JPS5938364A - Heat-resistant cast steel - Google Patents

Heat-resistant cast steel

Info

Publication number
JPS5938364A
JPS5938364A JP14941982A JP14941982A JPS5938364A JP S5938364 A JPS5938364 A JP S5938364A JP 14941982 A JP14941982 A JP 14941982A JP 14941982 A JP14941982 A JP 14941982A JP S5938364 A JPS5938364 A JP S5938364A
Authority
JP
Japan
Prior art keywords
cast steel
resistance
heat
thermal shock
resistant cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14941982A
Other languages
Japanese (ja)
Other versions
JPS6142780B2 (en
Inventor
Junichi Sugitani
杉谷 純一
Teruo Yoshimoto
葭本 輝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP14941982A priority Critical patent/JPS5938364A/en
Publication of JPS5938364A publication Critical patent/JPS5938364A/en
Publication of JPS6142780B2 publication Critical patent/JPS6142780B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain a heat-resistant cast steel with improved creep rupture strength, thermal shock resistance, curburization resistance, etc. at high temp. by adding prescribed percentages of C, Si, Mn, Cr, Ni, Nb, W, N, Ti, Al, B and Cu. CONSTITUTION:This heat-resistant cast steel consists of, by weight, 0.3-0.6% C, <=2.0% Si, <=2.0% Mn, 20-30% Cr, 30-40% Ni, 0.3-1.5% Nb, 0.5-3.0% W, 0.04-0.15% N, 0.04-0.5% Ti, 0.02-0.5% Al, 0.0002-0.004% B, <=3.0% Cu and the balance essentially Fe. The cast steel is superior to a conventional HP material contg. Nb and W or other material in said characteristics at high temp., so it withstands well severe conditions during use as the material of an ethylene cracking tube, etc. in the petrochemical industry.

Description

【発明の詳細な説明】 本発明は、耐熱鋳鋼に関し、特に品温クリープ破断強度
、耐熱衝撃性および耐浸炭性等を改善1−だものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to heat-resistant cast steel, and particularly improves cold creep rupture strength, thermal shock resistance, carburization resistance, etc.

石油化学工業におけるエチレンクラッキングチューブ材
、リフオーマチューブ材としては、従来ASTM  H
K40材、HP材に代表されるCr−Ni−Fe系耐熱
鋳鋼が使、用され、またその高温特性改良材として、H
P材にNbおよびWを含有させたCr−Ni−Nb  
W−Fe系耐熱鋳鋼か開発され実用に供されている。し
かしながら、操業条件の苛酷化に対処するために、高温
特性、とりわけ高温クリープ破断強度、耐熱#r撃時特
性耐浸炭性等の−そうの改善が要請されている。
Conventionally, ASTM H
Cr-Ni-Fe heat-resistant cast steel represented by K40 material and HP material is used, and H is used as a high-temperature property improving material.
Cr-Ni-Nb containing Nb and W in P material
W-Fe based heat-resistant cast steel has been developed and put into practical use. However, in order to cope with increasingly severe operating conditions, improvements in high-temperature properties, particularly high-temperature creep rupture strength, heat resistance #r impact properties, carburization resistance, etc., are required.

本発明者等はこの要請に応えるために、Cr −N i
 −N b −W−F e系耐熱鋳鋼について、高温特
性に対する各種合金元素の影響に関する詳細な研究を重
ねた結果、N、Ti、A/、BおよびCuの各元素の特
定量の複合添加によって、1000℃をこえる高温域で
のクリープ破断強度、耐熱衝撃性、耐浸炭性等を著しく
高め得ることを見出し、本発明を完成するに到った。
In order to meet this demand, the present inventors have developed Cr-N i
-Nb -W-Fe As a result of detailed research on the effects of various alloying elements on high-temperature properties of e-based heat-resistant cast steel, we found that the combined addition of specific amounts of each element of N, Ti, A/, B, and Cu The present inventors have discovered that creep rupture strength, thermal shock resistance, carburization resistance, etc. can be significantly improved in a high temperature range exceeding 1000°C, and have completed the present invention.

本発明は、CO,S〜0.6%(重量%、以下同じ)、
Si2.0%以下、Mn 2.0%以下、Cr2O〜3
0%、Ni30〜40%、NbO,8〜1.5%、WO
05〜3.0%、NO,04〜0.15%、TiO,0
4〜0.5%、AIo、02〜0.5%、Bo、000
2〜0.004%、Cu3.0%以下、残部実質的にF
eからなる耐熱鋳鋼を提供する。
The present invention includes CO, S ~ 0.6% (weight%, same hereinafter),
Si 2.0% or less, Mn 2.0% or less, Cr2O~3
0%, Ni30-40%, NbO, 8-1.5%, WO
05-3.0%, NO, 04-0.15%, TiO, 0
4-0.5%, AIo, 02-0.5%, Bo, 000
2 to 0.004%, Cu 3.0% or less, remainder substantially F
To provide a heat-resistant cast steel made of e.

以下、本発明の成分限定理由について詳しく説明する。The reasons for limiting the components of the present invention will be explained in detail below.

C:0.8〜0.6% Cは鋳鋼の鋳造性を改善するほか、後記Nbと結合して
一次炭化物を形成し、クリープ破断強度を高める。この
ために少くともO,a<を必要とする。C量の増加とと
もにその効果も大きくなるが、多量に含有すると二次炭
化物の週刊析出により使用後の靭性低下が著しく、また
溶接性も悪化するので0.6%を上限とする。
C: 0.8 to 0.6% C not only improves the castability of cast steel, but also combines with Nb (described below) to form primary carbides and increases creep rupture strength. For this purpose, at least O, a< is required. The effect increases as the amount of C increases, but if it is contained in a large amount, the toughness after use will be significantly reduced due to the weekly precipitation of secondary carbides, and the weldability will also deteriorate, so the upper limit is set at 0.6%.

Si:2.0%以下 Siは溶湯の脱酸元素であり、かつ鋳造性を高めるほか
、耐浸炭性改善効果を有する。しかし、多量に含有する
と溶接性を損うので、2.0%以下とする。
Si: 2.0% or less Si is a deoxidizing element for molten metal, and has the effect of improving carburization resistance as well as improving castability. However, if it is contained in a large amount, weldability will be impaired, so the content should be 2.0% or less.

Mn:2.0%以下 Mnは溶湯の脱酸、並びに鋼中の不純物元素Sを固定・
無害化する作用を果すが、多量の含有は、耐酸化性の低
下を招くので、2.0%を上限とする。
Mn: 2.0% or less Mn deoxidizes the molten metal and fixes the impurity element S in the steel.
Although it has the effect of making it harmless, its upper limit is set at 2.0% since its content causes a decrease in oxidation resistance.

Cr : 20〜30% Crは後記Niと共存して鋳鋼組織をオーステナイト組
織とし、高温強度や耐酸化性を高める。
Cr: 20-30% Cr coexists with Ni, which will be described later, to make the cast steel structure an austenitic structure and improve high-temperature strength and oxidation resistance.

特に、1000℃以上の高温域で高強度、高耐酸化性を
保持するためには、少くとも20%以上であることを要
する。この効果は含有量の増加とともに大きくなるが、
あまり多く含むと、使用後の靭性が低下するので、30
%を上限とする。
In particular, in order to maintain high strength and high oxidation resistance in a high temperature range of 1000° C. or higher, it is required that the content is at least 20%. This effect increases as the content increases, but
If it contains too much, the toughness after use will decrease, so 30
The upper limit is %.

Ni:30〜40% Niは上記のようにCrとの共存下にオーステナイト組
織を形成し、組織的安定性を高めるとともに、耐酸化性
および高温強度の確保に有効な元素である。1000℃
以上の高温域での耐酸化性や強度をすくれたものとする
には、30%以上の含有を要する。これらの高温特性は
含有量の増加に従って向上するか、40%をこえると、
効果はほぼ飽和し、それ以上の含有は経済的に不利であ
る。
Ni: 30-40% As mentioned above, Ni forms an austenite structure in coexistence with Cr, and is an element effective in increasing structural stability and ensuring oxidation resistance and high-temperature strength. 1000℃
In order to obtain good oxidation resistance and strength in the above high temperature range, a content of 30% or more is required. These high temperature properties improve as the content increases, or if it exceeds 40%,
The effect is almost saturated, and further inclusion is economically disadvantageous.

従って、40%を上限とする。Therefore, the upper limit is set at 40%.

Nb:0.3〜1.5% Nbはクリープ破断強度および耐浸炭性を高める。この
ためには0.3%以上の含有を要するが、あまり多くな
ると、かえってクリープ破断強度が低下するので、1.
5%を上限とする。なお、Nbは通常これと同効元素で
あるTaを随伴するので、その場合は、Tihとの合計
の含有量が0.3〜1.5%であればよい。
Nb: 0.3-1.5% Nb increases creep rupture strength and carburization resistance. For this purpose, it is necessary to contain 0.3% or more, but if the content is too large, the creep rupture strength will decrease, so 1.
The upper limit is 5%. Note that Nb usually accompanies Ta, which is an element with the same effect as Nb, so in that case, the total content with Tih may be 0.3 to 1.5%.

W : 0.5〜3.0% Wは前記Nbとの組合せにより高温強度を高める効果を
有する。そのために、0.5%以上を要するか、あまり
多くなると耐酸化性が悪くなるので、上限を3.0%と
する。
W: 0.5-3.0% W has the effect of increasing high-temperature strength in combination with the above-mentioned Nb. For this reason, 0.5% or more is required, or if too much, the oxidation resistance deteriorates, so the upper limit is set at 3.0%.

本発明鋳鋼は上記諸元素とともに、N、Ti、Al、B
およびCuを複合的に合釘する点に最大の特徴を有する
。TiはC,Nと結合して炭化物、窒化物、炭窒化物を
形成し、BおよびA/はこれらの化合物を微細に分散析
出させて結晶粒界を強化し、耐粒界割れ性を高めること
により、高温クリープ破断強度、高温熱衝撃特性、長時
間クリープ破断強度等の顕著な向上をもたらす。また、
TiはAfとの相乗効果として耐浸炭性を著しく高め、
更にCuはTiおよびAlとの相乗効果により耐熱衝撃
性を大幅に改善する。
In addition to the above-mentioned elements, the cast steel of the present invention contains N, Ti, Al, and B.
The greatest feature is that it is doweled with Cu and Cu in a composite manner. Ti combines with C and N to form carbides, nitrides, and carbonitrides, and B and A/ finely disperse and precipitate these compounds to strengthen grain boundaries and improve intergranular cracking resistance. This results in significant improvements in high-temperature creep rupture strength, high-temperature thermal shock properties, long-term creep rupture strength, etc. Also,
Ti significantly increases carburization resistance as a synergistic effect with Af,
Furthermore, Cu greatly improves thermal shock resistance due to its synergistic effect with Ti and Al.

N:0.04〜0.15% Nは固溶窒素の形態でオーステナイト相を安定化および
強化する一方、Ti等の窒化物、炭窒化物の形成にも関
与する。この化合物が前記のようにAl、Bとの共存下
に微細に分散析出して結晶粒を微細化し、粒成長を阻止
することによってクリープ破断強度や耐熱衝撃性が高め
られる。この効果を溝深するために、少くとも0.04
%の含有を要するか、多量になると前記化合物の週刊析
出、粗大化が生じ、却って耐熱衝撃性が悪くなるので、
015%を上限とする。
N: 0.04-0.15% While N stabilizes and strengthens the austenite phase in the form of solid solution nitrogen, it also participates in the formation of nitrides such as Ti and carbonitrides. As described above, this compound finely disperses and precipitates in the coexistence of Al and B, refines the crystal grains, and inhibits grain growth, thereby increasing creep rupture strength and thermal shock resistance. To deepen this effect, at least 0.04
%, or if the content is too large, weekly precipitation and coarsening of the compound will occur, which will actually worsen the thermal shock resistance.
The upper limit is 0.015%.

Ti:0.04〜0.5% Ti は窒化物等を形成し上記のように高温強度、耐熱
衝撃性を高めるほか、Afとの共存下に耐浸炭性を強化
する。これらの効果を十分なものとするために少くとも
0.04%を要する。含有量の増加にともなってその効
果も増すが、あまり多くなると、析出物の粗大化、酸化
物系介在物の増加により、かえって強度が低下する。よ
って、0.5%を上限とし、特に強度を重視する場合は
、0.15%以下とするのが好ましい。
Ti: 0.04 to 0.5% Ti forms nitrides and the like to enhance high temperature strength and thermal shock resistance as described above, and also enhances carburization resistance in coexistence with Af. At least 0.04% is required to achieve these effects sufficiently. The effect increases as the content increases, but if the content is too large, the strength will deteriorate due to coarsening of precipitates and an increase in oxide inclusions. Therefore, the upper limit is 0.5%, and if strength is particularly important, it is preferably 0.15% or less.

AI!:0.02〜0.5% Alはクリープ破断強度の改善効果のほかに、Tiとの
共存により耐浸炭性の向上に著効を発揮する。クリープ
破断強度の改善を重視する場合は、その含有量は0.0
2〜0.07%が好ましい。また、特に耐浸炭性強化を
重視するときには、0.07%をこえる量とするのか好
ましく、含有量の増加につれ耐浸炭性の向上をみる。し
かし、その一方で強度低下の傾向を伴うので、0.5%
を上限とする。
AI! : 0.02 to 0.5% Al not only has the effect of improving creep rupture strength, but also has a remarkable effect on improving carburization resistance due to its coexistence with Ti. If the emphasis is on improving creep rupture strength, the content should be 0.0
2 to 0.07% is preferred. In addition, especially when emphasis is placed on strengthening carburization resistance, it is preferable to use an amount exceeding 0.07%, and as the content increases, carburization resistance improves. However, on the other hand, there is a tendency for strength to decrease, so 0.5%
is the upper limit.

なお、TiおよびAf含有材を浸炭試験後、X線マイク
ロアナライザー(E P M A )に付すと、試験片
の表層部にA1g+Jツチ層か認められる。このAle
)ッチ層が強力な浸炭防止効果を発揮するのである。
Note that when the Ti and Af-containing material is subjected to an X-ray microanalyzer (EPMA) after a carburization test, an A1g+J layer is observed on the surface layer of the test piece. This Ale
) The latch layer exhibits a strong carburization prevention effect.

B:0.0O02〜0.004% Bは結晶粒界の強化のほか、前記Ti化合物の微細析出
と、析出後の凝集粗大化遅延効果によりクリープ破断強
度向上に寄与する。このための含有量は0.0002%
以上を要するか、あまり増けすると強度向上か緩慢にな
るばかりか、溶接性か悪くなるので、0.004%を上
限とする。
B: 0.0O02 to 0.004% In addition to strengthening grain boundaries, B contributes to improving creep rupture strength by causing fine precipitation of the Ti compound and retarding agglomeration coarsening after precipitation. The content for this is 0.0002%
The upper limit is set at 0.004%, since increasing the content too much will not only slow down the strength improvement but also worsen weldability.

Cu:3.0%以下 CuはTi、Aj’との共存下に耐熱衝撃性の改善に著
効を有する。この効果は含有量の増加につれて増大する
が、30%をこえると、耐熱衝撃性向上の度合いか緩慢
となるほか、溶接性の低下を伴うので、3.0%以下と
する。また、Cuは耐浸炭性を高める効果を有する。こ
れらの効果を十分に発揮させるための好ましい含有量は
0.2〜30%、更に好ましくは0.5〜3.0%であ
る。
Cu: 3.0% or less Cu has a remarkable effect on improving thermal shock resistance in coexistence with Ti and Aj'. This effect increases as the content increases, but if it exceeds 30%, the degree of improvement in thermal shock resistance will be slow and weldability will decrease, so the content should be 3.0% or less. Further, Cu has the effect of increasing carburization resistance. The preferred content for fully exhibiting these effects is 0.2 to 30%, more preferably 0.5 to 3.0%.

P、S、その他不可避的に混入する不純物は、むろん可
及的lこ少いことか望ましいか、この種の鋼に通常許容
される範囲内であれば何らさしつがえない。
Of course, P, S, and other unavoidably mixed impurities are not a problem as long as they are kept as low as possible or within the range normally allowed for this type of steel.

次に、実施例により本発明を具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

実施例 高周波溶解炉(大気中)にて溶製した鋳鋼を遠心鋳造に
付し、第1表に示す成分組成の鋳鋼管(外径186 m
m X肉厚20 mm X長さ5(10mm)を得、そ
れぞれから試験片を調製し、クリープ破断試験、耐熱衝
撃性試験および耐浸耐性試験を行った。試験結果を第2
表に示す。
Example Cast steel melted in a high-frequency melting furnace (in the atmosphere) was subjected to centrifugal casting to produce cast steel pipes (outer diameter 186 m) having the composition shown in Table 1.
20 mm in wall thickness and 5 in length (10 mm) were obtained, and test pieces were prepared from each sample and subjected to a creep rupture test, a thermal shock resistance test, and an immersion resistance test. Second test result
Shown in the table.

賦香1〜6は比較例、101〜107は本発明例である
。比較例のうち、No、1はNb、Wを含む従来のHP
改良材(N、Ti、Al、B、Cuのいずれも含まない
)、No、 2〜5はN、Ti、Aj?、Bを含むが、
Cuか本発明の規定から逸脱する例、No、 6は所要
量のCuを含むか、Ti、AJ  の含有量が不足する
例である。
Fragrances 1 to 6 are comparative examples, and 101 to 107 are inventive examples. Among the comparative examples, No. 1 is a conventional HP containing Nb and W.
Improved material (contains none of N, Ti, Al, B, and Cu), No. 2 to 5 are N, Ti, Aj? , including B, but
Examples where Cu deviates from the provisions of the present invention, No. 6 are examples where the required amount of Cu is included or the contents of Ti and AJ are insufficient.

各試験条件は次のとおりである。The test conditions are as follows.

CDクリープ破断試験 JIS  Z  2272の規定による。たたし、(A
)温度1093℃・荷重1.9 K9f/mm 、およ
び(Bl温度850°C−荷重7.3 K9 f /m
m  の2通りの条件で行い、その破断時間(Hr)を
測定。
According to the provisions of CD creep rupture test JIS Z 2272. Tatami, (A
) Temperature 1093°C, load 1.9 K9f/mm, and (Bl temperature 850°C - load 7.3 K9 f/m
The rupture time (Hr) was measured under two conditions.

〔旧耐熱衝撃性試験 第1図に示す形状・寸法の試片(肉厚8 mm )を温
度900°Cに加熱保持(保持時間30分)したのち水
冷する加熱・冷却操作を繰返す。その操作を10回反復
するごとに、試片に発生したクランクの長さを測定する
。耐熱衝撃性は、クラック長さが5mmに達したときの
繰返し回数て評価した。第2表中、「耐熱衝撃性」欄の
数値はその回数てあり、回数の多い程、耐熱衝撃性がす
ぐれる。
[Old Thermal Shock Resistance Test The heating and cooling operations of heating and holding a specimen (wall thickness: 8 mm) with the shape and dimensions shown in Figure 1 at a temperature of 900°C (holding time: 30 minutes) and then cooling it with water are repeated. Every time this operation is repeated 10 times, the length of the crank generated on the specimen is measured. Thermal shock resistance was evaluated by the number of repetitions when the crack length reached 5 mm. In Table 2, the values in the "Thermal Shock Resistance" column indicate the number of times, and the higher the number, the better the thermal shock resistance.

〔韻耐浸炭性試験 試片(直径12mmX長さ60mm)を固体浸炭剤(デ
グサKG 30 、 BaCO3含有)中、温度130
0°Cて300時間保持したのち、試片の表面から深さ
1mmまでの層、および1〜2mmの層のそれぞれから
切粉を採取し、C量分析により、増加C量(wt%)を
求めた。第2表中、「耐浸炭性」欄はその増加C量を示
す。C量増加の少い程、耐浸炭性がすぐれる。
[A carburization resistance test specimen (diameter 12 mm x length 60 mm) was placed in a solid carburizing agent (Degussa KG 30, containing BaCO3) at a temperature of 130
After holding at 0°C for 300 hours, chips were collected from the layer up to 1 mm deep and from the layer 1 to 2 mm from the surface of the specimen, and the increased C amount (wt%) was determined by C content analysis. I asked for it. In Table 2, the "carburizing resistance" column shows the increased amount of C. The smaller the increase in C content, the better the carburization resistance.

第2表試験結果 上記試験結果から明らかなように、本発明材(No、l
O1〜107)は、高温クリープ破断強度、耐熱衝撃性
および耐浸炭性のいずれも、従来のHP改良材(No、
1)をはるかに凌ぐ良好な高温特性を有している。また
、その池の比較例(N02〜6)は、従来材No、 1
にくらべて好結果を示すが、各特性の総合的評価におい
ていずれも本発明材には及はない。なお、溶接試験にお
いて、週刊のCuを含む供試材No、4.5は溶接不良
か認められたか、本発明材は良好な溶接性を有し、溶接
構造材として何ら問題はない。
Table 2 Test Results As is clear from the above test results, the materials of the present invention (No.
O1 to 107) had higher temperature creep rupture strength, thermal shock resistance, and carburization resistance than conventional HP improved materials (No.
It has better high-temperature properties that far exceed those of 1). In addition, the comparative examples (N02 to 6) of the pond are conventional material No. 1
However, in the comprehensive evaluation of each property, none of them are as good as the materials of the present invention. In addition, in the welding test, the sample material No. 4.5 containing Cu from Weekly was found to have poor welding, or the material of the present invention has good weldability and there is no problem as a welded structural material.

以上のように、本発明の耐熱鋳鋼は、従来のNb、W含
有HP材等に比し、高温特性、とりわけ高温クリープ破
断強度、耐熱衝撃性、耐浸炭性等にすぐれているので、
石油化学工業におけるエチレンクラッキングチューブ、
リフオーマチューブ等として、苛酷な使用条件によく耐
え、そのほか各種鉄鋼関連設備部材、例えばハ玖ロール
、ラジアントチューブ材等、1000℃をこえる高温用
途において従来材にまさる安定性、耐久性を尿証するも
のである。
As described above, the heat-resistant cast steel of the present invention has superior high-temperature properties, particularly high-temperature creep rupture strength, thermal shock resistance, carburization resistance, etc., compared to conventional Nb- and W-containing HP materials.
Ethylene cracking tube in petrochemical industry,
It can withstand harsh conditions of use as a refurbished tube, etc., and has proven to be more stable and durable than conventional materials in high-temperature applications exceeding 1000℃, such as various steel-related equipment components, such as steel rolls and radiant tube materials. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例での耐熱衝撃性試験片の形状寸法説明図
である。 代理人 弁理士 宮崎新へ部 第17
FIG. 1 is an explanatory diagram of the shape and dimensions of a thermal shock resistance test piece in an example. Agent Patent Attorney Arata Miyazaki Department No. 17

Claims (1)

【特許請求の範囲】[Claims] +11  C0,3〜0.6%、Si 2.0 %以下
、Mn20%以下、Cr 20〜30%、Ni30〜4
0%、NbO,8〜1.5%、Wo、5〜30%、NO
,04〜0.15%、TiO,04〜0.5%1.Ag
0.02〜0.5%、B O,0002〜0.004%
、Cu3.0%以下、残部実質的にFeからなる耐熱鋳
鋼。
+11 C0.3-0.6%, Si 2.0% or less, Mn 20% or less, Cr 20-30%, Ni 30-4
0%, NbO, 8-1.5%, Wo, 5-30%, NO
, 04-0.15%, TiO, 04-0.5%1. Ag
0.02-0.5%, BO,0002-0.004%
, a heat-resistant cast steel consisting of 3.0% or less of Cu and the remainder substantially of Fe.
JP14941982A 1982-08-28 1982-08-28 Heat-resistant cast steel Granted JPS5938364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14941982A JPS5938364A (en) 1982-08-28 1982-08-28 Heat-resistant cast steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14941982A JPS5938364A (en) 1982-08-28 1982-08-28 Heat-resistant cast steel

Publications (2)

Publication Number Publication Date
JPS5938364A true JPS5938364A (en) 1984-03-02
JPS6142780B2 JPS6142780B2 (en) 1986-09-24

Family

ID=15474696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14941982A Granted JPS5938364A (en) 1982-08-28 1982-08-28 Heat-resistant cast steel

Country Status (1)

Country Link
JP (1) JPS5938364A (en)

Also Published As

Publication number Publication date
JPS6142780B2 (en) 1986-09-24

Similar Documents

Publication Publication Date Title
US5298093A (en) Duplex stainless steel having improved strength and corrosion resistance
EP0016225A1 (en) Use of an austenitic steel in oxidizing conditions at high temperature
JPS5938365A (en) Heat-resistant cast steel
JPS6344814B2 (en)
JPS61177352A (en) Heat resistant cast steel having superior elongation characteristic at room temperature
JPH0156138B2 (en)
JPS5938364A (en) Heat-resistant cast steel
JP3194207B2 (en) Covered arc welding rod for high Cr ferritic heat resistant steel
JPS5935425B2 (en) heat resistant cast steel
JP2543801B2 (en) Coated arc welding rod for high Cr ferritic heat resistant steel
JPS6142779B2 (en)
JPS5864360A (en) Heat resistant cast steel
JPS5938366A (en) Heat resistant cast steel
JPH1136043A (en) Steel for high temperature-high pressure vessel excellent in creep embrittlement resistance and reheat cracking resistance
JPH07155988A (en) Coated arc electrode for high-cr ferritic heat resisting steel
JPH0144779B2 (en)
JPH03264647A (en) Overlay stainless clad steel which is made of low-alloy steel for high-temperature and high-pressure service as base metal and has excellent peeling resistance
JPH0135067B2 (en)
JPS596910B2 (en) heat resistant cast steel
JPS596909B2 (en) heat resistant cast steel
JPS625224B2 (en)
JPS6210295B2 (en)
JPS6059051A (en) Heat-resistant cast steel material with carburization resistance
JPH045741B2 (en)
JPH07164182A (en) Welding material for high-cr ferritic heat resisting steel