JPS5940143A - Testing method of filter material performance of dust respirator - Google Patents

Testing method of filter material performance of dust respirator

Info

Publication number
JPS5940143A
JPS5940143A JP14926182A JP14926182A JPS5940143A JP S5940143 A JPS5940143 A JP S5940143A JP 14926182 A JP14926182 A JP 14926182A JP 14926182 A JP14926182 A JP 14926182A JP S5940143 A JPS5940143 A JP S5940143A
Authority
JP
Japan
Prior art keywords
detector
detectors
particles
suction
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14926182A
Other languages
Japanese (ja)
Inventor
Kikuji Kimura
木村 菊二
Sotsuo Abe
阿部 帥男
Harumichi Shibata
柴田 晴通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIBATA KAGAKU KIKAI KOGYO KK
Original Assignee
SHIBATA KAGAKU KIKAI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIBATA KAGAKU KIKAI KOGYO KK filed Critical SHIBATA KAGAKU KIKAI KOGYO KK
Priority to JP14926182A priority Critical patent/JPS5940143A/en
Publication of JPS5940143A publication Critical patent/JPS5940143A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To obtain availability for control over a dust respirator and health control and to ensure the precision of an inspection result, by sorting and measuring particulates of the same specific sizes by respective detectors, and comparing the amounts of fine particles measured by both detectors with each other. CONSTITUTION:Suction pumps incorporated in an upstream-side detector 11 and a downstream-side detector 13 are put in operation and the suction is carried on while both suction pumps are set to an equal suction speed; and both detectors 11 and 13 are set to the same measured particle size selection range, and then an arithmetic processing mechanism 14 calculates the sensitivity difference between the detectors 11 and 13 and the flow passage condition as blank values. Both numerals counted by both detectors 11 and 13 are compared with each other by the arithmetic processing mechanism 14. While the blank values are corrected, the percentage of the counted value of fine particles by the downstream detector 13 to that by the upstream detector 11 is displayed digitrally on a display device 15, obtaining the result of a performance test of a filter material 1.

Description

【発明の詳細な説明】 本発明は、防塵マスクにおけるる材の性能を、大気中の
浮遊微粒子を用いて試験するための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for testing the performance of materials in dust masks using airborne particles.

防塵、防毒マスクの性能試験方法はJ工Sに規定され、
これに基づいて国家検定基準が定められているが、実際
にマスクの着用者がマスクを使用したときの面体の密着
状態や弁の作動状況、ろ材の性能劣化などによる交換が
正しく行われなければ、その効果は半減する。
Performance test methods for dustproof and gas masks are stipulated in J.E.S.
National certification standards have been established based on this, but when a mask wearer actually uses the mask, it may be necessary to replace it correctly due to the close contact of the facepiece, valve operation status, deterioration of filter media performance, etc. , its effect is halved.

しかし、最近ではマスクマンテスト、フィツトテストと
してマスクの総合的な漏れ率、防護係数などの評価で自
主管理、教育指導が必要とされ、国内においても検討が
進められている。
However, recently, self-management and educational guidance are required for evaluating the overall leakage rate, protection coefficient, etc. of masks as mask man tests and fit tests, and studies are also underway in Japan.

口こて、防塵マスクに使用されているる材の性能試験用
粒子としては、一般に石英粒子やDOP粒子が用いられ
ているが、DOP粒子は発がん°姓の疑いがあり、試験
用粒子としては好ましくない。
Quartz particles and DOP particles are generally used as performance test particles for materials used in mouthpieces and dust masks, but DOP particles are suspected of being carcinogenic, so they cannot be used as test particles. Undesirable.

ただ、ろ材の性能試験に使用する試験用粒子としては、
I7.QP粉粒子ように、より均一で単分散に近い粒子
を選定することが必要条件といえるが、粒子発生装置な
どが組合わされると試験装置全体が大型となり、現場測
定用としては適用され難し)。
However, as test particles used for filter media performance tests,
I7. It can be said that it is a necessary condition to select particles that are more uniform and close to monodisperse, such as QP powder particles, but if a particle generator etc. are combined, the entire test device becomes large, making it difficult to apply it for on-site measurement) .

本発明は上記課題を解決するため、種々の粒径の粒子が
含まれた一般環境中の大気を、ろ材の上側から下側へ通
過させて流し、同一条件で吸引されたろ材の上、下両側
の各大気中から、それぞれ光散乱波高選別方式によって
、試験に必要な粒径の単分散に近い粒子のみを選別測定
し、これら選別された各粒子の粒子数を比較すること番
こより、ろ材の性能を評価しようとするもので、試験装
置の吸引口から吸引させた浮遊微粒子を含む環境中の大
気の一部を、光散乱波高選別測定機構が備えられた一方
の検出器へ、残部を被検体であるろ材を通過させたのち
、上記同一機構を、備えた他方の検出器へそれぞれ等速
で吸引させることGこより、各検出器によって同一特定
粒径の微粒子を選bi1計測させ、これら両検出器によ
り計測された微粒子量を比較することにより、防塵マス
クのる材の性能を試験することを特徴とする。
In order to solve the above-mentioned problems, the present invention allows atmospheric air in the general environment containing particles of various particle sizes to pass from above to below the filter medium, and then allows the air to pass through the air above and below the filter medium, which is sucked under the same conditions. From each atmosphere on both sides, a light scattering wave height selection method is used to select and measure only particles close to monodisperse with the particle size required for the test, and the number of particles of each of these selected particles is compared. This test aims to evaluate the performance of a test device, in which a part of the ambient air containing suspended particles is sucked in from the suction port of the test device, and the remaining part is sent to one detector equipped with a light scattering wave height selection measurement mechanism. After passing through the filter medium, which is the object to be examined, the same mechanism described above is used to suck particles at the same speed to the other detector equipped with the same mechanism.From this, fine particles of the same specific particle size are selected and measured by each detector, and these particles are measured. The feature is that the performance of the dust mask material is tested by comparing the amount of particulates measured by both detectors.

別紙図面について、本発明の試験方法を、その試験方法
に使用される装置例と共もこ説明する。
The test method of the present invention will be explained with reference to the attached drawings, together with an example of a device used in the test method.

第1図において、ろ材1が着脱自在に載置されるロート
状のろ材保持具2は、その下周縁に0リング3が取りつ
けられており、有底円筒状のホルダー4内に気密に嵌入
されると共に、このホルダー4には、有頭円筒状のホル
ダーカバー5が密接に着脱自在に嵌合される。
In FIG. 1, a funnel-shaped filter medium holder 2 on which a filter medium 1 is removably placed has an O ring 3 attached to its lower peripheral edge, and is airtightly fitted into a cylindrical holder 4 with a bottom. At the same time, a holder cover 5 having a cylindrical shape with a head is tightly and removably fitted into the holder 4.

ホルダーカバー5の上面には、環境中の大気を吸引する
ための吸引ノズル6が設けられており、ホルダー4の下
面には、連結管7を介してバックアップフィルター8と
、流量計9と、コントロールバルブ17と、吸引ポンプ
18が上記順序に連結されている。      上記吸
引ノズル6には分11flOが設けられ、バックアップ
フィルター、流量計、吸引ポンプ(図示せず)が内蔵さ
れている上流側検出器11と連結され、ホルダー4とバ
ックアップフィルター8間の連結管7より導出された分
岐管工2は、上流側検出器11と同様の構成からなる下
流側検出器13に連結されている。
A suction nozzle 6 is provided on the top surface of the holder cover 5 for sucking atmospheric air in the environment, and a backup filter 8, a flow meter 9, and a control are provided on the bottom surface of the holder 4 via a connecting pipe 7. The valve 17 and the suction pump 18 are connected in the above order. The suction nozzle 6 is provided with 11flO, and is connected to an upstream detector 11 containing a backup filter, a flow meter, and a suction pump (not shown), and a connecting pipe 7 between the holder 4 and the backup filter 8. The branch pipework 2 led out is connected to a downstream detector 13 having the same configuration as the upstream detector 11.

ここで、上記両検出器11.13としては、光の散乱が
パルス状電気信号に変換され、そのノくルス波高値が識
別されて粒子の直径が選別され、力)つ”その選別され
た粒子径の任意の粒子が選択できるように、測定粒径選
択レンジ(図示せず)力(備えられた公知の光散乱波高
値選別測定機構を有する検出器が用いられる。
Here, in both of the above-mentioned detectors 11 and 13, the scattered light is converted into a pulsed electric signal, the Norls wave height is identified, the particle diameter is selected, and the particle diameter is selected. A detector having a known light scattering wave height selection measurement mechanism equipped with a measurement particle size selection range (not shown) and a force (not shown) is used so that particles of any particle size can be selected.

上記、上下両検出器11.13の出力側Gま、演算処理
機構14を介して表示器15昏こ連繋され、こ史演算処
理部で上、下両検出器11.13で31湿りされたパル
ス数が比較され、その百分比力く後述のブランク値と共
に演算処理されると共番こ、その処理された値が表示器
15にデジタル表示される。
Above, the output side G of both the upper and lower detectors 11.13 is connected to the display 15 via the arithmetic processing unit 14, and the output side G of both the upper and lower detectors 11.13 is connected to the display unit 15 through the arithmetic processing unit 14. When the pulse numbers are compared and their percentages are processed together with a blank value, which will be described later, the processed value is digitally displayed on the display 15.

図中、16は両分肢管10.1:lこ亘って跨設された
差圧計である。
In the figure, reference numeral 16 denotes a differential pressure gauge installed across both limb tubes 10.1:1.

本実施例装置を用いて防塵マスクのる材の性!試験を行
うには、まず、ろ材1をろ材保持具2Gこ載せない状態
でろ拐保持具2をホルり−4&こセ゛ノトシ、ホルダー
カバー5を嵌合し、吸弓1ポンプ18を作動させて浮遊
微粒子が含まれてしする環境11の大気を吸引ノズル6
から吸引させ、JIS4こより規定されたマスクろ材の
通気抵抗試験Gこ従って規定の流速に調整する。
The properties of the material for dust masks using this example device! To conduct the test, first, hold the filter holder 2 without placing the filter 1 on the filter holder 2G, fit the holder cover 5, and operate the suction bow 1 pump 18 to float it. Suction nozzle 6 sucks the atmosphere of environment 11 containing fine particles
The flow rate was adjusted to the specified flow rate according to the ventilation resistance test of mask filter media specified by JIS 4.

つぎに、上流側検出器11および下流側検出器13に内
蔵された吸引ポンプを作動させ、両吸引ポンプの吸引速
度が等速になるように調整して吸引を続け、それぞれの
検出器11.13の測定粒径選択レンジを同一に設定す
ると、各検出器IL13における感度差や流路条件等が
ブランク値として演算処理機構14により演算処理され
る。
Next, the suction pumps built into the upstream side detector 11 and the downstream side detector 13 are activated, and the suction speeds of both suction pumps are adjusted to be equal to continue suction, and suction is continued for each detector 11. When the 13 measurement particle size selection ranges are set to be the same, the sensitivity difference, flow path conditions, etc. in each detector IL13 are processed by the calculation processing mechanism 14 as blank values.

この演算処理機構が備えられていない場合は、各検出器
11.13の計測値を記録しておく。
If this arithmetic processing mechanism is not provided, the measured values of each detector 11.13 are recorded.

つぎに、ホルダーカバー5を取りはずし、被試験体のろ
材1をろ材保持具2の上部に載置し、再びホルダーカバ
ー5を嵌合し、上記各吸引ポンプによる吸引を続けさせ
ると、吸引ノズル6から吸入された浮遊微粒子を含む大
気の一部は、分岐管10より上流側検出器11へそのま
まの状態で導入され、大気中の微粒子中、選択レンジで
選択された粒径の微粒子数のみが上流側検出器11で計
測されたのち、県外へ排出される。
Next, the holder cover 5 is removed, the filter medium 1 of the test object is placed on the top of the filter medium holder 2, the holder cover 5 is fitted again, and the suction pumps continue suction, and the suction nozzle 6 A part of the atmosphere containing suspended particles inhaled from the branch pipe 10 is introduced as is into the upstream detector 11, and only the number of particles with the particle size selected in the selection range is detected among the particles in the atmosphere. After being measured by the upstream detector 11, it is discharged outside the prefecture.

一方、ホルダー4中のろ材1を通過した大気の残部中の
一部は、分岐管12から下流側検出器13へ導入され、
上流側検出器11と同様に、同一粒径の微粒子数のみが
計数されたのち、該大気も系外へ排出される。
On the other hand, a part of the remaining air that has passed through the filter medium 1 in the holder 4 is introduced from the branch pipe 12 to the downstream detector 13,
Similar to the upstream detector 11, after only the number of particles of the same particle size is counted, the air is also discharged to the outside of the system.

下流側検出器13へ吸引されなかった残余の大気は、バ
ックアップフィルター8によりすべての粒子が捕集され
たのち、流量計9、コントロールバルブ17を通って吸
引ポンプ18により系外へ排出される。
The remaining air that is not sucked into the downstream detector 13 is discharged out of the system by a suction pump 18 after all particles are collected by a backup filter 8 and passed through a flow meter 9 and a control valve 17.

このようにして雨検出器11.13により計数された両
数値は、演算処理機構14により比較され、ブランク値
の補正と同時に上流側検出器11番こよる微粒子のカウ
ント数に対する下流側検出器13&こよる微粒子のカウ
ント数の百分比が、表示1154こデジタル表示され、
ろ材1の性能試験の結果が得られる。
Both numerical values counted by the rain detectors 11 and 13 in this way are compared by the arithmetic processing mechanism 14, and at the same time the blank value is corrected and the downstream detector 13 & The percentage of the counted number of fine particles is displayed digitally at 1154.
The results of the performance test of filter medium 1 are obtained.

また、演算処理機構14が備えられていなし)場合の測
定後の結果は、次式によって行われる。
Furthermore, the results after measurement in the case where the arithmetic processing mechanism 14 is not provided are determined by the following equation.

n:集塵効率 D1=環境大気中の特定微粒子のカウント数り、: ろ
材通過後の特定微粒子のカウント数Aニブランク値、ろ
材のないときのDI/D。
n: Dust collection efficiency D1 = count number of specific particulates in the ambient air,: count number of specific particulates after passing through the filter medium A blank value, DI/D when there is no filter medium.

(1)式は、下流側検出器131台のみで計測する場合
の計算式であり、はじめにろ材1をろ材保持具2に入れ
ない状態で環境大気中の特定微粒子数り、を計測し、つ
ぎにろ材保持具2にろ材1を入れた状態で特定微粒子数
D2を計測して、両計測値から(1)式により環境大気
中の特定微粒子数に対するる材1通過後の大気中の特定
微粒子数の百分比、すなわちろ材1の性能試験の結果が
得られる。
Equation (1) is a calculation formula when measuring only with 131 downstream detectors. First, the number of specific particulates in the ambient air is measured without filter media 1 being placed in filter media holder 2, and then Measure the specific particulate number D2 with the filter media 1 placed in the filter media holder 2, and calculate the specific particulates in the atmosphere after the material 1 has passed through using equation (1) from both measurements. The percentage of the number, ie the result of the performance test of the filter medium 1, is obtained.

この場合、操作は簡易であるが、時間的な濃度変動(粒
度変動)が大であると、誤差を生じることになる。  
    しかしながら、特定微粒子の定性的評価を目的
とした防塵マスクのろ材1の交換確認の検査には充分で
ある。
In this case, the operation is simple, but if the temporal concentration fluctuations (particle size fluctuations) are large, errors will occur.
However, it is sufficient for inspection to confirm replacement of the filter medium 1 of a dust mask for the purpose of qualitative evaluation of specific particulates.

(2)式は、上流側検出器11と下流側検出器13の2
台の検出器で特定微粒子を定量的に計測する場合の計算
式であり、ろ材1がろ材保持具2に入れられた状態で上
流側検出器11と下流側検出器13により同時に特定微
粒子数へ、烏を計測して、はじめに記録しておいたブラ
ンク値と共に両計測値から(2)式により上記同様にし
て、ろ材1の性能試験の結果が得られる。
Equation (2) is expressed by the two of the upstream detector 11 and the downstream detector 13.
This is a calculation formula for quantitatively measuring specific particulates with the detector on the stand, and the number of specific particulates is measured simultaneously by the upstream detector 11 and downstream detector 13 when the filter media 1 is placed in the filter media holder 2. , the results of the performance test of the filter medium 1 are obtained in the same manner as described above using equation (2) from both measured values together with the blank value recorded at the beginning.

ここで、特に環境大気中の粒子中、特定単分散微粒子を
選択するために、光散乱波高選別測定機構を用いたのは
、たとえば、環境大気中に浮遊する微粒子の粒度分布が
、第2図(A)の状態にあるとすると、光散乱波高選別
の原理に基づき、光信号をパルス状電気信号に変換し、
校正用粒子(ポリスチレンラテックス)による電気信号
との校正を行うと、第2図(B)のような粒子径別の出
力となるから、任意に分離された各レンジの粒径は、第
3図(0)に示すように、(A)の巾広い分布よりシャ
ープになり、たとえば試験に必要な測定レンジを0、2
5〜0.35μm % 0.35〜0.45prn %
 0.45〜0.55μmとすると、平均粒径は概略そ
れぞれ0.3μms0.4μm10.5pmの単分散粒
子として測定対象とする粒径の粒子が簡易に選別できる
ためである。
Here, in order to specifically select specific monodisperse fine particles among the particles in the environmental atmosphere, we used a light scattering wave height selection measurement mechanism. Assuming state (A), the optical signal is converted into a pulsed electrical signal based on the principle of light scattering wave height selection,
When the electrical signal is calibrated using calibration particles (polystyrene latex), the output is divided by particle size as shown in Figure 2 (B), so the particle size of each arbitrarily separated range is shown in Figure 3. As shown in (0), the distribution is sharper than the wide distribution in (A), and for example, the measurement range required for the test is 0, 2.
5~0.35μm% 0.35~0.45prn%
This is because when the particle size is set to 0.45 to 0.55 μm, particles having the particle size to be measured can be easily selected as monodisperse particles having an average particle size of approximately 0.3 μm, 0.4 μm, and 10.5 pm.

本発明は、種々の粒径の粒子が含まれた一般の環境中の
大気を1ろ材の上側から下側へ通過させて流し、同一条
件で吸引されたろ相の」;、下両側の各大気中から、そ
れぞれ光散乱波高選別方式によって、試験に必要な粒径
の単分散に近い粒子のみを選別測定し、これら選別され
た各粒子の粒子数を比較することにより、ろ材の性能を
評価するものであるから、防塵マスクのる材の性能判断
について装着者自身が作業現場で簡単にチェックできる
ばかりでなく、特にマスクマンテストにおいては、従来
のような標準粒子発生チャンバーが不要で、測定機器が
単純化でき、重装備をして被検者がチャンバー内に人っ
て息苦しい思いや有害物に曝露される惧れもない。
In the present invention, air in the general environment containing particles of various particle sizes is passed from the upper side to the lower side of one filter medium, and the filter phase is sucked under the same conditions. Using a light scattering wave height selection method, only particles with a particle size required for the test that are close to monodisperse are selected and measured, and the performance of the filter media is evaluated by comparing the number of these selected particles. Not only does it allow the wearer to easily check the performance of the material on which the dust mask is mounted at the work site, but it also eliminates the need for a conventional standard particle generation chamber and eliminates the need for a conventional standard particle generation chamber, especially for mask man tests. It can be simplified, and there is no need to worry about suffocation or exposure to harmful substances if the test subject is heavily armed in the chamber.

また、特定の粒径の粒子のみを測定できることにより、
環境大気中の粉塵中、特に人体に有害な吸引性粉塵の有
無や量などのろ材透過状況が確認できるため、防塵マス
クの管理および健康管理に益するところが大である。
In addition, by being able to measure only particles with a specific particle size,
Since it is possible to check the permeation status of filter media, such as the presence and amount of respirable dust that is harmful to the human body, among dust in the ambient air, it is of great benefit for the management of dust masks and health management.

さらに、ろ材の上流側と下流側に各別に検出器が設けら
れていることにより、同一大気を同一条件で検査できて
、検査結果の精度が保証される効果を併有する。
Furthermore, by providing separate detectors on the upstream and downstream sides of the filter medium, the same atmosphere can be tested under the same conditions, and the accuracy of the test results is guaranteed.

なお、実施例に示されるように、雨検出器により計測さ
れた各微粒子の比較が、演算処理機構とその表示器によ
り行われるものにおいては、試験結果が直ちに判読でき
る利便を有する。
In addition, as shown in the examples, in the case where the comparison of each particulate matter measured by the rain detector is performed by the arithmetic processing mechanism and its display, there is an advantage that the test results can be read immediately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法実施のために使用される装置の一例
を示す説明図、第2図(A)は大気中の粒子の粒度分布
側図、(B)は光散乱波高値選別による粒子の粒度分布
側図、(C)は選別された粒子毎の出力側図である。 1・・・ろ 材    2・・・ろ材保持具4・・・ホ
ルダー   5・・・ホルダーカバー6・0.吸引ノズ
ル  io 、12 、、、分岐管11・・・上流側検
出器 13・・・下流側検出器14・・・演算処理機構
 15・・・表示器特許出願人 柴田化学器械工業株式会社
Fig. 1 is an explanatory diagram showing an example of the apparatus used to carry out the method of the present invention, Fig. 2 (A) is a side view of particle size distribution of particles in the atmosphere, and (B) is a particle size distribution diagram of particles by light scattering peak value sorting. (C) is an output side view of each sorted particle. 1... Filter material 2... Filter material holder 4... Holder 5... Holder cover 6.0. Suction nozzle io, 12,... Branch pipe 11... Upstream detector 13... Downstream detector 14... Arithmetic processing mechanism 15... Display device Patent applicant Shibata Chemical Instruments Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)  試験装置の吸引口から吸引させた浮遊微粒子
を含む環境中の大気の一部を、光散乱波高選別測定機構
が備えられた一方の検出器へ、残部を被検体であるろ材
を通過させたのち、上記同一機構を備えた他方の検出器
へそれぞれ等速で吸引させることにより、各検出器によ
って同一特定粒径の微粒子を選別計測させ、口れら雨検
出器により計測された微粒子量を比較することにより、
防塵マスクのる材の性能を試験することを特徴とする防
塵マスクのる材性能試験方法。
(1) Part of the ambient air containing suspended particles sucked in from the suction port of the test device is sent to one detector equipped with a light scattering wave height selection measurement mechanism, and the remaining part is passed through the filter material that is the test object. After that, each detector is sucked at the same speed into the other detector equipped with the same mechanism as above, so that each detector selects and measures fine particles of the same specific particle size, and the fine particles measured by the mouth rain detector By comparing the amounts,
A method for testing the performance of a material for covering a dust-proof mask, which is characterized by testing the performance of a material for covering a dust-proof mask.
(2)雨検出器により計測された各微粒子の比較が、演
算処理機構とその表示器により行われる特許請求の範囲
(1)記載の防塵マスクのる材性能試験方法。
(2) The method for testing the performance of a dust mask covering material according to claim (1), wherein the comparison of each particulate matter measured by the rain detector is performed by a calculation processing mechanism and its display.
JP14926182A 1982-08-30 1982-08-30 Testing method of filter material performance of dust respirator Pending JPS5940143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14926182A JPS5940143A (en) 1982-08-30 1982-08-30 Testing method of filter material performance of dust respirator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14926182A JPS5940143A (en) 1982-08-30 1982-08-30 Testing method of filter material performance of dust respirator

Publications (1)

Publication Number Publication Date
JPS5940143A true JPS5940143A (en) 1984-03-05

Family

ID=15471378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14926182A Pending JPS5940143A (en) 1982-08-30 1982-08-30 Testing method of filter material performance of dust respirator

Country Status (1)

Country Link
JP (1) JPS5940143A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837460A (en) * 2014-03-17 2014-06-04 天津三星电机有限公司 Method for detecting and evaluating filtration efficiency of dust-free mask
CN106525641A (en) * 2016-10-27 2017-03-22 合肥福瞳光电科技有限公司 Measurement method of dust accumulation amount of filter efficiency of gauze mask

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635814U (en) * 1979-08-28 1981-04-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635814U (en) * 1979-08-28 1981-04-07

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837460A (en) * 2014-03-17 2014-06-04 天津三星电机有限公司 Method for detecting and evaluating filtration efficiency of dust-free mask
CN106525641A (en) * 2016-10-27 2017-03-22 合肥福瞳光电科技有限公司 Measurement method of dust accumulation amount of filter efficiency of gauze mask

Similar Documents

Publication Publication Date Title
US6125845A (en) Respirator fit-testing with size selected aerosol
US6431014B1 (en) High accuracy aerosol impactor and monitor
US7614280B1 (en) Quantitative fit test system and method for assessing respirator biological fit factors
CN103792171B (en) PM is evaluated in a kind of real atmosphere environment 2.5the device of mask filtration efficiency
US6401520B1 (en) Dust detector tube
CN109540754A (en) A kind of Atmospheric particulates on-Line Monitor Device and method based on β ray method
US6688160B2 (en) Barrier test apparatus and method
GB2096330A (en) Filter element test method and apparatus
Koch et al. Evaluation of the Respicon® as a personal inhalable sampler in industrial environments
CN206960173U (en) A kind of airborne particulate harvester
CN203616233U (en) Device for evaluating filter efficiency of PM2.5 mask in real atmosphere environment
Willeke et al. New methods for quantitative respirator fit testing with aerosols
CN107036950A (en) A kind of dynamic dust concentration instrument detecting system and its calibration method
JPS5940143A (en) Testing method of filter material performance of dust respirator
Baron Direct-reading instruments for aerosols. A review
CN108120659A (en) A kind of particle concentration detecting system and method having from zero calibration
CN209372639U (en) Acid mist droplet measurement device
CN109253953A (en) A kind of method and system can measure a variety of particulate matter quality concentration
Wake et al. Measurements of the filtration efficiency of nuisance dust respirators against respirable and non-respirable aerosols
GB2233462A (en) Aerosol fabric penetration measurement system
Bancroft et al. Measurement of the dust protection and airflow of a helmet respirator
CN206906197U (en) A kind of dynamic dust concentration instrument detecting system
VOLKWEIN et al. Laboratory evaluation of a recording respirable mass monitor
CN109444005A (en) Acid mist droplet measurement device and detection method
Fairchild Particle size sensitivity of two aerosol mass concentration monitors