JPS594040A - Semiconductor substrate carrying method - Google Patents

Semiconductor substrate carrying method

Info

Publication number
JPS594040A
JPS594040A JP11283682A JP11283682A JPS594040A JP S594040 A JPS594040 A JP S594040A JP 11283682 A JP11283682 A JP 11283682A JP 11283682 A JP11283682 A JP 11283682A JP S594040 A JPS594040 A JP S594040A
Authority
JP
Japan
Prior art keywords
gas
region
wafer
speed
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11283682A
Other languages
Japanese (ja)
Inventor
Akira Machida
晃 町田
Mikio Fujii
幹雄 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11283682A priority Critical patent/JPS594040A/en
Publication of JPS594040A publication Critical patent/JPS594040A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67784Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations using air tracks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To accurately control speed and location of wafers in different weights and shapes only with control of levitating pressure by using the gravity as a driving force for transferring wafers. CONSTITUTION:In a wafer transferring path structure, a wafer 2 is levitated by the gas blowing through the pores 1 in the region A. In this case, the pores 1 are inclined in order to give an initial speed and the gas is injected in the direction indicated by the arrow 3. In the area other than the region A of the transferring path, the pores are provided at a right angle and the gas is injected upward. In the region B, gas flow is accelerated by utilizing gravity, the gas flows in the equal speed in the region C, but decelerated in the region D and is stopped in the region E. According to this method, speed and position are depending only on the inclination angle but on flow rate of gas and weight of wafer. Therefore, control can be realized with good reproducibility.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は噴流ガスを用いた半導体基板の搬送方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method of transporting a semiconductor substrate using jet gas.

(b)  技術の背景 半導体集積回路はシリコン(Si )のような単体半導
体或はガリウム・砒素(GaAs)のような化合物半導
体の単結晶の薄層基板(以下ウェハ)を用いて形成され
ている0こ\で半導体集積回路の量産方法にはバッチ処
理とインライン処理の2つの方法がある。
(b) Background of the technology Semiconductor integrated circuits are formed using single crystal thin layer substrates (hereinafter referred to as wafers) of single semiconductors such as silicon (Si) or compound semiconductors such as gallium arsenide (GaAs). There are two methods for mass producing semiconductor integrated circuits: batch processing and inline processing.

すなわち前者は多数個のウエノ・を同時処理できる長所
はあるが、装備が大型化し、また膜厚などの成長条件が
異なる要求に対しては容易に追随できない欠点をもつ。
That is, the former method has the advantage of being able to process a large number of wafers at the same time, but has the disadvantage that it requires larger equipment and cannot easily meet demands for different growth conditions such as film thickness.

一方後者は1個づつのウェハな順次に処理するもので多
数個を処理するには時間を要する欠点はあるが、成長条
件などの変更要求に対して比較的容易に対応できる長所
をもっている。
On the other hand, the latter method sequentially processes one wafer at a time, and although it has the disadvantage of requiring time to process a large number of wafers, it has the advantage of being relatively easy to respond to requests for changes in growth conditions, etc.

こ\でこれらの処理装置を繋いで行われる試料の搬送は
自動化の方向にあシ、カムを用いるウオーキングビーム
方式、メカニカル摺動方式、落下方式、ターンテーブル
方式、トレイ搬送力式、パイプレージ冒ン方式など各種
の方式がある。
The transportation of samples that is performed by connecting these processing devices is moving towards automation, and there are various methods such as a walking beam method using a cam, a mechanical sliding method, a drop method, a turntable method, a tray transport force method, and a pipe slide method. There are various methods such as

然し半導体ウェハのように機械的衝撃に弱く、また不純
物汚染を嫌う材料の搬込には特別な注意が必要である。
However, special care must be taken when transporting materials such as semiconductor wafers, which are sensitive to mechanical shock and are sensitive to impurity contamination.

本発明はガスの噴流を利用してウェハを搬送する機構に
関するもので、浮上した状態で搬送が行われるために使
用ガスの純度が読い限り汚染の危険性は女く最も安全な
搬送方法と云える。
The present invention relates to a mechanism for transporting wafers using gas jets, and since the wafers are transported in a floating state, there is no risk of contamination as long as the purity of the gas used is determined, making it the safest transport method. I can say that.

(c)  従来技術と問題点 第1図はエアートラックと云ゎゎる従来の搬送路の構成
を示すものて(5)は断面図、(B)は正面図である。
(c) Prior Art and Problems Figure 1 shows the configuration of a conventional conveyance path called an air track. (5) is a sectional view, and (B) is a front view.

図において搬送路はステンレスなどがらなp諺。In the figure, the conveyance path is made of stainless steel.

径約1 mrRのガス吹きat L孔1が搬送面に対し
傾斜をもって規則正しく設けられておシ例えは窒素ガス
(N、)全裏面よシ上面へ矢印3の方向に−吹き出させ
このガス圧によってウェハ2乏浮上さぜるものである。
Gas blowing at L holes 1 with a diameter of about 1 mrR are provided regularly with an inclination to the conveying surface.For example, nitrogen gas (N) is blown out from the back side to the top side in the direction of arrow 3, and by this gas pressure. This is used to float the wafer 2.

こ\で浮上したウェハ2けガス吹きυル孔1の傾斜方向
に移動するが、ガスの流綾七吹き出し孔10角度にょク
ウェハ2の移動速度および加速度が微妙な1響を受は速
度および位置の精密な制御は困難である。
The floating wafer 2 moves in the direction of the inclination of the gas blowing hole 1, but the moving speed and acceleration of the wafer 2 are affected by the subtle effects due to the gas flow direction and the angle of the blowing hole 10. precise control is difficult.

そこでウェハ2を停止位置に止めるためにはガス吹き出
し孔1の傾斜方向を変えまた真空チャックで固定するな
どの方法がとられているがウェハ搬送の正確な側御Fi
醍しかった〇 (d)  発明の目的 本発明の目的は重力をウェハ搬送の駆動力とすることに
より異った重量および形状のウェハに対しても浮上圧力
の制御のみで速度とfit &の正確な側力を可能とす
る搬送方式を提供するKある〇(e)  発明の構成 本発明の目的はガスが噴流する搬送路を移動方向へ上下
の勾配をもって形成し、重力加速度を駆動力としてウェ
ハを移動させる搬送力法により実現できる。
Therefore, in order to stop the wafer 2 at the stop position, methods such as changing the inclination direction of the gas blowing hole 1 and fixing it with a vacuum chuck are used, but accurate side control Fi of wafer transport is used.
〇(d) Purpose of the Invention The purpose of the present invention is to use gravity as the driving force for wafer transport, so that even wafers of different weights and shapes can be transported with speed and accuracy by simply controlling the floating pressure. To provide a transfer method that enables a lateral force such as This can be realized by the conveying force method that moves the .

(f)  発明の実施例 従来の搬送装置は第1図に示すようにガス吹き出し孔1
を搬送面に対し傾斜させて設けることによりウェハ2の
浮上と水平方向との移Flak行わせていたのに対し、
本発明の方法はガス吹き出し孔は搬送面に直角に設けて
ウェハの浮上のみに使用しまたウェハの搬送1l−j:
搬送路を進行方向に傾斜させることにょ多生ずる重力加
速度にょシ行うものである。
(f) Embodiment of the Invention The conventional conveying device has a gas blowing hole 1 as shown in FIG.
In contrast to the previous method, the wafer 2 was floated and moved in the horizontal direction by providing the wafer 2 at an angle with respect to the conveying surface.
In the method of the present invention, the gas blowing holes are provided perpendicularly to the transport surface and are used only for floating the wafer, and the wafer transport 1l-j:
This is to compensate for the gravitational acceleration that often occurs when the conveyance path is inclined in the direction of travel.

第2図は本発明に係るウェハ搬送路の構成を示すもので
A領域は従来と同じ構成であってガス吹き出し孔1はウ
ェハ2を浮上させると共に初速を与えるだめ従来と同様
に吹き出し孔1は傾斜して設けられガスは矢印3の方向
に噴流しているが、それ以外の9EX211:路におい
てはi6角に設けられガスはiuJ:に向は噴流してお
シ、B領域でに重力を用いて加速させ、C領域で肴速度
運動させ、D領域で減速させ、E領域で停止さすよう構
成されている。いまこの重力による移動全説明1−ると
次のようになる。
FIG. 2 shows the configuration of the wafer transport path according to the present invention. Region A has the same configuration as the conventional one, and the gas blowing holes 1 are used to levitate the wafer 2 and give an initial velocity. It is installed at an angle and the gas is jetted in the direction of arrow 3, but in other 9EX211: areas, it is installed at the i6 corner and the gas is jetted in the iuJ: direction, and the gravity is applied in the B area. The device is configured to accelerate using the robot, move at an appetizing speed in the C region, decelerate in the D region, and stop in the E region. Now, the complete explanation of movement due to gravity 1 is as follows.

第3図は傾斜角θの搬送路を初速Voをもつウェハ2が
重力によフ移動する場合で(A)は下シ勾配また(B)
は上り勾配の場合である。
Figure 3 shows a case in which a wafer 2 with an initial velocity Vo is moved by gravity along a conveyance path with an inclination angle θ; (A) is a downward slope, and (B)
is for an uphill slope.

図においてウェハ2の移動方時の加速度はウェハ2の重
量に関わらすg(2)θで懺わされる。(但しyは重力
加速度)いま初速Voでt秒後の速度をv(tL また
t秒間に進む距離を5(−t)とし、摩擦抵抗を無視す
ると、V(t)および5(t)は次式で表わすことがで
きる。
In the figure, the acceleration when moving the wafer 2 is represented by g(2)θ, which is related to the weight of the wafer 2. (However, y is the gravitational acceleration.) If the initial velocity Vo is now, the velocity after t seconds is v(tL), and the distance traveled in t seconds is 5(-t), and if frictional resistance is ignored, V(t) and 5(t) are It can be expressed by the following equation.

下シ勾配の場合 V(t)=Vo+Fa)8θ・t    ・  (1)
S(t)=−g可θφt2+ Vo t     (2
)上り勾配の場合 VCt)=Vo−1!■θ・t    −(3)2 S(t)=Vot −−gasθ−t  −−(4)以
上のように速度9位置とも傾斜角θのみに依存し、気体
流t1−およびウエノ・の重量に依らないので再現性の
よい制御ができるとと\なる。
In case of downward slope V(t)=Vo+Fa)8θ・t ・ (1)
S(t)=-gpossibleθφt2+ Vo t (2
) for uphill slope VCt)=Vo-1! ■θ・t −(3) 2 S(t)=Vot −−gasθ−t −−(4) As shown above, each of the nine speed positions depends only on the inclination angle θ, and the gas flow t1− and the weight of Ueno・This means that control with good reproducibility can be achieved because it does not depend on the

なおこの場合ウェハ2の搬送に際しての摩擦抵抗を無視
したが噴出するガス流により浮上し重力の水平成分によ
って搬送される本実施例のような場合はウェハ2と搬送
路との間はガスの薄膜があるのみで摩擦抵抗は非常に少
い0 本発明は第2図に示すように従来の方法で初速を与えた
後下り勾配を与えて加速し、その後等速で移動させた後
、上り勾配で減速させ停止させるものである。なお第2
図の実施例においてはB。
In this case, frictional resistance was ignored when the wafer 2 was transported, but in the case of this embodiment where the wafer 2 floats due to the ejected gas flow and is transported by the horizontal component of gravity, there is a thin film of gas between the wafer 2 and the transport path. As shown in Fig. 2, the present invention uses the conventional method to give an initial velocity, then apply a downward slope to accelerate, then move at a constant speed, and then accelerate to an upward slope. This is used to decelerate and stop the vehicle. Furthermore, the second
B in the illustrated embodiment.

C,D各領域での摩擦による運動エネルギーの消費を考
慮してE領域の高さ’iA領域よシも低くしであるがウ
ェハ2がE領域に到達した時は充分に低速になっており
、ウエノ・2の停止は真空チャッりなどによυ撰傷を与
えずに行う9とができる。
Considering the consumption of kinetic energy due to friction in each region C and D, the height of the E region is lower than that of the A region, but when the wafer 2 reaches the E region, the speed is sufficiently low. , Ueno-2 can be stopped without causing damage by vacuum chuck, etc.9.

(g)  発明の効果 エアトラックを用いて行うウェハの搬送は従来重量およ
び大きさにより搬送条件が異りtt+lI御が困aIc
であったが重力klJANb力とする本発明の実施によ
り搬送速度および停止などの1Ill イ1lilが容
易となった。
(g) Effects of the invention Conventionally, wafer transport using an air track has different transport conditions depending on weight and size, making it difficult to control tt+lI.
However, by implementing the present invention in which the force of gravity is used, it has become easier to control the conveyance speed and stop.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の搬送装置6の(1す成で(A)Cま断面
図、(B)は正面図、第2しII−を本発明に係る搬送
路の構成図また第3図(Al (B)tま傾斜した搬送
路におけるウェハの運動の説明図である。
FIG. 1 is a sectional view of a conventional conveyance device 6 (1 component), (A) is a cross-sectional view from C, (B) is a front view, and FIG. Al (B) t is an explanatory diagram of the movement of a wafer in a tilted conveyance path.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板を噴流ガスを用いて浮上させ移動せしめる搬
送装置においてガスが噴流する錠送路を移動方向へ上下
の勾配をもって形成し、電力加速度を駆動力として前記
基板を移動させることを特徴とする半導体基板の搬送力
法。
A semiconductor device characterized in that, in a transfer device that levitates and moves a semiconductor substrate using jet gas, a lock feeding path through which gas flows is formed with a vertical gradient in the movement direction, and the substrate is moved using electric acceleration as a driving force. Substrate conveyance force method.
JP11283682A 1982-06-30 1982-06-30 Semiconductor substrate carrying method Pending JPS594040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11283682A JPS594040A (en) 1982-06-30 1982-06-30 Semiconductor substrate carrying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11283682A JPS594040A (en) 1982-06-30 1982-06-30 Semiconductor substrate carrying method

Publications (1)

Publication Number Publication Date
JPS594040A true JPS594040A (en) 1984-01-10

Family

ID=14596743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11283682A Pending JPS594040A (en) 1982-06-30 1982-06-30 Semiconductor substrate carrying method

Country Status (1)

Country Link
JP (1) JPS594040A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601224B2 (en) 2002-03-08 2009-10-13 Asm America, Inc. Method of supporting a substrate in a gas cushion susceptor system
US7691750B2 (en) 2003-06-12 2010-04-06 Asm International N.V. Methods of forming films in semiconductor devices with solid state reactants
US7754013B2 (en) 2002-12-05 2010-07-13 Asm International N.V. Apparatus and method for atomic layer deposition on substrates

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323599A (en) * 1976-08-18 1978-03-04 Seiwa Shiyouji Kk Method of mounting fire alarm for sealed luggage body truck
JPS56169345A (en) * 1980-04-30 1981-12-26 Ibm Rotary device for pneumatic track
JPS57128940A (en) * 1981-02-04 1982-08-10 Sony Corp Heat treating method for substrate
JPS5840841B2 (en) * 1976-12-10 1983-09-08 株式会社日立製作所 microwave introduction flange

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323599A (en) * 1976-08-18 1978-03-04 Seiwa Shiyouji Kk Method of mounting fire alarm for sealed luggage body truck
JPS5840841B2 (en) * 1976-12-10 1983-09-08 株式会社日立製作所 microwave introduction flange
JPS56169345A (en) * 1980-04-30 1981-12-26 Ibm Rotary device for pneumatic track
JPS57128940A (en) * 1981-02-04 1982-08-10 Sony Corp Heat treating method for substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601224B2 (en) 2002-03-08 2009-10-13 Asm America, Inc. Method of supporting a substrate in a gas cushion susceptor system
US7754013B2 (en) 2002-12-05 2010-07-13 Asm International N.V. Apparatus and method for atomic layer deposition on substrates
US7691750B2 (en) 2003-06-12 2010-04-06 Asm International N.V. Methods of forming films in semiconductor devices with solid state reactants

Similar Documents

Publication Publication Date Title
US4395165A (en) Chip shuttle track
JPH06156730A (en) Conveying device
US6627039B1 (en) Plasma processing methods and apparatus
KR100350719B1 (en) apparatus for transferring in a semiconductor fabricating
US7441648B1 (en) Systems and methods for transport through curves
KR101957960B1 (en) Magnetic levitation transfer apparatus
EP1845552B1 (en) Transportation system and transportation method
US7434678B1 (en) Systems and methods for transport through curved conveyance sections
JPS594040A (en) Semiconductor substrate carrying method
JPS61294812A (en) Gas phase floating epitaxial growth equipment
Cox Vapor levitation epitaxy: A new concept in epitaxial crystal growth
JP2004345814A (en) Floatation transport device
JP2000016756A (en) Conveying system and track running vehicle
JPH06179524A (en) Magnetic levitation vacuum conveyance device
US20080050208A1 (en) High speed transporter including horizontal belt
JPH06340333A (en) Conveying device by gas flow
JP3364294B2 (en) Transfer device and transfer method
JPH0276242A (en) Conveying method of base board and apparatus therefor
JP2008266010A (en) Air-floating carrying device using travel passage with guide groove
JPH07176593A (en) Conveyer
JPS6392205A (en) Carrier equipment for magnetic levitation for vacuum apparatus
JP2000100912A (en) Substrate holding device
JPH0410553A (en) Semiconductor substrate transfer chucking device, susceptor, and non-contact clean transfer device
KR102385265B1 (en) Article transferring apparatus and Overhead hoist transport
JPH0597242A (en) Magnetic levitation type carrying system