JPS59392A - Treatment of organic waste liquor - Google Patents

Treatment of organic waste liquor

Info

Publication number
JPS59392A
JPS59392A JP57108395A JP10839582A JPS59392A JP S59392 A JPS59392 A JP S59392A JP 57108395 A JP57108395 A JP 57108395A JP 10839582 A JP10839582 A JP 10839582A JP S59392 A JPS59392 A JP S59392A
Authority
JP
Japan
Prior art keywords
sludge
water
oil
evaporation
treatment step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57108395A
Other languages
Japanese (ja)
Other versions
JPH0114836B2 (en
Inventor
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP57108395A priority Critical patent/JPS59392A/en
Publication of JPS59392A publication Critical patent/JPS59392A/en
Publication of JPH0114836B2 publication Critical patent/JPH0114836B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To treat conc. organic waste liquor, while saving resources and energy, by evaporating water formed in the biotreatment of organic waste liquor, mixing oil having a boiling point higher than that of water in excess activated sludge formed in the step of biotreatment, and evaporating, drying and then burning said sludge. CONSTITUTION:Scum-removed night soil 1 is biologically nitrified and henitrified 2 without being diluted to remove BOD and N components. The outflow activated sludge slurry is then separated into a liquid and solid matter, and the major part of the separated sludge 5 is circulated as returned sludge 6 to the step 2. On the other hand, the separated liquid 7 is sent to an eveporation step 8, preheated with condensed water 12' obtd. from steam in a heat exchanger 9, evaporated, thickened, discharged as a conc. liquid 11, and then dried or burnt. Mixed slurry 20 obtd. by mixing oil 19, e.g. waste oil, having a boiling point higher than that of water in excess activated sludge 17 formed from the step 2 inside a mixing tank 18 is transferred to an evaporation- drying step 10 equipped with multi-effect evaporator cans 21, 21', 22'' and thickened therein to a water-retaining ratio of about 10%. Thereafter, said slurry is treated with mixed slurry 29 discharged from the can 21''. The separated oil is recovered, while deoidled sludge 32 is burnt in a boiler 22 to recover steam 23.

Description

【発明の詳細な説明】 本発明は有機性廃液、特にし尿などの濃厚有機性廃液を
極めて簡潔なプロセスによシ、かつ省資源的・省エネル
ギー的に処理できる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for processing organic waste liquids, particularly concentrated organic waste liquids such as human waste, through an extremely simple process and in a resource- and energy-saving manner.

以下、本発明の詳細を、代表廃液としてし尿処理を例に
とって説明する。
Hereinafter, the details of the present invention will be explained by taking human waste treatment as a representative waste liquid as an example.

従来のし尿処理において最も進歩したプロセスとして評
価され最も実施例の多いプロセスは、し尿に希釈水を1
0倍程度添加して生物処理(活性汚泥処理が最も一般的
)したのち、活性汚泥を沈殿池で固液分離し、上澄水を
凝集沈殿及び砂濾過し、さらに色度、CODを除去する
ためにオゾン処理、活性炭処理を行なう一方、汚泥を脱
水・乾燥・焼却するという方法である(以下、これを従
来プロセスと呼ぶ)。
The process that has been evaluated as the most advanced and has the most examples in conventional human waste treatment is to add diluted water to human waste.
After biological treatment (activated sludge treatment is the most common) with approximately 0 times the amount added, the activated sludge is separated into solid and liquid in a settling tank, the supernatant water is subjected to coagulation sedimentation and sand filtration, and further chromaticity and COD are removed. In this method, the sludge is dehydrated, dried, and incinerated while the sludge is treated with ozone and activated carbon (hereinafter referred to as the conventional process).

この従来プロセスは一見合理的にみえるが、厳しい視点
から技術評価すると、次のような重大な問題点が本質的
に内在されていることを、本発明者は認識するに到った
Although this conventional process appears to be rational at first glance, upon evaluating the technology from a strict viewpoint, the present inventors have come to realize that it inherently contains the following serious problems.

即ち、 ■ 数多くの単位操作を直列的に並べているため、プロ
セスが複雑であシ維持管理性も悪い。
That is, ■ Since many unit operations are arranged in series, the process is complex and maintenance is poor.

■ 凝集沈殿工程などの凝集固液分離工程に凝集剤を多
量に必要とする。また、汚泥の脱水工程にも多量の脱水
助剤の添加を必要とする。従って、資源多葉消費型プロ
セスとなっている。
■ A large amount of flocculant is required in the coagulation solid-liquid separation process such as the coagulation-sedimentation process. Furthermore, the sludge dewatering process also requires the addition of a large amount of dewatering aid. Therefore, it is a resource-intensive process.

■ オゾン処理にはオゾン発生のための多量の電力を必
要とし、活性炭処理にも高価な活性炭を多量に必要とす
る。また、活性炭の再生に多量の熱エネルギーを必要と
するなど、エネルギー多量消費型プロセスである。
■ Ozone treatment requires a large amount of electricity to generate ozone, and activated carbon treatment also requires a large amount of expensive activated carbon. Furthermore, it is an energy-intensive process, as it requires a large amount of thermal energy to regenerate activated carbon.

■ 生物処理工程から発生する余剰生物汚泥および凝集
沈殿工程から発生する凝集汚泥の脱水処理にカチオンポ
リマー、塩化第2鉄、消石灰などの脱水助剤を多量に必
要とするほか、脱水ケーキの含水率が80−程度と高い
ため、脱水クーキの乾燥焼却工程に重油などのエネルギ
ーを多fir (200t〜300t/1on−nss
 )に消費する。したがって上記■、■項とあいまって
、資源・エネルギーの消費量が非常に多いプロセスであ
る。
■ Large amounts of dehydration aids such as cationic polymers, ferric chloride, and slaked lime are required to dehydrate surplus biological sludge generated from the biological treatment process and flocculated sludge generated from the coagulation-sedimentation process, and the moisture content of the dehydrated cake is Since the amount of water is as high as 80 -, a large amount of energy such as heavy oil is used in the drying and incineration process of dehydrated cookies (200t~300t/1on-nss
). Therefore, in combination with the above items ① and ②, this is a process that consumes a large amount of resources and energy.

このような本発明者が指摘した問題点は、極めて重大な
ものであるにも拘らず、従来は有機性廃水を高度に処理
し、水域環境の汚染を防止するためKは、おる程度やむ
を得ないと考えられがちであったが、本発明者は、この
ような現状の技術レベルに強い疑問をもち、前記の従来
プロセスの諸欠点を・合理的に解決できるプロセスを実
現するために検討を進め、本発明を完成するに到ったも
のである。
Although the problems pointed out by the present inventors are extremely serious, in the past, K was unavoidable to some extent in order to highly treat organic wastewater and prevent pollution of the aquatic environment. However, the present inventor has strong doubts about the current level of technology, and has conducted studies in order to realize a process that can rationally solve the drawbacks of the conventional processes mentioned above. This led to the completion of the present invention.

本発明の効果は、篤くべさものといってよく、従来プロ
セスの凝集沈殿、砂沢過、オゾン処理、活性炭吸着、滅
菌の各工程および汚泥の機械脱水工程、脱水助剤の添加
工程のすべてが不要になり、しかもその処理水質は従来
プロセスより格段に秀れており、運転経費も著しく低減
することができる。
The effects of the present invention can be said to be excellent, and all of the conventional processes of coagulation sedimentation, sand filtration, ozone treatment, activated carbon adsorption, sterilization, mechanical sludge dehydration, and addition of dehydration aids are completely eliminated. Moreover, the quality of the treated water is much better than that of conventional processes, and operating costs can be significantly reduced.

すなわち本発明は、有機性廃液を生物処理したのち、該
生物処理水を蒸発処理すると共に、少なくとも前記生物
処理工程から発生する余剰活性汚泥に、水より高沸点の
油を添加混合して蒸発乾燥処理したのち、該乾燥汚泥を
焼却処理することを特徴とする有機性廃液の処理方法で
ある。
That is, in the present invention, after biologically treating an organic waste liquid, the biologically treated water is evaporated, and an oil having a boiling point higher than that of water is added and mixed to at least the excess activated sludge generated from the biological treatment process, and the mixture is evaporated and dried. This method of treating organic waste liquid is characterized by incinerating the dried sludge after treatment.

以下に、本発明の実施例を図面を参照しながら説明する
Embodiments of the present invention will be described below with reference to the drawings.

除渣し尿1をこれに希釈水を添加することなく生物学的
硝化脱窒素工程2(硝化工程、又は脱窒素工程としても
よい)に流入せしめBOD、窒素成分などを除去する。
The removed human waste 1 is allowed to flow into a biological nitrification and denitrification process 2 (which may also be a nitrification process or a denitrification process) without adding dilution water to remove BOD, nitrogen components, and the like.

生物学的硝化脱窒素工程2としては、し尿中のBOD成
分を脱窒素菌のだめの有機炭素源として利用する硝化液
循環方式、ステップ流入方式、好気性脱窒素方式、回分
処理方式などを採用することができる。
Biological nitrification and denitrification process 2 employs a nitrifying solution circulation method, a step inflow method, an aerobic denitrification method, a batch treatment method, etc., which uses BOD components in human waste as an organic carbon source for denitrifying bacteria. be able to.

しかして、生物学的硝化脱窒素工程2から流出する活性
汚泥スラリー3は遠心濃縮機などの固液分離工程4にお
いて固液分離され、分離汚泥5の大部分は返送汚泥6と
して生物学的硝化脱窒素工程2にリザイクルされる。一
方、固液分離工程4からの分離液7は蒸気圧縮法による
蒸発工程8に流入する。
The activated sludge slurry 3 flowing out from the biological nitrification and denitrification process 2 is subjected to solid-liquid separation in a solid-liquid separation process 4 such as a centrifugal thickener, and most of the separated sludge 5 is biologically nitrified as return sludge 6. It is recycled to the denitrification step 2. On the other hand, the separated liquid 7 from the solid-liquid separation step 4 flows into an evaporation step 8 using a vapor compression method.

なお、生物学的硝化脱窒素工程2ではし尿を無希釈で処
理するので、し尿中のBOD、アンモニア性窒素などを
生物学的に酸化する際に発生する微生物酸化反応生成熱
(通常30000〜4000旧−/n−シ尿)によって
生物学的硝化脱窒素工程2内の活性汚泥スラリー3の水
温が上昇し40℃以上になる。従って、蒸発工程8への
流入液すなわち上記分離液7も40℃程度となるので、
蒸発温度(通常100℃になるように蒸発缶8′内の圧
力を設定する)にまで加熱するのに必要な熱量が節減で
きるという重要な効果が得られる。このことは微生物酸
化反応生成熱を間接的に蒸発工程8に利用するという重
要な技術的概念を意味する。
In addition, in the biological nitrification and denitrification process 2, human waste is treated without dilution, so the heat generated by the microbial oxidation reaction (usually 30,000 to 4,000 The water temperature of the activated sludge slurry 3 in the biological nitrification and denitrification process 2 rises to 40° C. or higher due to the water temperature of the activated sludge slurry 3 in the biological nitrification and denitrification process 2. Therefore, the liquid flowing into the evaporation step 8, that is, the separated liquid 7, is also at a temperature of about 40°C.
An important effect is that the amount of heat required to heat up to the evaporation temperature (usually the pressure in the evaporator 8' is set to 100 DEG C.) can be reduced. This means the important technical concept of indirectly utilizing the heat generated by the microbial oxidation reaction in the evaporation step 8.

しかして、上記流入液は熱交換器9にて、水蒸気の凝縮
水(これが、し尿の高度処理水である)12′によって
温度80℃程度に予熱されたのち、蒸発工程8に流入し
て蒸発濃縮され、濃縮液11として排出される。一方、
蒸発工程8にて蒸発した水蒸気12は、機械的圧縮機又
はサーモコンプレッサーによる蒸気圧縮機13において
圧縮昇温されたのち再び蒸発工程8の間接加熱部14に
流入し加熱源として再利用される。間接加熱部14にて
水蒸気は凝縮し、上記凝縮水12′となって、熱交換器
9を経由したのち、処理水15となって放流される。処
理水15は蒸留水とほぼ同等の無色、透明で水質は極め
て良好であり、し尿処理水として最高度の水質を示す。
The inflow liquid is preheated in the heat exchanger 9 to a temperature of about 80°C by steam condensed water (this is highly treated human waste water) 12', and then flows into the evaporation step 8 where it is evaporated. It is concentrated and discharged as a concentrated liquid 11. on the other hand,
The water vapor 12 evaporated in the evaporation step 8 is compressed and heated in a vapor compressor 13 using a mechanical compressor or a thermocompressor, and then flows into the indirect heating section 14 of the evaporation step 8 again to be reused as a heating source. The steam is condensed in the indirect heating section 14 and becomes the condensed water 12', which passes through the heat exchanger 9 and then becomes treated water 15 and is discharged. The treated water 15 is colorless and transparent, almost equivalent to distilled water, and has extremely good water quality, exhibiting the highest quality as human waste treated water.

なお、】6は蒸発工程8のスタートアップ用の水蒸気で
ある。蒸発工程8としては、図示例の蒸気圧縮法による
もののほか、多重効用蒸発法あるいは蒸気圧縮法と多重
効用蒸発法との併用法によるものとしてもよい。
Note that ]6 is water vapor for starting up the evaporation step 8. In addition to the vapor compression method shown in the illustrated example, the evaporation step 8 may be a multiple effect evaporation method or a combination of a vapor compression method and a multiple effect evaporation method.

しかして、上記濃縮液11は上記流入液の流量の1/4
0〜1150に濃縮されており、極めて濃い褐色を示す
高COD濃度の液となっておシ、これを蒸発乾燥処理、
又は液中燃焼焼却などの焼却処理によって処分する。
Therefore, the concentrated liquid 11 is 1/4 of the flow rate of the inflow liquid.
0 to 1150 and becomes a very dark brown liquid with high COD concentration, which is evaporated and dried.
Or dispose of by incineration such as submerged combustion incineration.

一方、生物学的硝化脱窒素工程2から発生する余剰活性
汚泥17は、混和槽18にて重油、廃油など水より高沸
点の油19が添加され、汚泥と油との混合スラリー20
となる。混合スラリー加は、多重効用蒸発缶(21,2
f、217)を備えた蒸発乾燥工程1001号缶21に
流入する。ボイラ22から水蒸気23を1号缶21内の
間接加熱部24に供給し混合スラリー20中の水分を蒸
発せしめ、蒸発水蒸気25を2号缶21′内の間接加熱
部24′に流入せしめるとともに、水分の減少した混合
スラリー20’を1号缶21から2号缶2fにポンプ移
送し、蒸発水蒸気25の凝縮潜熱を利用して混合スラリ
ー 20’中の水分をさらに蒸発せしめる。2号缶21
′からの混合スラリー20′も同様の方法で蒸発乾燥さ
れる。
On the other hand, surplus activated sludge 17 generated from the biological nitrification and denitrification process 2 is mixed with oil 19 having a boiling point higher than water, such as heavy oil or waste oil, in a mixing tank 18, and a mixed slurry 20 of sludge and oil is added.
becomes. The mixed slurry was added using a multi-effect evaporator (21, 2
f, 217) into the evaporative drying process No. 1001 can 21. Steam 23 is supplied from the boiler 22 to the indirect heating section 24 in the No. 1 can 21 to evaporate the water in the mixed slurry 20, and the evaporated steam 25 is allowed to flow into the indirect heating section 24' in the No. 2 can 21'. The mixed slurry 20' with reduced water content is pumped from the No. 1 can 21 to the No. 2 can 2f, and the water in the mixed slurry 20' is further evaporated using the latent heat of condensation of the evaporated steam 25. No. 2 can 21
The mixed slurry 20' from ' is also evaporated to dryness in a similar manner.

しかして、3号缶2rからの蒸発水蒸気25′はコンデ
ンサ(凝縮器)26にて凝縮し2号缶21′、3号缶2
1′からの凝縮水27’、2γとともに図示されていな
い油分離工程(コアレッサー)を経由して処理水J5に
合流される。なお、24″は間接加熱部、25′は蒸発
水蒸気、27は凝縮水、28は非凝縮性ガス排出用の真
空ポンプ、34は別途供給するボイラ給水であり、凝縮
水27けボイラ22を経由して上記水蒸気23となる。
Therefore, the evaporated steam 25' from the No. 3 can 2r is condensed in the condenser 26, and the No. 2 can 21' and the No. 3 can 2
Together with the condensed water 27' and 2γ from 1', it is combined with the treated water J5 via an oil separation process (coalescer), not shown. In addition, 24'' is an indirect heating part, 25' is evaporated steam, 27 is condensed water, 28 is a vacuum pump for discharging non-condensable gas, and 34 is a separately supplied boiler water supply, which passes through the boiler 22 with 27 condensed water. The water vapor 23 is then formed.

さて、3号缶2rから排出される混合スラリー29は水
分が大部分蒸発除去され含水率10q6程度となった油
と汚泥との混合スラリー罠なっているので、スクリュー
プレスなどの搾油機30にて混合スラリー29中の油と
汚泥と分離し、分離油31を混和槽18にリサイクルす
る。一方、脱油された汚泥32をボイラ22にて焼却し
、水蒸気23を回収する。なお、し漬・ゴミなどをボイ
ラ22にて混焼してもよい。33け焼却残渣である。
Now, the mixed slurry 29 discharged from the No. 3 can 2r is a mixed slurry trap of oil and sludge in which most of the water has been removed by evaporation and the water content is about 10q6, so it is processed using an oil extractor 30 such as a screw press. The oil and sludge in the mixed slurry 29 are separated, and the separated oil 31 is recycled to the mixing tank 18. On the other hand, the deoiled sludge 32 is incinerated in the boiler 22 and water vapor 23 is recovered. Incidentally, pickled vegetables, garbage, etc. may be co-fired in the boiler 22. 33 pieces of incineration residue.

上記蒸発工程8から排出される濃縮液11の処分につい
ては、ドラムドライヤーなどの蒸発乾固機にて処理し7
たのち乾固物をボイラ22にて焼却するか、直接噴霧燃
焼させたりしてもよいが、蒸発乾固せずに流動性を保持
する程度まで濃縮したのち、図示例のように余剰活性汚
泥17に混合して、油を媒体とする上記蒸発乾燥工程1
0&Cて処理するのが最も好適である。この方法によれ
ば、濃縮液11の別個の処理工程が不要になるからであ
る。
The concentrated liquid 11 discharged from the evaporation step 8 is disposed of by using an evaporator such as a drum dryer.
After that, the dried solids may be incinerated in the boiler 22 or directly sprayed and burned, but after concentrating to a level that maintains fluidity without evaporating to dryness, excess activated sludge is removed as shown in the example. 17 and the above evaporation drying step 1 using oil as a medium.
It is most preferable to treat it with 0&C. This is because, according to this method, a separate processing step for the concentrate 11 is not required.

さらに、ボイラ22にて発生した上記水蒸気23の量は
上記多重効用蒸発缶で必要とする水蒸気量よシ多量とな
ることが多いので、残部の水蒸気3′を蒸発工程8、熱
交換器9用の加熱源、管理棟の暖房などに供給するのが
よい。また、し尿から除去されたし渣を搾油機30に供
給すると搾油効率が向上する。
Furthermore, since the amount of water vapor 23 generated in the boiler 22 is often larger than the amount of water vapor required in the multi-effect evaporator, the remaining water vapor 3' is used in the evaporation process 8 and the heat exchanger 9. It is recommended to supply it to the heating source of the building, the heating of the administration building, etc. Moreover, if the human waste removed from human waste is supplied to the oil extractor 30, the oil extraction efficiency will be improved.

なお、ボイラ22の排ガスの保有熱を直接又はこれによ
シ温水を調製して熱交換器9、蒸気圧縮機13、混和槽
18、搾油機30などの熱源に利用したシ、し尿処理場
にゴミ焼却場が隣接している場合は、ゴミ焼却場からの
余熱を蒸発工程8、上記多重効用蒸発缶などに利用して
もよいことは申すまでもない。
In addition, the heat retained in the exhaust gas of the boiler 22 is directly or used to prepare hot water and used as a heat source for the heat exchanger 9, vapor compressor 13, mixing tank 18, oil extractor 30, etc. Needless to say, if a garbage incinerator is adjacent, residual heat from the garbage incinerator may be used in the evaporation process 8, the above-mentioned multi-effect evaporator, or the like.

さらに、図示はしないが、蒸発乾燥工程10を蒸気圧縮
法、もしくはこれと多重効用蒸発法との併用法によυ行
なってもよく、本発明の効果を充分発揮できることは言
うまでもない。また、蒸発工程8への流入法をあらかじ
め逆浸透膜、限外濾過膜などによって濃縮する方法も採
用可能である。
Further, although not shown, the evaporative drying step 10 may be carried out by a vapor compression method or a combination of this method and a multiple effect evaporation method, and it goes without saying that the effects of the present invention can be fully exhibited. Furthermore, a method of concentrating the water in advance using a reverse osmosis membrane, an ultrafiltration membrane, etc. before entering the evaporation step 8 can also be adopted.

以上述べたような本発明によれば、次のような数多くの
重要な効果が得られ、従来プロセスの諸欠点を根本的に
解決することができる。
According to the present invention as described above, many important effects as described below can be obtained, and various drawbacks of conventional processes can be fundamentally solved.

■ 従来プロセスで不可欠となっていた生物処理液の凝
集沈殿(又は浮上)、砂r過、オゾン処理、活性炭吸着
、滅菌処理のすべての工程が不要になり、しかも従来プ
ロセスよシもはるかに秀れた処理水質を得ることができ
る。
■ All the steps that were essential in the conventional process, such as flocculation and sedimentation (or flotation) of the biological treatment liquid, sand filtration, ozone treatment, activated carbon adsorption, and sterilization, are no longer necessary, and the process is far superior to the conventional process. It is possible to obtain high quality treated water.

従って、環境汚染防止上着しい効果が得られるほか、プ
ロセスも極めて簡略化され、さらに凝集剤、オゾン発生
電力、活性炭の補給、活性炭再生エネルギーのすべてが
不要になり、大きな省資源・省エネルギー効果が得られ
る。
Therefore, in addition to being highly effective in preventing environmental pollution, the process is extremely simplified, and the need for flocculants, ozone generation power, activated carbon replenishment, and activated carbon regeneration energy are all eliminated, resulting in significant resource and energy savings. can get.

■ また、従来プロセスにおいて不可欠となっていた余
剰活性汚泥と凝集沈殿(浮上)汚泥の機械脱水機による
脱水工程を不要にできると同時に、カチオンポリマーな
どの脱水助剤の添加も不要になるので、省資源効果が大
きい。
■ In addition, the process of dewatering surplus activated sludge and coagulated sedimentation (floating) sludge using a mechanical dehydrator, which was essential in conventional processes, can be eliminated, and at the same time, the addition of dewatering aids such as cationic polymers is no longer necessary. Great resource saving effect.

■ し尿などの濃厚有機性廃液中には、多量のアンモニ
アと有機酸、臭気成分及びSSが含まれているため、本
発明プロセスによらず原液を直接蒸発処理すると、発生
水蒸気中に多量のアンモニア、揮発性有機酸、臭気成分
が含まれ、またスケール生成もはげしい。従って、蒸発
槽からの臭気のリーク対策に細心の注意を要するほか、
発生水蒸気の凝縮水を本発明のように処理水として放流
することはできない。
■ Concentrated organic waste liquids such as human waste contain large amounts of ammonia, organic acids, odor components, and SS, so if the raw liquid is directly evaporated without using the process of the present invention, a large amount of ammonia will be contained in the generated water vapor. , volatile organic acids, and odor components, and also cause severe scale formation. Therefore, careful attention is required to prevent odor leaks from the evaporation tank, and
Condensed water of generated steam cannot be discharged as treated water as in the present invention.

これに対し本発明によれば、あらかじめ生物学的硝化又
は硝化脱窒素処理などの生物処理によって生物的に揮発
性有機成分、アンモニア、臭気成分、硫化物などのスケ
ール生成成分を除去したのち蒸気圧縮法などKよる蒸発
濃縮・乾燥処理を行なうのでスケール生成もほとんどな
く、発生水蒸気およびこれの凝縮水中にBOD成分、ア
ンモニア性窒素、臭気成分がなく無色透明の蒸留水なみ
の水質が得られる。また、蒸発槽からの悪臭成分のIJ
、−−りがない。
In contrast, according to the present invention, volatile organic components, ammonia, odor components, sulfides, and other scale-forming components are removed biologically by biological treatment such as biological nitrification or nitrification-denitrification treatment, and then vapor compression is performed. Since the evaporation concentration and drying treatment is carried out using K, such as the method, there is almost no scale formation, and the generated water vapor and its condensed water are free of BOD components, ammonia nitrogen, and odor components, and the water quality is clear and colorless, comparable to that of distilled water. In addition, IJ of malodorous components from the evaporation tank
,--There is no merit.

■ 凝集沈殿(浮上)処理を行なえば必ず凝集汚泥が発
生し、その処理・処分が必然的に必要になるが、凝集汚
泥は脱水性が非常に悪く大きな問題になっている。これ
に対し本発明では、凝集処理工程が全く不要なため凝集
汚泥そのものが発生しないので、このような問題は起シ
得ない。
■ If flocculation and sedimentation (floating) treatment is carried out, flocculated sludge will inevitably be generated, and treatment and disposal of the flocculated sludge will inevitably be necessary, but flocculated sludge has very poor dewatering properties and has become a major problem. On the other hand, in the present invention, such a problem does not occur because no flocculation treatment step is required and flocculated sludge itself is not generated.

■ 従来プロセスにおいては処理水のCOD、 色度成
分は凝集処理工程では完全に除去することができず、そ
のためオゾン処理、活性炭処理工程が、不可欠となり、
活性炭処理によってCODを数my/lにするにはラン
ニングコストが著しく高くなる(500〜600円/k
l−1.尿)が、本発明では生物処理液を蒸発処理する
ので処理水は完全に無色で、CODもθ〜0.5η/l
と極めて少ない。
■ In conventional processes, COD and chromaticity components of treated water cannot be completely removed in the coagulation treatment process, so ozone treatment and activated carbon treatment processes are essential.
In order to reduce the COD to several my/l by activated carbon treatment, the running cost becomes extremely high (500 to 600 yen/k).
l-1. However, in the present invention, the biological treatment liquid is evaporated, so the treated water is completely colorless, and the COD is θ~0.5η/l.
Very few.

■ 従来プロセスの汚泥処理工程は、余剰活性汚泥と凝
集沈殿汚泥との混合汚泥に、カチオンポリマーなとの脱
水助剤を添加してベルトプレスなどの機械脱水機で脱水
しているため、脱水ケーキの含水率が80〜85%程度
と極めて高く、まり脱水ケーキ中に水酸化アルミニウム
などの無機物が共存するので、脱水ケーキの発熱量が低
い。従って、脱水ケーキの乾燥・焼却に多量(通常20
01〜300t/1on−n−s )の補助燃料を必要
とする。
■ In the conventional sludge treatment process, a dehydration aid such as a cationic polymer is added to the mixed sludge of surplus activated sludge and flocculated sedimentation sludge, and dewatering is performed using a mechanical dehydrator such as a belt press, resulting in a dewatered cake. The water content of the dehydrated cake is extremely high at about 80 to 85%, and the dehydrated cake has a low calorific value because inorganic substances such as aluminum hydroxide coexist in the dehydrated cake. Therefore, a large amount (usually 20
01-300t/1on-ns) of auxiliary fuel is required.

これに対し本発明では、凝集沈殿汚泥が発生しないこと
及び機械脱水工程が不要なので、乾燥物の水分を容易に
低下させることができ自燃領域にある乾燥物を得ること
ができる。
On the other hand, in the present invention, since coagulation and sedimentation sludge is not generated and no mechanical dewatering step is required, the moisture content of the dried material can be easily lowered and a dried material in the self-combustion range can be obtained.

■ 従来法によるし尿処理水の塩素イオン濃度は300
〜30001v/lと高いため山林・田畑のかんがい用
水にすることは困難であったが、本発明による処理水は
蒸留水に近いため塩素イオン濃度は数ppm程度にすぎ
ない。したがって、かんがい用水、山林散布用水として
使用するととができる。
■ The chloride ion concentration of human waste treated water using the conventional method is 300.
Since the chlorine ion concentration is as high as ~30,001 v/l, it has been difficult to use it as irrigation water for forests and fields, but since the water treated by the present invention is close to distilled water, the chlorine ion concentration is only about a few ppm. Therefore, it can be used as water for irrigation and forest spraying.

■ 余剰活性汚泥に重油などの油を添加して蒸発処理す
るため水分蒸発によっても流動性が失なわれないので、
容易に蒸発缶にて水分を蒸発できるし、添加した油も大
部分が回収再利用されるので、重油所要量も非常に少な
くてすむ。
■ Oil such as heavy oil is added to surplus activated sludge for evaporation treatment, so fluidity is not lost even when water evaporates.
Water can be easily evaporated in an evaporator, and most of the added oil can be recovered and reused, so the amount of heavy oil required is extremely small.

次に、本発明の実施例について記す。Next, examples of the present invention will be described.

実施例 神奈川県逗子市し尿処理場に搬入されるし尿(浄化槽汚
泥10チ混入)を除渣したのち、処理量100t/mi
nの規模で硝化液循環生物学的膜窒素工程により無希釈
処理した。無希釈処理の結果硝化槽の発泡が激しかった
が、消泡用水を添加することは蒸発対象水量の増加と水
温の低下を招くため好ましくないので行なわなかった。
Example: After removing human waste (containing 10 g of septic tank sludge) delivered to the human waste treatment plant in Zushi City, Kanagawa Prefecture, the processing amount was 100 tons/mi.
It was processed undiluted by a nitrification liquid circulation biological membrane nitrogen process on a scale of n. As a result of the non-dilution treatment, there was severe foaming in the nitrification tank, but adding antifoaming water was not desirable as it would increase the amount of water to be evaporated and lower the water temperature.

発泡対策としては硝化槽液面上の泡沫層に消泡機(イン
ペラを回転させて泡を破泡するもの)を設置した。
As a countermeasure against foaming, a defoamer (which rotates an impeller to break the foam) was installed in the foam layer above the liquid surface of the nitrification tank.

生物学的膜窒素工程のMLVS Sは20000〜2】
000+Iv/1%滞留日数は7日間とした。生物処理
槽内の水温は微生物の酸化反応生成熱によって夏期は4
2°〜45℃、冬期は33°〜35℃に維持された。
MLVS S of biological membrane nitrogen process is 20000~2]
000+Iv/1% residence time was 7 days. The water temperature in the biological treatment tank decreases to 4.5 degrees in the summer due to the heat produced by the oxidation reaction of microorganisms.
The temperature was maintained between 2° and 45°C, and between 33° and 35°C during the winter.

生物処理槽流出スラリーの固液分離には無薬注型遠心濃
縮機(スクリーーデカンター型)を使用し、濃縮汚泥の
大部分を生物処理槽ヘリサイクルさせ、一部を余剰生物
汚泥として排出した。遠心濃縮分離液中の残留SSを沈
殿又はr逸機によって充分除去したのち自己蒸気圧縮式
蒸発缶に供給し、濃縮比40倍以上に濃縮せしめた。
A chemical-free centrifugal thickener (screed decanter type) was used for solid-liquid separation of the biological treatment tank effluent slurry, and most of the thickened sludge was recycled back to the biological treatment tank, with some being discharged as surplus biological sludge. . After the residual SS in the centrifugal concentrated separation liquid was sufficiently removed by precipitation or refrigeration, it was supplied to a self-vapor compression type evaporator and concentrated to a concentration ratio of 40 times or more.

この蒸発缶流入液の水質は水温40°〜42℃、pH7
,0〜7.2、アンモニア性窒素5tay/を以下、溶
解性BOD1o■/を以下、溶解性リン酸550〜68
0〜/ls溶解性COD 430〜520η/1%色度
2500〜3000度、塩素イオン3000〜3200
■/lであった。
The water quality of this evaporator inflow liquid is as follows: water temperature: 40° to 42°C, pH: 7
, 0 to 7.2, ammonia nitrogen 5tay/below, soluble BOD 1o■/below, soluble phosphoric acid 550 to 68
0~/ls Solubility COD 430~520η/1% Chromaticity 2500~3000 degrees, chlorine ion 3000~3200
■/l.

上記蒸発缶には小型実験規模の流下液膜式を、蒸気圧縮
機にはルーツ式をそれぞれ用いた。蒸発水蒸気の凝縮水
(これがし尿の無希釈高度処理水となる)の水質はpH
7,0,88なし、色度なし、COD O〜0.5岬/
l、 BOD 1〜3q/1%リン酸検出せず、NHs
 −N 5キ/を以下と極めて良好であった。
The above-mentioned evaporator was a small-scale experimental falling liquid film type, and the vapor compressor was a Roots type. The quality of the condensed water of evaporated water vapor (this becomes highly processed water with no dilution of human waste) is determined by the pH
7,0,88 None, Chromaticity, COD O~0.5 Cape/
l, BOD 1-3q/1% phosphoric acid not detected, NHs
-N 5 kg/or less, which was extremely good.

一方、上記蒸発缶からの濃縮液と無希釈生物学的硝化脱
窒素工程から発生する余剰汚泥(5,5Kt−D@B/
Jd−シ尿)との混合スラリーにA重油を加え、荏原イ
ンフィルコ■社製品CGプロセス■に従い多重効用蒸発
缶にて乾燥後、焼却処理した。このCGプロセスで必要
とした油の補給量はCGプロセスに供給する混合スラリ
ー中の固形物1jlfあた#)0.15tと極めて少量
であった。すなわち、し尿1kt処理するのに必要な重
油コストは82円/kl−1.尿であった。
On the other hand, the concentrated liquid from the evaporator and the surplus sludge generated from the non-dilution biological nitrification and denitrification process (5.5Kt-D@B/
Heavy oil A was added to the slurry mixed with Jd-Natural urine), and the mixture was dried in a multi-effect evaporator according to Ebara Infilco Corporation's CG process (2), and then incinerated. The amount of oil replenishment required in this CG process was extremely small at 0.15 t per 1 jlf of solids in the mixed slurry supplied to the CG process. In other words, the cost of heavy oil required to treat 1kt of human waste is 82 yen/kl-1. It was urine.

また、生物処理水を蒸気圧縮法で蒸発するに要するコス
トは、生物処理水1tt/あたjj) 25 KWHす
なわち375円/kl−L尿と安価であった。さらに、
生物学的硝化脱窒素工程で必要とするエアレーションブ
ロワーの動力コストは約300円/kl−シ尿となシ、
プロセス全体の運転経費は種々のポンプなどの電力式を
含めて約1000〜1100円/)cl−A、尿であり
、従来の低希釈二段活性汚泥法で必要とされる維持管理
費の実績3500〜4000円/Jrt−シ尿と比較す
ると、本発明は運転経費が格段に安価で、しかも従来プ
ロセスより圧倒的に秀れた処理水質であった。
In addition, the cost required to evaporate biologically treated water by the vapor compression method was as low as 1 tt of biologically treated water/25 KWH, or 375 yen/kl-L urine. moreover,
The power cost of the aeration blower required for the biological nitrification and denitrification process is approximately 300 yen/kl.
The operating cost of the entire process is approximately 1,000 to 1,100 yen including electric power systems such as various pumps/) cl-A and urine, which is lower than the maintenance and management costs required in the conventional low dilution two-stage activated sludge method. 3,500 to 4,000 yen/Jrt - Compared to human waste, the operating costs of the present invention were much lower, and the treated water quality was overwhelmingly superior to that of the conventional process.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の一実施態様を示すフローシートである
。 1・・・除清し尿、2・・・生物学的硝化脱窒素工程、
3・・・活性汚泥スラリー、4・・・固液分離工程、5
・・・分離汚泥、6・・・返送汚泥、7・・・分離液、
8・・・蒸発工程、8′・・・蒸発缶、9・・・熱交換
器、10・・・蒸発乾燥工程、11・・・濃縮液、12
 、16 、23 、23’・・・水蒸気、12’、 
27 、27’、 2γ・・・凝縮水、13・・・蒸気
圧縮機、14 、24 、24’ 、 24″・・・間
接加熱部、15・・・処理水、17・・・余剰活性汚泥
、18・・・混和槽、19・・・油、20.20’。 20’、 29・・・混合スラIJ  、、21・・・
1号缶、21′・・・2号缶、21′・・・3号缶、2
2・・・ボイラ、25 、25’ 、 25’・・・蒸
発水蒸気、26・・・コンデンサ、28・・・真空ポン
プ、30・・・搾油機、31・・・分離油、32・・・
汚泥、33・・・焼却残渣、34・・・ボイラ給水。 特許出願人 荏原インフィルコ株式会社代理人弁理士 
端  山  五  − 同  弁理士 千  1)   稔 手続補正書 昭和57年10月 6 [」 特許庁長官 若杉和夫殿 1、事件の表示  昭和57年 特 許 願;4108
595号2、発 明 の名称   有機性廃液の処理方
法3、補IFをする者 ・II I’lとの関係    特許出願人(1:所(
居所) 4、代理人 補    正    書 本願明細書中 t 特許請求の範囲の欄を別紙のとお9訂正する。 2、第7頁、第3行〜第8行を次のように訂正する。 [すなわち本発明は、有機性廃液を生物処理したのち、
該生物処理水を蒸気圧縮法および/または多重効用法に
よる間接加熱式蒸発処理し、該蒸発水蒸気の凝縮水を前
記有機性廃液の処理水となすと共に、少なくと屯前記生
物処理工程から発生する余剰活性汚泥に水より高沸点の
油を添加混合して蒸発乾燥処理したのち、該乾燥汚泥を
焼却処理することを特徴とする有機性廃液の処理方法で
ある。」以上 特許請求の範囲 t 有機性廃液を生物処理したのち、該生物処理なくと
も前記生物処理工程から発生する余剰活性汚泥に水より
高沸点の油を添加混合して蒸発乾燥処理したのち、該乾
燥汚泥を焼却処理することを特徴とする有機性廃液の処
理方法。 以上
The drawing is a flow sheet illustrating one embodiment of the invention. 1... Declared night soil, 2... Biological nitrification and denitrification process,
3...Activated sludge slurry, 4...Solid-liquid separation process, 5
...Separated sludge, 6.Return sludge, 7.Separated liquid,
8... Evaporation process, 8'... Evaporator, 9... Heat exchanger, 10... Evaporation drying process, 11... Concentrate, 12
, 16 , 23 , 23'... water vapor, 12',
27, 27', 2γ... Condensed water, 13... Steam compressor, 14, 24, 24', 24''... Indirect heating section, 15... Treated water, 17... Excess activated sludge , 18... Mixing tank, 19... Oil, 20.20'. 20', 29... Mixing slur IJ, , 21...
No. 1 can, 21'... No. 2 can, 21'... No. 3 can, 2
2... Boiler, 25, 25', 25'... Evaporated steam, 26... Condenser, 28... Vacuum pump, 30... Oil extractor, 31... Separated oil, 32...
Sludge, 33...Incineration residue, 34...Boiler water supply. Patent applicant: Patent attorney representing Ebara Infilco Co., Ltd.
Go Hayama - Patent Attorney Sen 1) Minoru Procedural Amendments October 6, 1980 ['' Kazuo Wakasugi, Commissioner of the Patent Office 1, Indication of Case 1981 Patent Application; 4108
595 No. 2, Title of the invention Method for treating organic waste liquid 3, Supplementary IF person/II Relationship with I'l Patent applicant (1: Place (
(Residence) 4. Amendment to the agent: t. The claims column in the specification of the present application is amended as shown in the attached sheet. 2. On page 7, lines 3 to 8 are corrected as follows. [That is, in the present invention, after biologically treating organic waste liquid,
The biologically treated water is subjected to an indirect heating evaporation treatment using a vapor compression method and/or a multiple effect method, and the condensed water of the evaporated water vapor is used as the treated water of the organic waste liquid, and at least a portion of the water generated from the biological treatment process is This method of treating organic waste liquid is characterized by adding and mixing oil with a higher boiling point than water to surplus activated sludge, evaporating and drying the mixture, and then incinerating the dried sludge. Claims t After biologically treating organic waste liquid, adding and mixing oil with a higher boiling point than water to surplus activated sludge generated from the biological treatment process, and then evaporating and drying the organic waste liquid, A method for treating organic waste liquid characterized by incinerating dried sludge. that's all

Claims (1)

【特許請求の範囲】 1、 有機性廃液を生物処理したのち、該生物処理水を
蒸発処理すると共に、少なくとも前記生物処理工程から
発生する余剰活性汚泥に、水より高沸点の油を添加混合
して蒸発乾燥処理したのち、該乾燥汚泥を焼却処理する
ことを特徴とする有機性廃液の処理方法。 2、前記蒸発処理工程が、蒸気圧縮法により行なわれる
ものである特許請求の範囲第1項記載の方法。 3、 前記蒸発処理工程が、常圧条件下で行なわれるも
のである特許請求の範囲第2項記載の方法。 4、 前記蒸発処理工程が、多重効用蒸発法により行な
われるものである特許請求の範囲第1項記載の方法。 5、 前記蒸発処理工程が、蒸気圧縮法と多重効用蒸発
法を併用して行なわれるものである特許請求の範囲第1
項記載の方法。 & 前記蒸発処理工程が、前記生物処理水を濃縮処理し
て濃縮汚泥を得るものである特許請求の範囲第3項記載
の方法。 l 前記蒸発乾燥処理工程が、前記余剰活性汚泥と前記
蒸発処理工程による濃縮汚泥との混合汚泥に前記油を添
加混合して行なわれるものである特許請求の範囲第6項
記載の方法。 8、 前記蒸発乾燥処理工程が、蒸気圧縮法により行な
われるものである特許請求の範囲第7項記載の方法。 9 前記蒸発乾燥処理工程が、多重効用蒸発法によシ行
なわれるものである特許請求の範囲第7項記載の方法。 10、前記蒸発乾燥処理工程が、蒸気圧縮法と多重効用
蒸発法を併用して行なわれるものである特許請求の範囲
第7項記載の方法。 且 前記蒸発処理工程が、前記焼却処理工程で発生する
焼却生成エネルギーを利用して行なわれるものである特
許請求の範囲第7項、第8項、第9項又は第10項記載
の方法。 12、前記蒸発乾燥処理工程が、前記焼却処理工程で発
生する焼却生成エネルギーを利用して行なわれるもので
ある特許請求の範囲第7項。 第8項、第9項、第10項又は第11項記載の方法。 13、前記生物処理工程が、生物学的硝化工程である特
許請求の範囲第11項又は第12項記載の方法。 14、前記生物処理工程が、生物学的硝化工程である特
許請求の範囲第11項又は第12項記載の方法。 15、前記生物処理工程が、生物学的硝化脱窒素工程で
ある特許請求の範囲第11項又は第P項記載の方法。 16、前記生物学的硝化脱窒素工程が、し尿系汚水をこ
れに希釈水を添加することなく行なわれるものである特
許請求の範囲第15項記載の方法。 1Z  前記蒸発乾燥処理工程用の油として、前記乾燥
汚泥中の油分を固液分離して得られた油分を特徴とする
特許請求の範囲第1項記載の方法。
[Claims] 1. After biologically treating the organic waste liquid, evaporating the biologically treated water and adding and mixing oil with a higher boiling point than water to at least the surplus activated sludge generated from the biological treatment process. 1. A method for treating organic waste liquid, which comprises evaporating and drying the sludge, and then incinerating the dried sludge. 2. The method according to claim 1, wherein the evaporation treatment step is performed by a vapor compression method. 3. The method according to claim 2, wherein the evaporation treatment step is performed under normal pressure conditions. 4. The method according to claim 1, wherein the evaporation treatment step is performed by a multiple effect evaporation method. 5. Claim 1, wherein the evaporation treatment step is performed using a combination of a vapor compression method and a multiple effect evaporation method.
The method described in section. & The method according to claim 3, wherein the evaporation treatment step involves concentrating the biologically treated water to obtain concentrated sludge. 1. The method according to claim 6, wherein the evaporative drying step is performed by adding and mixing the oil to a mixed sludge of the excess activated sludge and the thickened sludge produced in the evaporating step. 8. The method according to claim 7, wherein the evaporative drying step is performed by a vapor compression method. 9. The method of claim 7, wherein the evaporative drying step is carried out by a multiple effect evaporation method. 10. The method according to claim 7, wherein the evaporative drying step is performed using a combination of a vapor compression method and a multiple effect evaporation method. The method according to claim 7, 8, 9, or 10, wherein the evaporation treatment step is performed using incineration energy generated in the incineration treatment step. 12. Claim 7, wherein the evaporative drying process is carried out using incineration energy generated in the incineration process. The method according to item 8, 9, 10 or 11. 13. The method according to claim 11 or 12, wherein the biological treatment step is a biological nitrification step. 14. The method according to claim 11 or 12, wherein the biological treatment step is a biological nitrification step. 15. The method according to claim 11 or P, wherein the biological treatment step is a biological nitrification and denitrification step. 16. The method according to claim 15, wherein the biological nitrification and denitrification step is carried out without adding dilution water to human waste water. 1Z The method according to claim 1, wherein the oil for the evaporative drying process is an oil obtained by solid-liquid separation of the oil in the dried sludge.
JP57108395A 1982-06-25 1982-06-25 Treatment of organic waste liquor Granted JPS59392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57108395A JPS59392A (en) 1982-06-25 1982-06-25 Treatment of organic waste liquor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57108395A JPS59392A (en) 1982-06-25 1982-06-25 Treatment of organic waste liquor

Publications (2)

Publication Number Publication Date
JPS59392A true JPS59392A (en) 1984-01-05
JPH0114836B2 JPH0114836B2 (en) 1989-03-14

Family

ID=14483668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57108395A Granted JPS59392A (en) 1982-06-25 1982-06-25 Treatment of organic waste liquor

Country Status (1)

Country Link
JP (1) JPS59392A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125493U (en) * 1984-02-01 1985-08-23 サンデン株式会社 case
JPS6111999U (en) * 1984-06-25 1986-01-24 荏原インフイルコ株式会社 Human waste wastewater treatment equipment
JPS6112000U (en) * 1984-06-28 1986-01-24 荏原インフイルコ株式会社 Human waste wastewater treatment equipment
JPH03199A (en) * 1989-05-25 1991-01-07 Ebara Infilco Co Ltd Methane fermentation treatment
JP2010284134A (en) * 2009-06-15 2010-12-24 Nippon Rensui Co Ltd Method for producing purified sugar solution
ES2609734A1 (en) * 2015-10-15 2017-04-24 Anna María PORTELL HIELO Installation and procedure for the purification of organic waste with the presence of water (Machine-translation by Google Translate, not legally binding)
WO2020080244A1 (en) * 2018-10-19 2020-04-23 Dowaエコシステム株式会社 Method for treating object to be treated

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125493U (en) * 1984-02-01 1985-08-23 サンデン株式会社 case
JPH0354385Y2 (en) * 1984-02-01 1991-11-29
JPS6111999U (en) * 1984-06-25 1986-01-24 荏原インフイルコ株式会社 Human waste wastewater treatment equipment
JPS6112000U (en) * 1984-06-28 1986-01-24 荏原インフイルコ株式会社 Human waste wastewater treatment equipment
JPH03199A (en) * 1989-05-25 1991-01-07 Ebara Infilco Co Ltd Methane fermentation treatment
JPH0567358B2 (en) * 1989-05-25 1993-09-24 Ebara Infilco
JP2010284134A (en) * 2009-06-15 2010-12-24 Nippon Rensui Co Ltd Method for producing purified sugar solution
ES2609734A1 (en) * 2015-10-15 2017-04-24 Anna María PORTELL HIELO Installation and procedure for the purification of organic waste with the presence of water (Machine-translation by Google Translate, not legally binding)
WO2020080244A1 (en) * 2018-10-19 2020-04-23 Dowaエコシステム株式会社 Method for treating object to be treated
JP2020062631A (en) * 2018-10-19 2020-04-23 Dowaテクノロジー株式会社 Treatment method for waste material

Also Published As

Publication number Publication date
JPH0114836B2 (en) 1989-03-14

Similar Documents

Publication Publication Date Title
CN101209881B (en) System for processing leachate of garbage burning factory
CN102976543A (en) Garbage leachate disposal method and system
JP2008049242A (en) Garbage leachate treatment system
CN111960590A (en) Membrane concentrate treatment system of waste incineration power plant
JPS59392A (en) Treatment of organic waste liquor
JPH03131394A (en) Combined treatment method of refuse and raw sewage
JPH0135720B2 (en)
JPH0114833B2 (en)
JPH0114832B2 (en)
JPH0114837B2 (en)
CN112661215A (en) Treatment process and system for landfill leachate membrane concentrated solution
JPS5962396A (en) Treatment of organic waste water containing ammonia
JPS5959289A (en) Treatment of organic waste water containing phosphorus
JPS58223498A (en) Treatment of organic waste water
JPH0114835B2 (en)
KR960001397Y1 (en) Waste water treatment apparatus
JPH0114838B2 (en)
KR100487609B1 (en) A livestock wastewater treatment process combining a distillation under reduced pressure with a biological treatment
JPH0114839B2 (en)
JPH0114840B2 (en)
JPS5962391A (en) Treatment of organic waste water
JPS58122092A (en) Methane fermenting method for organic waste
JPS63214389A (en) Treatment of organic sewage
KR960005035Y1 (en) Waste water treater with drum
CN105461149A (en) Garbage leachate treatment system