JPS5937898A - Operating device for motor - Google Patents

Operating device for motor

Info

Publication number
JPS5937898A
JPS5937898A JP57148080A JP14808082A JPS5937898A JP S5937898 A JPS5937898 A JP S5937898A JP 57148080 A JP57148080 A JP 57148080A JP 14808082 A JP14808082 A JP 14808082A JP S5937898 A JPS5937898 A JP S5937898A
Authority
JP
Japan
Prior art keywords
motor
synchronous motor
motors
phase difference
internal phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57148080A
Other languages
Japanese (ja)
Other versions
JPH0116116B2 (en
Inventor
Yukitoshi Kato
加藤 之敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57148080A priority Critical patent/JPS5937898A/en
Priority to US06/523,797 priority patent/US4525656A/en
Priority to DE19833330027 priority patent/DE3330027A1/en
Priority to AU18335/83A priority patent/AU549709B2/en
Priority to CA000435303A priority patent/CA1211786A/en
Publication of JPS5937898A publication Critical patent/JPS5937898A/en
Publication of JPH0116116B2 publication Critical patent/JPH0116116B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

PURPOSE:To enable to readily correct the displacement of the internal phase error angles of a plurality of motors which are caused by a clutch by employing as one of a plurality of motors an induction synchronous motor and adjusting the internal phase difference angle of the synchronous motor. CONSTITUTION:The pole position of a motor 15 is detected by a pole position detector 16, the thyristor of an exciter for an induction synchronous motor is controlled by the detection signal, the center position of the pole of the synchronous motor 17 is thereby disposed at the same position as the center position of the pole of the motor 15 so that the DC current is flowed through field coils of all or two or more of the phase field coils of the motor 17 to be excited, thereby controlling the direction and magnitude of the DC current. Then, the center of the magnetic field formed by the field coil varies to freely alter the internal phase difference angle of the motor 17, and the internal phase difference angles of the motors 15, 17 can be coincident.

Description

【発明の詳細な説明】 この発明は、一つの負荷にそれぞれエアクラッチ等を介
して接続される複数台の電動機の運転装置に関し、特に
複数台の電動機の中の一方の誘導同期電動機の界磁巻線
の励磁に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a driving device for a plurality of electric motors each connected to one load via an air clutch or the like. This relates to the excitation of the winding.

従来のセメントミル駆動用ツインドライブシステムを説
明する。第1図は2台の同期電動機にてミルを駆動する
場合の概念図を示す。図において、(1)はミルlであ
り、その外周の一部に全周に歯車が設けられている。1
2+ +91はミル(11の歯車とかみ合う小歯車、1
31QO1は小歯車12+ 191の軸にそれぞれ結合
されたエアクラッチ、+41<lυはエアクラッチ+3
1QO1を介してミル+11を駆動する同期電動機であ
る。一方の電動機(4)の固定子外周の一部に全周に歯
車が設けられており、この歯車に小歯車(7)がかみ合
っている。(8)は小歯車(7)を駆動するターニング
装置で、ブレーキを有している。このターニング装置(
8)と小歯車(7)及び電動機(4)固定子の歯車とで
固定子転勤装置が構成されており、電動機(4)の固定
子を必要な角度だけ回動できるようになっている。
A conventional twin drive system for driving a cement mill will be explained. FIG. 1 shows a conceptual diagram when a mill is driven by two synchronous motors. In the figure, (1) is a mill 1, and gears are provided all around a part of its outer periphery. 1
2+ +91 is a mill (small gear meshing with gear 11, 1
31QO1 is an air clutch connected to the shaft of small gear 12+191, +41<lυ is air clutch +3
It is a synchronous motor that drives mill+11 via 1QO1. A gear is provided around the entire circumference of a part of the outer circumference of the stator of one electric motor (4), and a small gear (7) meshes with this gear. (8) is a turning device that drives the small gear (7) and has a brake. This turning device (
8), the small gear (7), and the gear of the stator of the electric motor (4) constitute a stator relocation device, which allows the stator of the electric motor (4) to be rotated by a required angle.

α荀は3相交流電源、+51Q21はそれぞれ同期電動
機(4)αυの界磁巻線であり、(61α■は界磁巻線
(5)α乃にそれぞれ励磁電流を供給する直流電源であ
る。
αX is a three-phase AC power supply, +51Q21 is a field winding of a synchronous motor (4) αυ, and (61α■ is a DC power supply that supplies exciting current to each field winding (5) α).

次に動作について説明する。2台の同期電動機(4)θ
υは同一の電源Iに接続されており、自己始動を開始し
加速して同期速度近傍に達したら、直流電源16103
)から界磁巻線+51 Hに直流が供給され電動機(4
10わが同期運転に入る。この際、エアクラッチ+31
 (Iceには空気が送られておらず小歯車+21 +
91とは機械的に切離されているため、電動機(4)a
υは無負荷始動となっている。次にエアクラッチに()
αθに圧縮空気を送りこむとクラッチ+31(IGが徐
々に接続される。、この結果、ミル(11に駆動力が与
えられて回転を始め、最終的に定格速度に達する。
Next, the operation will be explained. Two synchronous motors (4) θ
υ is connected to the same power supply I, and when it starts self-starting and accelerates to near the synchronous speed, the DC power supply 16103
) to the field winding +51H, and the electric motor (4
10 My synchronized operation begins. At this time, air clutch +31
(Air is not sent to Ice and small gear +21 +
Since it is mechanically separated from 91, electric motor (4)a
υ is a no-load start. Then to the air clutch ()
When compressed air is sent to αθ, the clutch +31 (IG) is gradually connected.As a result, driving force is applied to the mill (11), which starts rotating and finally reaches the rated speed.

さて、定格が同一(同−設計内容)の2台の同期電動機
+41 (11)が同一電源に接続されて同一の負荷を
取っている場合、その固定子の3相巻線が作る回転磁界
の中心と、回転子である界磁巻線が作る磁界の中心とが
作る角度(内部相差角)は2台とも同じであり、また、
回転磁界の中心は機械的にも両者で同一となるため、界
磁巻線が作る磁界の中心、即ち、磁極も全(同じ機械的
位置で回転することになる。
Now, when two synchronous motors +41 (11) with the same rating (same design content) are connected to the same power source and take the same load, the rotating magnetic field created by the three-phase winding of the stator The angle (internal phase difference angle) between the center and the center of the magnetic field created by the field winding, which is the rotor, is the same for both machines, and
Since the center of the rotating magnetic field is mechanically the same in both, the center of the magnetic field created by the field winding, that is, the magnetic pole, also rotates at the same mechanical position.

この状態で更にエアクラッチ(31(lotが接続され
ていき、完全に結合するときの機械的位置が両者で全く
同一であり、かつ、ミル+11の歯車と小歯車(21(
9;との歯の当りが両者で完全に同じであるとすれば、
両型動機+41 (11)の内部相差角は全く同じとな
り、完全に両型動機+41 (lυの負荷分担は同一と
なる。
In this state, the air clutch (31 (lot) is further connected, and the mechanical position when completely connected is exactly the same for both, and the gear of the mill +11 and the small gear (21 (lot) are connected.
If the contact of the teeth with 9; is completely the same for both,
The internal phase difference angles of both types of motor +41 (11) are exactly the same, and the load sharing of both types of motor +41 (lυ is completely the same).

しかしながら、実際にはエアクラッチにて結合させるた
め、エアクラッチの圧縮空気の出具合等によって接続状
態が2台で完全に一致せず、エアクラッチの接続位置に
よっては両型動機の回転子が作る磁極の中心角度が大幅
にずれることが起る。また、ミルの歯車とそれにかみ合
う小歯車との当りの状態等の違いによっても両型動機の
回転子位置がずれることがある。これらの結果、両電動
の負荷分担が異なることになり、一方の電動機の負荷が
増加し、他方の電動機の負荷が減少することが起る。こ
のため、電動機の故障のみならず、歯車等の故障を引起
す。
However, since the connection is actually made using an air clutch, the connection state between the two machines may not match completely depending on the air clutch's compressed air output, etc., and depending on the connection position of the air clutch, the rotors of both types of motors may The center angle of the magnetic poles may shift significantly. Furthermore, the rotor position of both types of motors may shift due to differences in the contact conditions between the mill gear and the small gear that meshes with it. As a result, the load sharing between the two electric motors becomes different, and the load on one electric motor increases and the load on the other electric motor decreases. This causes not only failure of the electric motor but also failure of gears and the like.

従って、これを防ぐためには何らかの方法で両型動機の
内部相差角を一致させる必要がある。上記磁極中心の角
度のずれは極端な場合は機械的に180°、即ち、正反
対の位置になることもあるので、360°のずれの修正
を行えるようにしておかねばならない。このため、第1
図に示すものはターニング装置18)等の固定子転勤装
置により一方の電動機(4)の固定子を必要角度だけ転
動させ、回転磁界の中心位置を変えることによって両型
動機の内部相差角を合わせるようにしている。
Therefore, in order to prevent this, it is necessary to make the internal phase difference angles of both types of motors coincide in some way. In extreme cases, the angular deviation of the center of the magnetic poles may be mechanically 180°, that is, the opposite position, so it is necessary to be able to correct a 360° deviation. For this reason, the first
The one shown in the figure uses a stator shifting device such as a turning device 18) to rotate the stator of one electric motor (4) by the required angle, and by changing the center position of the rotating magnetic field, the internal phase difference angle of both types of motors can be adjusted. I try to match it.

従来の運転装置は以上のように構成されているので、固
定子転勤装置の構造が複雑で高価となり、保守がむつか
しく、また、電動機固定子等の寸法が大きくなって電動
機のトルクが大きいものは製作が困難であるという欠点
があった。
Conventional operating devices are configured as described above, so the structure of the stator transfer device is complicated and expensive, and maintenance is difficult.In addition, the motor stator has a large size and the torque of the motor is large. The drawback was that it was difficult to manufacture.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、複数台の電動機のうち、一方側を
誘導同期電動機とし、他方側を同期電動機又は誘導同期
電動機とし、上記一方側の誘導同期電動機の多相界磁巻
線に流す励磁電流の方向及び大きさを調整して界磁巻線
が作る磁界の中心を変化させることにより、誘導同期電
動機の内部相差角を調整し、クラッチに起因する複数台
の電動機の内部相差角のずれを容易に修正することがで
きるようにした電動機の運転装置を提供することを目的
としている。
This invention was made to eliminate the drawbacks of the conventional ones as described above, and among a plurality of electric motors, one side is an induction synchronous motor, the other side is a synchronous motor or an induction synchronous motor, and the one side is an induction synchronous motor. Adjusting the internal phase difference angle of the induction synchronous motor by adjusting the direction and magnitude of the excitation current flowing through the multiphase field windings of the induction synchronous motor to change the center of the magnetic field created by the field windings, It is an object of the present invention to provide an electric motor driving device that can easily correct deviations in internal phase difference angles of a plurality of electric motors caused by clutches.

以下、この発明の一実施例を図に基づいて説明する。第
2図、第3図において、fil〜+31 、151 、
 +61.191.(IG、αaは従来例のものと同様
である。(I!9は従来例のものと同様の同期電動機で
あるが、固定子のターニング装置は設けられていない。
Hereinafter, one embodiment of the present invention will be described based on the drawings. In FIGS. 2 and 3, fil~+31, 151,
+61.191. (IG and αa are the same as those of the conventional example. (I!9 is a synchronous motor similar to that of the conventional example, but a stator turning device is not provided.

aQは電動機α9の軸端に取付けられた磁極位置検出器
、住ηは誘導同期電動機であり、その励磁装置を第3図
に示す。(イ)は誘導同期電動機C17)の回転子に設
けられた界磁巻線であり、各相巻線(21) (221
+231はそれぞれ独立しており、デルタ形3相巻線を
形成する。α優は6個のリングからなるスリップリング
、鱈は低圧3相交流電源、■(40) (50)はそれ
ぞれR相巻線tan、s相巻線(22及びT相巻線(2
31が接続された励磁回路、(31) (41) (5
1)はしゃ断器、(32) (33)は励磁回路(至)
に逆並列に接続されたサイリスタ、C!AJ(3)はコ
ンタクタ、(35)は始動抵抗器である。また、励磁回
路(40)の40番台、励磁回路(50)の50番台の
符号のものが、励磁回路(30)の30番台のものに対
応し設けられている。
aQ is a magnetic pole position detector attached to the shaft end of electric motor α9, and η is an induction synchronous motor, whose excitation device is shown in FIG. (A) is a field winding provided on the rotor of the induction synchronous motor C17), and each phase winding (21) (221
+231 are each independent and form a delta type three-phase winding. α Yu is a slip ring consisting of 6 rings, Cod is a low voltage 3-phase AC power supply, ■ (40) and (50) are R phase winding tan, S phase winding (22 and T phase winding (2
Excitation circuit to which 31 is connected, (31) (41) (5
1) Breaker, (32) and (33) are excitation circuits (to)
A thyristor connected in antiparallel to C! AJ (3) is a contactor, and (35) is a starting resistor. Furthermore, excitation circuits (40) with numbers in the 40s and excitation circuits (50) with codes in the 50s are provided corresponding to excitation circuits (30) with numbers in the 30s.

次に動作について第2図、第3図によって説明する。エ
アクラッチ(31凹を開放しておいて、電動機(15)
α力を無負荷始動する。同期電動機(15)の始動は従
来例のものと同様である。誘導同期電動機(17)の始
動を第3図について説明する。R相巻線において、しゃ
断器(31)を開いておいて、コンタクタ(34)(3
6)を閉じ始動を開始し、電動機αηが定格速度近傍に
達したら、しゃ断器(31)を閉じコンタクタ(ト)を
開いて、サイリスク(32)のゲートを点弧してア方向
に直流を流してR相巻線(2Dを励磁する。同様の動作
によって励磁回路(40)ではサイリスタ(43)が点
弧されて二方向に電流を流してS相巻線(221が励磁
される。T相巻線(23)は電動機uDが定格速度近傍
に達しても電源a樟に接続されず、電流を始動抵抗器(
55)を通すようにしてダンパ回路のままにしておく。
Next, the operation will be explained with reference to FIGS. 2 and 3. Leave the air clutch (31 concave open) and connect the electric motor (15).
Start α force without load. Starting of the synchronous motor (15) is similar to that of the conventional example. Starting of the induction synchronous motor (17) will be explained with reference to FIG. In the R phase winding, the breaker (31) is opened and the contactor (34) (3
6) to start the engine, and when the motor αη reaches near the rated speed, close the breaker (31), open the contactor (G), and ignite the gate of the cyrisk (32) to supply direct current in the direction A. By the same operation, the thyristor (43) is fired in the excitation circuit (40), and current flows in two directions to excite the S-phase winding (221.T). The phase winding (23) is not connected to the power supply a even when the motor uD reaches near the rated speed, and the current is passed through the starting resistor (
55) and leave it as a damper circuit.

以上のようにして誘導同期電動機(17)が定格速度に
達する。両型動機(15+ (17)とも定格速度に達
したらエアクラッチ+31(101に空気を投入し両型
動機(15)α力をミルil+に接続すると、負荷が両
型動機に徐々に加わり始め、電動機の内部相差角も徐々
に開いていき、最終的に自由な角度にてエアクラッチに
引αQは強引に接続を完了する。
In the above manner, the induction synchronous motor (17) reaches the rated speed. When both types of motors (15+ (17)) reach their rated speeds, air is injected into air clutch +31 (101), and when the α force of both types of motors (15) is connected to mill il+, the load begins to be gradually applied to both types of motors, The internal phase difference angle of the electric motor gradually opens, and finally, at a free angle, αQ is forcefully connected to the air clutch.

次に誘導同期電動機C17)の内部相差角を変化させて
両型動機α51(17>の内部相差角を一致させる方法
について説明する。電動機α■の磁極位置は軸端に配置
されている磁極位置検出器住(へ)によって検出され、
この検出器からの信号によって図示しない制御装置が動
作し各励磁回路(30) (40) (50)のいずれ
か又は2個以上の励磁回路のサイリスタのゲートが点弧
されてサイリスタが導通する。これによって誘導同期電
動機(Lηの磁極中心位置が電動機(19の磁極中心位
置と同じ位置にくるように電動機(17)の各相界磁巻
線(211t2a C23+の全部又は2個以上の界磁
巻線に直流電流を流して励磁し、その直流電流の方向及
び大きさをサイリスタで制御すれば、界磁巻線(イ)が
作る磁界の中心が変化して電動機(17)の内部相差角
が自由に変化し、両型動機(151(17)のもつ内部
相差角を一致させることができる。もちろんこの場合、
T相巻線C231を励磁する必要がある時は、しゃ断器
(51)を閉じコンタクタ(56)を開くようにする。
Next, we will explain how to match the internal phase difference angles of both types of motors α51 (17>) by changing the internal phase difference angle of the induction synchronous motor C17).The magnetic pole position of the motor α■ is the magnetic pole position located at the shaft end. Detected by the detector
A control device (not shown) is operated by a signal from this detector, and the gate of the thyristor of one or more of the excitation circuits (30), (40), and (50) is fired, and the thyristor becomes conductive. As a result, the field windings of each phase of the motor (17) (all or two or more of the field windings of 211t2a C23+ If a direct current is passed through the wire to excite it, and the direction and magnitude of the direct current are controlled by a thyristor, the center of the magnetic field created by the field winding (a) will change and the internal phase difference angle of the motor (17) will change. It is possible to change freely and match the internal phase difference angles of both types of motives (151 (17). Of course, in this case,
When it is necessary to excite the T-phase winding C231, the breaker (51) is closed and the contactor (56) is opened.

第4図は誘導同期電動機(17)の界磁巻線(イ)が作
る合成磁束の方向が、励磁電流の方向と大きさを変える
ことによって360°変化する原理をベクトル図で示し
たものである。
Figure 4 is a vector diagram showing the principle that the direction of the composite magnetic flux created by the field winding (A) of the induction synchronous motor (17) changes 360° by changing the direction and magnitude of the exciting current. be.

第3図でR相巻線Q旧こア方向に、S相巻線(2功に二
方向に直流電流を流せば、R相巻線C旧こ生ずる磁束(
ベクトルで示す)は第4図におけるA、S相巻線(22
)に生ずる反転された磁束はBとなって、両者の合成磁
束はEとなり、このベクトルEと固定子゛−の一回転磁
界の中心(例えば、これをベクトルAの方向とする)と
の差の角度(即ち、内部相差角)がφとなる。流れる電
流を制御してR相、S相巻線の磁束を変化させれば、両
者の合成磁束の方向と大きさは4角形0AEBの領域内
に存在することになる。
In Figure 3, if a direct current is passed in two directions in the R-phase winding Q old core direction and the S-phase winding (2 directions), the magnetic flux generated in the R-phase winding C old core direction (
(shown as a vector) are the A and S phase windings (22
The reversed magnetic flux generated at The angle (that is, the internal phase difference angle) is φ. If the flowing current is controlled to change the magnetic flux of the R-phase and S-phase windings, the direction and magnitude of the combined magnetic flux of both will exist within the area of the rectangle 0AEB.

ここで史にT相巻線(2濠に力方向に直流電流を流せば
R相、S相の合成磁束EにT相巻線の反転された磁束り
が加わり、それらの合成磁束Fは大きさがOFとなり方
向がベク□トルAに一致する。このようにR,S、Tの
3相巻線に流す直流電流の向及び大きさは3角形OFF
の領域内に作られる。
Here, if a DC current is passed in the force direction through the T-phase winding (two moats), the inverted magnetic flux of the T-phase winding will be added to the composite magnetic flux E of the R-phase and S-phase, and their composite magnetic flux F will be large. is OFF, and the direction matches the vector □ A. In this way, the direction and magnitude of the DC current flowing through the three-phase windings R, S, and T are triangular OFF.
created within the area of

ここでT相巻線に流す直流電流の向きを第3図のオのよ
うに逆にし、R,8,Tの3相巻線の電流の大きさを変
えて磁束の大きさを変えれば、3相巻線で作る合成磁束
の方向及び大きさは第4図の3角形OEGの領域内に作
られる。
Now, if we reverse the direction of the DC current flowing through the T-phase winding as shown in Fig. 3, and change the magnitude of the current in the R, 8, and T three-phase windings, we can change the magnitude of the magnetic flux. The direction and magnitude of the composite magnetic flux created by the three-phase winding are created within the region of the triangle OEG in FIG.

このようにして3相界磁巻線か作る合成磁束の方向及び
大きさを変化させて誘導同期電動機の内部相差角を変え
うるが、特に合成磁束を第4図の点0を中心とした円H
の円弧上に位置するように変化させれば、力率を変えず
に誘導同期電動機の内部相差角を変化させることができ
る。なお、合成磁束の大きさは円Hの円弧上に位置する
ときが最大値であるから、これより小さくして斜線で示
ず60°の領域内にすることは自由である。
In this way, it is possible to change the internal phase difference angle of the induction synchronous motor by changing the direction and magnitude of the composite magnetic flux created by the three-phase field windings. H
By changing the angle so that it is located on the circular arc, it is possible to change the internal phase difference angle of the induction synchronous motor without changing the power factor. Note that since the magnitude of the composite magnetic flux is at its maximum value when located on the arc of the circle H, it is free to make it smaller than this so that it is within the 60° region not shown by the diagonal line.

同様にしてR,S、Tの3相巻線に流す各直流電流の大
きさをそれぞれ変化させることにより合成磁束のベクト
ルの方向は第5図に示すような円Hの領域内の角度に自
由に動かすことができる。
Similarly, by changing the magnitude of each DC current flowing through the R, S, and T three-phase windings, the direction of the vector of the composite magnetic flux can be freely adjusted to an angle within the area of circle H as shown in Figure 5. can be moved to

このようにして界磁巻線(21が作る磁束の方向及び大
きさを円H内に動かすことにより、誘導同期電動機αη
の内部相差角を360°の範囲内に変えることができる
。特に、合成磁束の大きさを円Hの円弧上になるように
一定にしておいて方向のみ変えれば力率を変えずに内部
相差角が変えられるので有利である。このように界磁巻
線(イ)の各相巻線R8Tに加える励磁電流の調整によ
って誘導同期電動機αDの内部相差角を変えて同期電動
機αωの内部相差角に一致させ、両型動機(17)(至
)の負荷分担を均等にすることができる。
In this way, by moving the direction and magnitude of the magnetic flux produced by the field winding (21) within the circle H, the induction synchronous motor αη
The internal phase difference angle can be varied within a range of 360°. In particular, it is advantageous if the magnitude of the composite magnetic flux is kept constant so that it lies on the arc of the circle H and only the direction is changed, since the internal phase difference angle can be changed without changing the power factor. In this way, by adjusting the excitation current applied to each phase winding R8T of the field winding (A), the internal phase difference angle of the induction synchronous motor αD is changed to match the internal phase difference angle of the synchronous motor αω, and the two-type motor (17 ) (to) can be shared equally.

なお、上記システムのように一方が同期電動機、他方が
誘動同期電動機の場合のように両者の電気的特性が異な
る場合には同一負荷に対するそれぞれの内部相差角が異
なるから、両者の電力の値が等しくなるように誘導同期
電動機の内部相差角をずらして補正する必要がある、 以上のようにツインドライブシステムでも両型動機の負
荷分担が力率を変化させずに精度良く容易に行なえるよ
うになる。
In addition, when the electrical characteristics of the two are different, such as in the above system where one is a synchronous motor and the other is an induction synchronous motor, the internal phase difference angle for the same load is different, so the power value of both is different. It is necessary to correct the internal phase difference angle of the induction synchronous motor by shifting it so that it becomes equal.As described above, even in a twin drive system, load sharing between both types of motors can be easily and accurately done without changing the power factor. become.

なお、上記実施例で内部相差角の調整はエアクラッチの
接続を開始した時点から始めてもよいし、加速完了後か
ら始めてもよいことはもちろんである。また、一方の電
動機の磁極位置を検出せずに、両型動機の電力の値を比
較して、その値か同一になるように誘導同期電動機の内
部相差角を変化させてもよい。なお、電動機(15)も
また誘導同期電動機としてもよい。
In the above embodiment, the adjustment of the internal phase difference angle may be started from the time when the connection of the air clutch is started, or may be started after the completion of acceleration. Alternatively, the internal phase difference angle of the induction synchronous motor may be changed so that the electric power values of both types of motors are compared and the values become the same, without detecting the magnetic pole position of one of the motors. Note that the electric motor (15) may also be an induction synchronous motor.

以上のようにこの発明によれば、複数台の電動機の負荷
分担が精度良く容易に行えるようになり、クラッチがど
のように接続されても電動機や歯車等の故障のおそれが
なく、固定子転勤装置のような複雑な装置のいらない高
信頼性で応答性の速いものが得られるっまた、電動機の
トルクの大きいものの製作も容易となる。
As described above, according to the present invention, load sharing between multiple electric motors can be easily and accurately performed, there is no risk of failure of the electric motor or gears, etc. no matter how the clutches are connected, and stator transfer is possible. It is possible to obtain a highly reliable and quick response device that does not require a complicated device, and it is also easy to manufacture a motor with a large torque.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のツインドライブシステムを示す概念図、
第2図はこの発明の一実施例によるツインドライブシス
テムを示す概念図、第3図は第2図の誘導同期電動機の
励磁装置を示す回路図、第4図及び第5図はこの発明の
一実施例の誘導同期電動機の界磁巻線が作る磁束の方向
及び大きさが変る原理を示す図である。 図中、(II ハミル、12+191 ハ小歯車、i3
+c101 Lt エフ クラッチ、(1句は同期電動
機、(lE9は磁極位置検出器、(17)は誘導同期電
動機、(2υはその界磁巻線、(32) (33) (
42) (43) (52) (53)はサイリスタで
あイ、)。 なお、図中同一符号は同−又は相当部分を示す。 代理人 葛野信− 第1図 第2図 第3図 第4図 第5図 487−
Figure 1 is a conceptual diagram showing a conventional twin drive system.
Fig. 2 is a conceptual diagram showing a twin drive system according to an embodiment of the present invention, Fig. 3 is a circuit diagram showing an excitation device for the induction synchronous motor of Fig. 2, and Figs. 4 and 5 are an embodiment of the invention. FIG. 3 is a diagram illustrating the principle by which the direction and magnitude of the magnetic flux created by the field winding of the induction synchronous motor of the embodiment changes. In the figure, (II Hamill, 12+191 C small gear, i3
+c101 Lt F clutch, (1 phrase is the synchronous motor, (lE9 is the magnetic pole position detector, (17) is the induction synchronous motor, (2υ is its field winding, (32) (33) (
42) (43) (52) (53) is a thyristor.) Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Makoto Kuzuno - Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 487-

Claims (1)

【特許請求の範囲】[Claims] 無負荷始動された複数台の電動機を一つの負荷にそれぞ
れクラッチを介して接続し上記負荷を駆動させるように
した電動機の運転装置において、上記電動機のうち一方
側を誘導同期電動機とし、他方側を同期電動機又は誘導
同期電動機とし、上記一方の誘導同期電動機の各相励磁
巻線と直列に、交流電源に接続された逆並列サイリスタ
からなる直流電源を接続し、上記他方側の同期電動機又
は誘導同期電動機の電力もしくは磁極位置を検出器にて
検出し、その検出信号によって上記逆並列サイリスタを
点弧制御し、上記一方の誘導同期電動機の励磁巻線に流
れる直流電流の方向ならびに大きさを調整しうるように
したことを特徴とする電動機の運転装置。
In an electric motor driving device in which a plurality of electric motors started with no load are connected to one load via clutches to drive the load, one side of the electric motors is an induction synchronous motor and the other side is an induction synchronous motor. A synchronous motor or an induction synchronous motor is used, and a DC power source consisting of an anti-parallel thyristor connected to an AC power source is connected in series with each phase excitation winding of the induction synchronous motor on the other side, and the synchronous motor or induction synchronous motor on the other side is The electric power or magnetic pole position of the motor is detected by a detector, and the detection signal controls the firing of the anti-parallel thyristor to adjust the direction and magnitude of the DC current flowing through the excitation winding of one of the induction synchronous motors. A driving device for an electric motor, characterized in that it has a damping mechanism.
JP57148080A 1982-08-24 1982-08-24 Operating device for motor Granted JPS5937898A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57148080A JPS5937898A (en) 1982-08-24 1982-08-24 Operating device for motor
US06/523,797 US4525656A (en) 1982-08-24 1983-08-16 Apparatus for operating plural poly phase A.C. motors having a common load
DE19833330027 DE3330027A1 (en) 1982-08-24 1983-08-19 DEVICE FOR OPERATING A VARIETY OF MULTI-PHASE AC MOTORS WITH A COMMON LOAD
AU18335/83A AU549709B2 (en) 1982-08-24 1983-08-23 Apparatus for operating plural polyphase a.c. motors having a common load
CA000435303A CA1211786A (en) 1982-08-24 1983-08-24 Apparatus for operating plural poly phase a.c. motors having a common load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57148080A JPS5937898A (en) 1982-08-24 1982-08-24 Operating device for motor

Publications (2)

Publication Number Publication Date
JPS5937898A true JPS5937898A (en) 1984-03-01
JPH0116116B2 JPH0116116B2 (en) 1989-03-22

Family

ID=15444773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57148080A Granted JPS5937898A (en) 1982-08-24 1982-08-24 Operating device for motor

Country Status (1)

Country Link
JP (1) JPS5937898A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363909A (en) * 1991-06-10 1992-12-16 Shibaura Eng Works Co Ltd Controller for switching element and device using it
JP2015012693A (en) * 2013-06-28 2015-01-19 株式会社東芝 Generator exciting device and power conversion system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5139128U (en) * 1974-09-19 1976-03-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5139128U (en) * 1974-09-19 1976-03-24

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363909A (en) * 1991-06-10 1992-12-16 Shibaura Eng Works Co Ltd Controller for switching element and device using it
JP2015012693A (en) * 2013-06-28 2015-01-19 株式会社東芝 Generator exciting device and power conversion system

Also Published As

Publication number Publication date
JPH0116116B2 (en) 1989-03-22

Similar Documents

Publication Publication Date Title
US7514806B2 (en) Engine start system with quadrature AC excitation
JPS5942551B2 (en) Excitation device for synchronous rotating electrical machines
CA1281065C (en) Parallel resonant single phase motor
JPS62210873A (en) Starter/generator
JPH0815377B2 (en) Two-stator three-phase squirrel-cage induction motor
JP2007503199A (en) Electric motor having a permanent magnet rotor
US5796233A (en) Multiple-stator induction synchronous motor
JPS5937898A (en) Operating device for motor
US4525656A (en) Apparatus for operating plural poly phase A.C. motors having a common load
KR100707424B1 (en) Moving equipment for Single-phase induction motor
US1345539A (en) Speed-regulating apparatus
JPH0260494A (en) Reluctance type two-phase motor
JPS5944999A (en) Operating device for motor
JPH06284657A (en) Induction generator
EP0243154B1 (en) Parallel resonant single phase motor
JP3105231B2 (en) 2 stator induction motor
JPH06335271A (en) Synchronous motor
JPS63161851A (en) Squirrel-cage induction motor
US621924A (en) X m means for speed reduction of asynchronous alternating motors
SU1415391A1 (en) Method of starting double-supply synchronous electric motor with electromagnetic speed reduction
SU1169082A1 (en) Electric motor with clutch
SU11301A1 (en) Device for automatic regulation of asynchronous motor power factor
JPH0687680B2 (en) Pumped storage generator system
JP3358666B2 (en) Synchronous motor
JPS6145760Y2 (en)