JPS5940256B2 - Emission spectrometer - Google Patents

Emission spectrometer

Info

Publication number
JPS5940256B2
JPS5940256B2 JP1015577A JP1015577A JPS5940256B2 JP S5940256 B2 JPS5940256 B2 JP S5940256B2 JP 1015577 A JP1015577 A JP 1015577A JP 1015577 A JP1015577 A JP 1015577A JP S5940256 B2 JPS5940256 B2 JP S5940256B2
Authority
JP
Japan
Prior art keywords
discharge
light
chamber
counter electrode
argon gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1015577A
Other languages
Japanese (ja)
Other versions
JPS5395693A (en
Inventor
勲 加藤
秀雄 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1015577A priority Critical patent/JPS5940256B2/en
Priority to US05/797,255 priority patent/US4165871A/en
Publication of JPS5395693A publication Critical patent/JPS5395693A/en
Publication of JPS5940256B2 publication Critical patent/JPS5940256B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K13/00Conveying record carriers from one station to another, e.g. from stack to punching mechanism
    • G06K13/02Conveying record carriers from one station to another, e.g. from stack to punching mechanism the record carrier having longitudinal dimension comparable with transverse dimension, e.g. punched card
    • G06K13/16Handling flexible sheets, e.g. cheques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges

Landscapes

  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【発明の詳細な説明】 この発明は真空形発光分光分析装置、特にその発光部(
室)の構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a vacuum-type optical emission spectrometer, particularly its light-emitting section (
This is related to the structure of the room.

従来の真空形発光分光分析装置の発光室は第1図のごと
く構成されている。
The light emitting chamber of a conventional vacuum type emission spectrometer is constructed as shown in FIG.

すなわち図において1は真空形発光分光分析装置の発光
室であり、分光室2とはレンズ3を介して隣接して設け
られている。4は、発光室1の開口5上に載置される試
料であり、6はこの試料4に対向し、試料との間で放電
をする対電極である。
That is, in the figure, 1 is a light emitting chamber of a vacuum-type emission spectrometer, which is adjacent to a spectroscopic chamber 2 with a lens 3 interposed therebetween. 4 is a sample placed on the opening 5 of the light emitting chamber 1, and 6 is a counter electrode that faces the sample 4 and generates a discharge between it and the sample.

7は発光室1の分光室2側からのアルゴンガス導入路(
管)、8は対電極6の周囲からのアルゴンガス導入路(
管)、9は発光室1の分光室2と反対側に設けられたガ
ス(アルゴンガス)排出路(管)である。
7 is an argon gas introduction path from the spectroscopy chamber 2 side of the light emission chamber 1 (
8 is an argon gas introduction path from around the counter electrode 6 (
9 is a gas (argon gas) exhaust path (tube) provided on the opposite side of the light emitting chamber 1 from the spectroscopic chamber 2.

以上の構成において発光室1内をアルゴンガス(一定圧
力、一定流量)で置換してのち、試料4と対電極6間で
放電が行なわれ、発生した光は、レンズ3を介して分光
室2内で分光され、その各スペクトルから含有物質の定
性あるいは定量が行なわれるのである。
In the above configuration, after replacing the interior of the light emitting chamber 1 with argon gas (constant pressure, constant flow rate), a discharge is generated between the sample 4 and the counter electrode 6, and the generated light is transmitted through the lens 3 to the spectroscopic chamber 1. The substances contained therein are analyzed qualitatively or quantitatively from each spectrum.

しかし、従来のこの発光室の構成にあつては試料上の放
電面積を小さなある大きさに規制することが困難で放電
面積が大きく、よつて試料上の特定の箇所を精密に分析
することが不可能であつた。
However, with the conventional configuration of this light-emitting chamber, it is difficult to control the discharge area on the sample to a certain small size, and the discharge area is large, making it difficult to precisely analyze a specific location on the sample. It was impossible.

なお、対電極も移動させて放電ギャップを変えて放電面
積を少しの範囲において変えたり、絶縁物で試料面を覆
つて放電面積を規制することはできるが、これらの方策
では光を有効に取り出すことができなかつた。すなわち
理想的には分光室からみて光源(放電発光)が一定強度
の点光源であることが、その分析精度上、さらには光を
有効利用する上から望ましいのであるが、従来の構成は
満足すべきものではなかつたのである。また発光室内に
流す雰囲気ガスとしてのアルゴンガスは高純度のものを
使用しているが発光室内の汚れ、空気のたまり、等があ
るとアルゴンガスの純度が低下して放電が不安定になり
試料の蒸発量が低下する等の欠点も存在していた。
Note that it is possible to change the discharge area within a small range by changing the discharge gap by moving the counter electrode, or to restrict the discharge area by covering the sample surface with an insulator, but these measures do not effectively extract light. I couldn't do it. In other words, ideally, it would be desirable for the light source (discharge luminescence) to be a point light source with a constant intensity when viewed from the spectroscopic chamber, from the viewpoint of analysis accuracy and effective use of light, but the conventional configuration is not satisfactory. It was not a kimono. In addition, high-purity argon gas is used as the atmospheric gas flowing into the light-emitting chamber, but if there is dirt, air accumulation, etc. in the light-emitting chamber, the purity of the argon gas will decrease and the discharge will become unstable. There were also disadvantages such as a decrease in the amount of evaporation.

この発明は従来の上記のごとき欠点を除却するために放
電面積を小さくし、つまりできるだけ点光源に近づける
とともに試料面に高純度のアルゴンガスを細く絞つてア
ルゴンジェットとして吹き当て、このアルゴンジェット
から成るアルゴン柱内で放電させ、この放電を安定させ
ることを目的とするもので、対電極の先端部にアルゴン
ガスをアルゴンジェットとして試料面上に吹きつけるた
めのノズル部を有し、このアルゴンジェットを吹きつけ
ながら放電発光させるとともに発光室内へは他の置換用
の不活性ガスが導入されることを特徴とする発光分光分
析装置であり、以下図面に従つてこの発明を説明してゆ
く。
In order to eliminate the above-mentioned drawbacks of the conventional technology, this invention reduces the discharge area, that is, makes it as close to a point light source as possible, and also sprays high-purity argon gas onto the sample surface as an argon jet. The purpose of this device is to generate a discharge within an argon column and to stabilize this discharge.The tip of the counter electrode has a nozzle section for spraying argon gas onto the sample surface as an argon jet. This is an optical emission spectrometer characterized in that discharge light is emitted while being blown, and another inert gas for substitution is introduced into the light emitting chamber.This invention will be described below with reference to the drawings.

第2図、および第3図はこの発明の放電室内の放電部を
図示したもので、第1図と同一符号は同一のものを示す
2 and 3 illustrate the discharge section in the discharge chamber of the present invention, and the same reference numerals as in FIG. 1 indicate the same parts.

この第2図において、8はアルゴンガス導入路(管)で
、これは発光室内では細い形状の対電極6をその中心部
に有し、対電極の先端部では図のように対電極と導入管
とでノズル部10を構成している。
In this Figure 2, 8 is an argon gas introduction channel (tube), which has a thin counter electrode 6 in its center inside the luminescence chamber, and the tip of the counter electrode is connected to the counter electrode as shown in the figure. The nozzle part 10 is constituted by the pipe.

よつてアルゴンガスはノズルから噴出し、アルゴンガス
ジェットとして試料面上に吹きつけられ、ここに円柱状
のアルゴンガス柱が形成され、このアルゴン柱が放電路
となるのである。一方この構成にあつては分光室側から
は矢印のごとく放電しにくい気体、または紫外部の光を
吸収しない気体の例えば窒素ガスN2が導入され発光室
内のアルゴンガスと雰囲気ガスのこの窒素ガスとはガス
排出路(管)9によつて排出される。
Therefore, argon gas is ejected from the nozzle and is blown onto the sample surface as an argon gas jet, forming a cylindrical argon gas column, and this argon column becomes a discharge path. On the other hand, in this configuration, a gas that is difficult to discharge, or a gas that does not absorb ultraviolet light, such as nitrogen gas N2, is introduced from the spectroscopic chamber side as shown by the arrow, and the argon gas in the light emission chamber and this nitrogen gas in the atmospheric gas are introduced. is discharged through a gas discharge path (pipe) 9.

また第3図においては対電極6を中空管として構成し、
この管をアルゴンガス導入管8として兼用しようとする
もので、この先端部でもやはりノズル部10を構成して
いる。一方この第3図の構成にあつては、この対電極6
を中心とする窒素ガス導入路(管)11が設けられ、こ
の導入管11も対電極の先端部ではやはりもう一つのノ
ズル部12を形成している。
In addition, in FIG. 3, the counter electrode 6 is configured as a hollow tube,
This tube is intended to be used also as an argon gas introduction tube 8, and its tip also constitutes a nozzle section 10. On the other hand, in the configuration shown in FIG. 3, this counter electrode 6
A nitrogen gas introduction path (pipe) 11 is provided, and this introduction pipe 11 also forms another nozzle portion 12 at the tip of the counter electrode.

以上の第2図、第3図の構成において窒素ガスで放電室
内を置換したのち、ノズル部12からアルゴンガスを噴
出させながら放電すると放電路はアルゴンジェットから
成るアルゴンガス柱にのみに形成される(アルゴンガス
は励起されやすく放電が容易に行なえるが窒素ガス中で
は放電起り難い)。すなわちアルゴンジェット自体を細
く安定なものにすれば、このジニットから成るアルゴン
ガス柱によつて形成される放電路はやはり規制された細
い安定なものとなるゆえ、光源として安定し、分析精度
上非常に効果が発揮されるのである。
In the configurations shown in FIGS. 2 and 3 above, after displacing the inside of the discharge chamber with nitrogen gas, when discharging while ejecting argon gas from the nozzle part 12, a discharge path is formed only in the argon gas column consisting of an argon jet. (Argon gas is easily excited and discharge can easily occur, but discharge is difficult to occur in nitrogen gas). In other words, if the argon jet itself is made thin and stable, the discharge path formed by the argon gas column made of dinit will become regulated and thin and stable, making it stable as a light source and extremely important in terms of analytical accuracy. The effect is demonstrated.

第2図においては、窒素ガス雰囲気中でアルゴンジェッ
トから成るアルゴンガス柱により安定な放電路が形成さ
れ、また第3図においては窒素ガス導入管11からノズ
ル部12を介して強制的に噴出される窒素ガスN2によ
つて対電極の先端部のノズル9によつて形成されるアル
ゴン柱がさらにこの窒素ガスでその外周がシールされる
ようになるため、第2図のものより、さらに安定な細い
アルゴン柱、すなわち放電路が形成される。以上のよう
にアルゴンジェットを試料面上に吹きつけながら放電発
光させることにより放電路は、非常に細いものが得られ
試料面の小面積の分析が可能となり、第2図の構成にお
ける実験結果においては放電間隙を5mm〜6mmにわ
たり変化させても試料面上の放電(分析)面の大きさは
、直径約1mm〜1.5m71L程度の大きさに規制す
ることができ、従来の1/20〜1/30までに小さく
することができた。この結果、上記のごとく小面積の分
析が可能であるとともに小さな試料も使用することがで
き、よつて分析精度も向上し、発光室のガス純度に左右
されずに安定な放電が可能となるのである。
In FIG. 2, a stable discharge path is formed by an argon gas column consisting of an argon jet in a nitrogen gas atmosphere, and in FIG. The argon column formed by the nozzle 9 at the tip of the counter electrode is further sealed around its outer periphery by the nitrogen gas N2, which is even more stable than that shown in Fig. 2. A thin argon column, or discharge path, is formed. As described above, by generating discharge light while blowing an argon jet onto the sample surface, a very narrow discharge path can be obtained, making it possible to analyze a small area of the sample surface. Even if the discharge gap is changed from 5mm to 6mm, the size of the discharge (analysis) surface on the sample surface can be regulated to a diameter of about 1mm to 1.5m71L, which is 1/20 to 1/20 of the conventional size. We were able to reduce the size by 1/30. As a result, as mentioned above, it is possible to analyze small areas and also use small samples, which improves analysis accuracy and enables stable discharge regardless of the gas purity in the luminescence chamber. be.

なお、上記第2図の実施例では対電極の先端がノズル部
より突出した形状となつているが第4図に示すノズル部
のごとく対電極6を突出させずに導入路(管)内に引つ
込め、この先端のノズル部10からアルゴンガスを噴出
させるような構成も考えられる。
In the embodiment shown in FIG. 2, the tip of the counter electrode is shaped to protrude from the nozzle part, but as in the nozzle part shown in FIG. A configuration is also conceivable in which it is retracted and argon gas is ejected from the nozzle portion 10 at this tip.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の発光室の構成を示す図、第2図、第3図
はこの発明の発光室の構成を示す図、第4図は第2図の
対電極の先端部のノズル部の他の実施例を説明する図で
ある。 1・・・・・・発光室、2・・・・・・分光室、3・・
・・・・レンズ、4・・・・・・試料、5・・・・・・
開口、6・・・・・・対電極、7,8・・・・・・アル
ゴンガス導入路(管)、9・・・・・・ガス排出路(管
)、10,12・・・・・・ノズル部、11・・・・・
・窒素ガス導入路(管)。
FIG. 1 shows the configuration of a conventional light emitting chamber, FIGS. 2 and 3 show the configuration of the light emitting chamber of the present invention, and FIG. 4 shows the nozzle section at the tip of the counter electrode in FIG. It is a figure explaining other examples. 1... Luminescence room, 2... Spectroscopy room, 3...
...Lens, 4...Sample, 5...
Opening, 6... Counter electrode, 7, 8... Argon gas introduction path (tube), 9... Gas exhaust path (tube), 10, 12... ...Nozzle part, 11...
・Nitrogen gas introduction path (pipe).

Claims (1)

【特許請求の範囲】[Claims] 1 試料と対電極との間で放電発光させ、この光を分光
分析するものにおいて、この放電発光させる発光室内の
対電極の先端部に、アルゴンガスを細い柱状のアルゴン
ガスジェットとして試料面上に吹きつけるためのノズル
部を設けるとともに発光室内には他の置換用の放電しに
くい不活性ガスが導入されるようにしたことを特徴とす
る発光分光分析装置。
1. In devices that generate discharge light between a sample and a counter electrode and perform spectroscopic analysis of this light, argon gas is applied as a thin columnar argon gas jet onto the sample surface at the tip of the counter electrode in the luminescence chamber where discharge light is generated. 1. An emission spectrometer characterized in that a nozzle part for spraying is provided, and another inert gas that is difficult to discharge for substitution is introduced into a light emitting chamber.
JP1015577A 1976-05-14 1977-01-31 Emission spectrometer Expired JPS5940256B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1015577A JPS5940256B2 (en) 1977-01-31 1977-01-31 Emission spectrometer
US05/797,255 US4165871A (en) 1976-05-14 1977-05-16 Pattern reading device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1015577A JPS5940256B2 (en) 1977-01-31 1977-01-31 Emission spectrometer

Publications (2)

Publication Number Publication Date
JPS5395693A JPS5395693A (en) 1978-08-22
JPS5940256B2 true JPS5940256B2 (en) 1984-09-28

Family

ID=11742376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1015577A Expired JPS5940256B2 (en) 1976-05-14 1977-01-31 Emission spectrometer

Country Status (1)

Country Link
JP (1) JPS5940256B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61148861U (en) * 1985-03-05 1986-09-13

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7077873B2 (en) 2002-09-10 2006-07-18 L'Oréal, SA Composition for the dyeing of human keratinous fibres comprising a monocationic monoazo dye
US7169194B2 (en) 2002-12-23 2007-01-30 L'oreal S.A. Dye composition comprising at least one particular tricationic direct dye, dyeing process, use and multi-compartment devices
FR2889947B1 (en) 2005-08-25 2012-03-09 Oreal OXIDIZING COMPOSITION COMPRISING INSOLUBLE COMPOUNDS, METHODS USING THE SAME
FR2889944B1 (en) 2005-08-25 2007-11-23 Oreal TINCTORIAL COMPOSITION COMPRISING INSOLUBLE COMPOUNDS, METHODS USING THE SAME.
FR2889945B1 (en) 2005-08-25 2011-07-29 Oreal DIRECTING COLORING COMPOSITION COMPRISING INSOLUBLE OXYGEN COMPOUNDS, METHODS USING THE SAME.
US7905925B2 (en) 2005-08-25 2011-03-15 L'oreal S.A. Dye composition comprising at least one insoluble compound and processes using this composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61148861U (en) * 1985-03-05 1986-09-13

Also Published As

Publication number Publication date
JPS5395693A (en) 1978-08-22

Similar Documents

Publication Publication Date Title
US4861988A (en) Ion spray apparatus and method
JP3925000B2 (en) Nebulizer and analyzer using the same
JP2633974B2 (en) Equipment for sample ionization and mass spectrometry
US4935624A (en) Thermal-assisted electrospray interface (TAESI) for LC/MS
EP1297554B1 (en) Atmospheric pressure photoionizer for mass spectrometry
JP4234441B2 (en) Ionization method and apparatus for specimen and in-use ion source probe
US6759650B2 (en) Method of and apparatus for ionizing an analyte and ion source probe for use therewith
US9541479B2 (en) Apparatus and method for liquid sample introduction
US9804183B2 (en) Apparatus and method for liquid sample introduction
JPH05251038A (en) Plasma ion mass spectrometry device
JP2000513873A (en) Ion source for mass spectrometer and method of providing an ion source for analysis
JPS5940256B2 (en) Emission spectrometer
Ng et al. Laser-induced plasma atomic emission spectrometry in liquid aerosols
JPWO2005111594A1 (en) Method and device for selectively cleaving non-covalent bond of biopolymer and analyzing
US6653624B2 (en) Mass spectrograph
US3866831A (en) Pulsed ultrasonic nebulization system and method for flame spectroscopy
US7855358B2 (en) Method and an ion source for obtaining ions of an analyte
JP4123432B2 (en) Liquid introduction plasma torch
JPH07306193A (en) Ion source and mass spectrograph
EP1193730A1 (en) Atmospheric-pressure ionization device and method for analysis of a sample
JP7433477B2 (en) Ion source and mass spectrometer equipped with it
JPH09257751A (en) Ion source and mass analyser
JPS59210358A (en) Analyzing device coupled with liquid chromatograph-atmospheric ionizing mass spectrometer
JPS5753052A (en) Atmospheric ionized ion source
JPH01123136A (en) Light emitting spectrochemical analysis apparatus