogen gas atmosphere, 10
The resulting white resinous material was heated at a temperature of 0 to 120°C and further heated in vacuum at 400°C for 1 hour to obtain 530 g of polyborodiphenylsiloxane.

次に、上記のポリジメチルシラン250gに上記のポリ
ボロジフェニルシロキサン8.2’#を添加混合し、還
流管を備えた21の石英管中で窒素気流下で350°C
まで加熱し6時間重合し、本発明の出発原料の1つであ
るポリカルボシランを得た。
Next, 8.2'# of the above polyborodiphenylsiloxane was added and mixed to 250 g of the above polydimethylsilane, and the mixture was heated to 350°C under a nitrogen stream in a 21 quartz tube equipped with a reflux tube.
Polycarbosilane, which is one of the starting materials of the present invention, was obtained by heating to 6 hours and polymerizing for 6 hours.

室温で放冷後キシレンを加えて溶液として取り出し、キ
シレンを蒸発させ、320°C1時間窒素気流下で濃縮
して140gの固体を得た、このポリマーの数−平均分
子量は蒸気圧浸透圧法(VPO法)により測定したとこ
ろ995であった。
After cooling at room temperature, xylene was added and taken out as a solution. The xylene was evaporated and concentrated under a nitrogen stream at 320°C for 1 hour to obtain 140 g of solid. The number-average molecular weight of this polymer was determined by vapor pressure osmometry (VPO). It was 995 when measured by method).

参考例 2 テトラメチルシラン100gを秤取し、リサイクルので
きる流通式装置を用いて、窒素雰囲気下で770℃で2
4時間反応を行ない、本発明の出発原料の1つであるポ
リカルボシランを得た。
Reference Example 2 100g of tetramethylsilane was weighed out and heated at 770°C under a nitrogen atmosphere for 2 hours using a recyclable flow system.
The reaction was carried out for 4 hours to obtain polycarbosilane, which is one of the starting materials of the present invention.

室温で放冷後ノルマルヘキサンを加えて溶液として取り
出し、濾過して不溶物を除去後、ノルマルヘキサンを蒸
発させ、180℃で1時間、5mmHgの減圧下で濃縮
して14.9の粘着性物質を得た。
After cooling at room temperature, normal hexane was added to take out as a solution, filtered to remove insoluble matter, normal hexane was evaporated, and concentrated under reduced pressure of 5 mmHg at 180°C for 1 hour to obtain a sticky substance of 14.9. I got it.

このポリマーの数平均分子量はVPO法により測定した
ところ450であった。
The number average molecular weight of this polymer was 450 as measured by the VPO method.

参考例 3 参考例1で得られたポリジメチルシラン250gをオー
トクレーブに入れ、アルゴン雰囲気中で、470°C1
約100気圧下で14時間加熱重合し、本発明の出発原
料の1つであるポリカルボシランを得た。
Reference Example 3 250g of polydimethylsilane obtained in Reference Example 1 was placed in an autoclave and heated at 470°C in an argon atmosphere.
Polycarbosilane, which is one of the starting materials of the present invention, was obtained by heating and polymerizing for 14 hours under about 100 atmospheres.

室温で放冷後ノルマルヘキサンを加えて溶液として取り
出し、ノルマルヘキサンを蒸発させ、280℃で1時間
、1m1Hgの減圧下で濃縮して得られた固体を、アセ
トンで処理して低分子量物を除去して、数平均分子量が
8750のポリマー60gを得た。
After cooling at room temperature, normal hexane was added to take out as a solution, normal hexane was evaporated, and the solid obtained by concentrating at 280 ° C. for 1 hour under reduced pressure of 1 ml Hg was treated with acetone to remove low molecular weight substances. As a result, 60 g of a polymer having a number average molecular weight of 8,750 was obtained.

実施例 1 参考例1で得られたポリカルボシラン40.09とジル
コニウムテトラブトキシド31.5gとを秤取し、この
混合物にキシレン400m1を加えて均一相からなる混
合溶液とし、窒素ガス雰囲気下で、130℃で1時間撹
拌しながら還流反応を行った。
Example 1 40.09 g of polycarbosilane obtained in Reference Example 1 and 31.5 g of zirconium tetrabutoxide were weighed out, 400 ml of xylene was added to this mixture to form a mixed solution consisting of a homogeneous phase, and the mixture was heated under a nitrogen gas atmosphere. The reflux reaction was carried out at 130° C. with stirring for 1 hour.

還流反応終了後、さらに温度を230℃まで上昇させて
溶媒のキシレンを留出させたのち、230℃で1時間重
合を行ないポリジルコノカルボシランを得た。
After the reflux reaction was completed, the temperature was further raised to 230°C to distill off the xylene solvent, and then polymerization was carried out at 230°C for 1 hour to obtain polyzirconocarbosilane.

このポリマーの数平均分子量はvPO法により測定した
ところ1677であった。
The number average molecular weight of this polymer was determined to be 1677 by the vPO method.

このポリマー10重量係と200メツシユ以下のSiC
粉末粉末9置 に混合、乾燥後乳鉢中で軽く解砕し、メツシュ100の
篩で整粒した。
This polymer has a weight ratio of 10 and a SiC of 200 mesh or less.
The powder was mixed in 9 portions, dried, then lightly crushed in a mortar and sieved with a 100-mesh sieve.

この混合粉末を1500kg/cyitの成形圧で加圧
成形して1 0rrtm×5 0mm×5mmの圧粉成
形体を得た。
This mixed powder was pressure-molded at a molding pressure of 1500 kg/cyit to obtain a powder compact of 10 rrtm x 50 mm x 5 mm.

この圧粉成形体を窒素ガス中200°C/hrの昇温速
度で1200℃まで加熱焼結した。
This powder compact was heated and sintered to 1200°C at a heating rate of 200°C/hr in nitrogen gas.

この結果嵩密度2.68,9/ffl、抗折強度1 4
. 0 kg/mvt (常温)、 1 3. 8 k
g/v.t7t( 1 200°C)のSiC焼結成形
体を得た。
As a result, the bulk density was 2.68.9/ffl, and the bending strength was 1.4
.. 0 kg/mvt (normal temperature), 1 3. 8k
g/v. A SiC sintered body having a temperature of t7t (1200°C) was obtained.

実施例 2 参考例1で得られたポリマーを330℃で3時間、窒素
気流下で濃縮して得られる数平均分子量が2990のポ
リカルボシラン40.0gとジルコニウムテトライソプ
ロポキシド75.3gとを秤取し、この混合物にベンゼ
ン500m1を加えて均一相からなる混合溶液とし、ア
ルゴンガス雰囲気下で70℃で5時間撹拌しながら還流
反応を行なった。
Example 2 40.0 g of polycarbosilane having a number average molecular weight of 2990 obtained by concentrating the polymer obtained in Reference Example 1 at 330° C. for 3 hours under a nitrogen stream and 75.3 g of zirconium tetraisopropoxide were added. The mixture was weighed out, and 500 ml of benzene was added to this mixture to obtain a mixed solution consisting of a homogeneous phase, and a reflux reaction was carried out with stirring at 70° C. for 5 hours under an argon gas atmosphere.

還流反応終了後さらに加熱し、ベンゼンを留出させた後
150℃で2時間重合を行ない、数平均分子量が976
0のポリジルコノカルボシランを得た。
After the reflux reaction was completed, it was further heated and benzene was distilled off, followed by polymerization at 150°C for 2 hours, resulting in a number average molecular weight of 976.
0 polyzirconocarbosilane was obtained.

このポリマー10重量係と200メツシユ以下の5i3
N4粉末90重量係とを適量のノルマルヘキサンととも
に混合、乾燥後、アルゴン中100℃/ h rの昇温
速度で600℃で予備加熱して粉砕した。
This polymer 10 weight ratio and 5i3 of less than 200 mesh
N4 powder (90% by weight) was mixed with an appropriate amount of n-hexane, dried, and preheated at 600°C at a heating rate of 100°C/hr in argon and pulverized.

この粉末95重量係と上記のポリジルコノカルボシラン
5重量係とを適量のノルマルヘキサンとともにさらに混
合、乾燥後、粉砕した。
95 parts by weight of this powder and 5 parts by weight of the above-mentioned polyzirconocarbosilane were further mixed together with an appropriate amount of n-hexane, dried, and pulverized.

この混合粉末を2000kg/iの成形圧で加圧成形し
て10mm×50mm×5mmの圧粉成形体を得た。
This mixed powder was pressure-molded at a molding pressure of 2000 kg/i to obtain a powder compact of 10 mm x 50 mm x 5 mm.

この圧粉成形体とアルゴン中100℃/hrの昇温速度
で1400℃まで加熱焼結した。
This powder compact was heated and sintered to 1400° C. in argon at a heating rate of 100° C./hr.

この結果嵩密度2.75 El /crif、、抗折強
度12.11y/rra?t(常温)、11.5kg/
mm(1200°C)のSi3N4焼結成形体を得た。
As a result, the bulk density is 2.75 El /crif, and the bending strength is 12.11y/rra? t (normal temperature), 11.5kg/
A Si3N4 sintered body of 1200° C. was obtained.

実施例 3 参考例2で得られたポリカルボシラン40gとテトラキ
スアセチルアセトナトシルコニウム14、L9とを秤取
し、この混合物にエタノール60m1およびキシレン3
001711を加えて均一相からなる混合溶液とし、窒
素ガス雰囲気下で60℃で8時間撹拌しながら還流反応
を行なった。
Example 3 40 g of polycarbosilane obtained in Reference Example 2 and tetrakis acetylacetonatosilconium 14, L9 were weighed out, and 60 ml of ethanol and 3 xylene were added to the mixture.
001711 was added to form a mixed solution consisting of a homogeneous phase, and a reflux reaction was carried out with stirring at 60° C. for 8 hours under a nitrogen gas atmosphere.

還流反応終了後さらに加熱しエタノールおよびキシレン
を留出させた後180℃で3時間重合を行ない、数平均
分子量が1380のポリジルコノカルボシランを得た。
After the reflux reaction was completed, the mixture was further heated to distill out ethanol and xylene, and then polymerized at 180° C. for 3 hours to obtain polyzirconocarbosilane having a number average molecular weight of 1,380.

このポリマー7重量係と200メツシユ以下のα−AA
、20393重量係とを適量のベンゼンとともに混合、
乾燥後、粉砕した。
This polymer 7 weight ratio and α-AA of 200 mesh or less
, 20393 weight ratio and mixed with an appropriate amount of benzene,
After drying, it was crushed.

この混合粉末を3000kg/dの成形圧で加圧成形し
て10mrn×50mmX 5mmの圧粉成形体を得た
This mixed powder was pressure-molded at a molding pressure of 3000 kg/d to obtain a powder compact of 10 mrn x 50 mm x 5 mm.

この圧粉成形体を窒素中200℃/ h rの昇温速度
で1000℃まで加熱焼結した。
This powder compact was heated and sintered in nitrogen at a heating rate of 200°C/hr to 1000°C.

この結果嵩密度3、15 g/cri、抗折強度6.5
1y/ma(常温)、6.0ky/mi(900℃)の
Al2O3焼結成形体を得た。
As a result, the bulk density was 3.15 g/cri, and the bending strength was 6.5.
An Al2O3 sintered body of 1y/ma (room temperature) and 6.0ky/mi (900°C) was obtained.

実施例 4 参考例3で得られたポリカルボシラン40.0gとジル
コニウムテトラフェノキシド2.6gとを秤取し、この
混合物にキシレン200m1を加えて均一相からなる混
合溶液とし、アルゴンガス雰囲気下で130°Cで2時
間撹拌しながら還流反応を行なった。
Example 4 40.0 g of polycarbosilane obtained in Reference Example 3 and 2.6 g of zirconium tetraphenoxide were weighed out, 200 ml of xylene was added to this mixture to form a mixed solution consisting of a homogeneous phase, and the mixture was heated under an argon gas atmosphere. The reflux reaction was carried out at 130°C with stirring for 2 hours.

還流反応終了後さらに加熱し、キシレンを留出させた後
、300℃で30分間重合を行ない、数平均分子量が1
9300のポリジルコノカルボシランを得た。
After the reflux reaction was completed, further heating was performed to distill out xylene, and polymerization was carried out at 300°C for 30 minutes until the number average molecular weight was 1.
9300 polyzirconocarbosilane was obtained.

このポリマー15重量係と200メツシユ以下のSiC
粉末粉末8置適量のテトラヒドロフランとともに混合、
乾燥後、アルゴン中100°C/hrの昇温速度で60
0℃まで予備加熱して粉砕した。
This polymer has a weight ratio of 15 and a SiC of less than 200 mesh.
Mix the powder with an appropriate amount of tetrahydrofuran for 8 minutes.
After drying, heat at a heating rate of 100°C/hr in argon for 60°C.
It was preheated to 0°C and ground.

この粉末をカーボンダイス中にセットしてアルゴン気流
下1800℃で0.5時間ホットプレスした。
This powder was set in a carbon die and hot pressed at 1800°C for 0.5 hour under an argon stream.

この結果、嵩密度3. 0 5 9 /ail、抗折強
度2 6、 0 kg/mi (常温)、2 5.5k
y/mi( 1 4 0 0℃)のSiC焼結成形体を
得た。
As a result, the bulk density is 3. 0 5 9 /ail, bending strength 2 6, 0 kg/mi (room temperature), 2 5.5k
A SiC sintered body of y/mi (1400°C) was obtained.

Claims (1)

【特許請求の範囲】 1 主として一般式 (但し、式中のRは水素原子、低級アルキル基、又はフ
ェニル基を示す) で表わされる主鎖骨格を有する数平均分子量が200〜
10,000のポリカルボシランと、一般式 %式% (但し、式中のXは炭素数1〜20個を有するアルコキ
シ基、フェノキシ基又はアセチルアセトキシ基を示す) で表わされる有機ジルコニウム化合物とから誘導された
数平均分子量700〜100,000のポリジルコノカ
ルボシランであって、該ポリジルコノカルボシランのケ
イ素原子の少なくとも1部が酸素原子を介してジルコニ
ウム原子と結合しており、そして該ポリジルコノカルボ
シランにおける+St CH2+の構造単位の全数対
+Z r −0−9−の構造単位の全数の比率が2=1
乃至200 : 1の範囲内にあるポリジルコノカルボ
シランを、酸化物、炭化物、窒化物、硼化物、珪化物の
うちから選ばれる少なくとも1種からなるセラミックス
に混和し、得られた混和物を成形し、この成形と同時に
又は成形した後に、真空中、不活性ガス、還元性ガス、
炭化水素ガスのうちから選ばれる少なくとも1種からな
る雰囲気中で、800〜2300℃の温度範囲内で加熱
焼結することを特徴とする、セラミックス焼結成形体の
製造法。 2 前記のポリジルコノカルボシランと前記セラミック
スを混和した混和物を、真空中、不活性ガス、還元性ガ
ス、炭化水素ガスのうちから選ばれる少なくとも1種か
らなる雰囲気中で、800℃以下で予備加熱した後、成
形し、この成形と同時に又は成形した後に、真空中、不
活性ガス、還元性ガス、炭化水素ガスのうちから選ばれ
る少なくとも1種からなる雰囲気中で、800〜230
0℃の温度範囲内で加熱焼結することを特徴とする特許
請求の範囲第1項に記載の方法。
[Scope of Claims] 1 Mainly a main chain skeleton represented by the general formula (wherein R represents a hydrogen atom, a lower alkyl group, or a phenyl group) and a number average molecular weight of 200 to 200.
10,000 polycarbosilane and an organic zirconium compound represented by the general formula % (where X in the formula represents an alkoxy group, phenoxy group, or acetylacetoxy group having 1 to 20 carbon atoms). A derived polyzirconocarbosilane having a number average molecular weight of 700 to 100,000, wherein at least a portion of the silicon atoms of the polyzirconocarbosilane are bonded to zirconium atoms via oxygen atoms, and The ratio of the total number of +St CH2+ structural units to the total number of +Z r -0-9- structural units in polyzirconocarbosilane is 2 = 1
A polyzirconocarbosilane within the range of 1 to 200:1 is mixed with a ceramic consisting of at least one selected from oxides, carbides, nitrides, borides, and silicides, and the resulting mixture is molding, and at the same time or after the molding, in a vacuum, inert gas, reducing gas,
A method for producing a ceramic sintered body, which comprises heating and sintering within a temperature range of 800 to 2,300°C in an atmosphere containing at least one kind selected from hydrocarbon gases. 2. A mixture of the polyzirconocarbosilane and the ceramics is heated at 800°C or lower in vacuum in an atmosphere containing at least one selected from inert gas, reducing gas, and hydrocarbon gas. After preheating, molding, and at the same time or after the molding, in vacuum, in an atmosphere consisting of at least one selected from inert gas, reducing gas, and hydrocarbon gas,
The method according to claim 1, characterized in that heating and sintering is carried out within a temperature range of 0°C.
JP55036893A 1980-03-25 1980-03-25 Manufacturing method for ceramic sintered bodies Expired JPS5940786B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP55036893A JPS5940786B2 (en) 1980-03-25 1980-03-25 Manufacturing method for ceramic sintered bodies
US06/245,849 US4556526A (en) 1980-03-25 1981-03-20 Process for production of sintered ceramic body
CA000373752A CA1161068A (en) 1980-03-25 1981-03-24 Sintered ceramic body and process for production thereof
DE8181301290T DE3164100D1 (en) 1980-03-25 1981-03-25 Sintered ceramic body and process for production thereof
EP81301290A EP0037249B1 (en) 1980-03-25 1981-03-25 Sintered ceramic body and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55036893A JPS5940786B2 (en) 1980-03-25 1980-03-25 Manufacturing method for ceramic sintered bodies

Publications (2)

Publication Number Publication Date
JPS56134557A JPS56134557A (en) 1981-10-21
JPS5940786B2 true JPS5940786B2 (en) 1984-10-02

Family

ID=12482445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55036893A Expired JPS5940786B2 (en) 1980-03-25 1980-03-25 Manufacturing method for ceramic sintered bodies

Country Status (1)

Country Link
JP (1) JPS5940786B2 (en)

Also Published As

Publication number Publication date
JPS56134557A (en) 1981-10-21

Similar Documents

Publication Publication Date Title
JPS6054906B2 (en) Manufacturing method for ceramic sintered bodies
JPS6028781B2 (en) Method for producing heat-resistant ceramic sintered bodies
US8119057B2 (en) Method for synthesizing bulk ceramics and structures from polymeric ceramic precursors
US4336215A (en) Sintered ceramic body and process for production thereof
US7287573B2 (en) Silicone binders for investment casting
KR20080071987A (en) Silicon carbide precursors and uses thereof
US20060003098A1 (en) Process for the manufacturing of dense silicon carbide
US20200332125A1 (en) Ceramic materials comprising preceramic resin formulations, and related articles and methods
WO1994012448A1 (en) Process for producing ceramic product
US20030232946A1 (en) Application of photocurable pre-ceramic polymers
JPS5830264B2 (en) Golden croaker
JPH05105521A (en) Carbon-fiber reinforced silicon nitride-based nano-composite material and its production
US5725828A (en) Ceramic matrix composites using modified hydrogen silsesquioxane resin
US4556526A (en) Process for production of sintered ceramic body
US20020165332A1 (en) Preceramic polymers to hafnium carbide and hafnium nitride ceramic fibers and matrices
EP1226203A1 (en) Poly(silyleneethynylene phenyleneethynylene) and methods for preparing same
JPS5940786B2 (en) Manufacturing method for ceramic sintered bodies
JPS5951516B2 (en) Manufacturing method for ceramic sintered bodies
JPS5940789B2 (en) Manufacturing method for ceramic sintered bodies
JPS61110742A (en) Inorganic fiber reinforced metallic composite material
US5308421A (en) Method for forming fiber-reinforced glass composite protective layers on insulating bodies
JPS609982B2 (en) Manufacturing method for ceramic sintered bodies
JPS6014820B2 (en) Manufacturing method for reinforced composite materials
EP2574604B1 (en) Method for Fabricating Ceramic Material
JPS5910945B2 (en) Method for manufacturing heat-resistant ceramic sintered bodies