JPH0116116B2 - - Google Patents

Info

Publication number
JPH0116116B2
JPH0116116B2 JP57148080A JP14808082A JPH0116116B2 JP H0116116 B2 JPH0116116 B2 JP H0116116B2 JP 57148080 A JP57148080 A JP 57148080A JP 14808082 A JP14808082 A JP 14808082A JP H0116116 B2 JPH0116116 B2 JP H0116116B2
Authority
JP
Japan
Prior art keywords
motor
field
synchronous motor
load
motors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57148080A
Other languages
Japanese (ja)
Other versions
JPS5937898A (en
Inventor
Yukitoshi Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57148080A priority Critical patent/JPS5937898A/en
Priority to US06/523,797 priority patent/US4525656A/en
Priority to DE19833330027 priority patent/DE3330027A1/en
Priority to AU18335/83A priority patent/AU549709B2/en
Priority to CA000435303A priority patent/CA1211786A/en
Publication of JPS5937898A publication Critical patent/JPS5937898A/en
Publication of JPH0116116B2 publication Critical patent/JPH0116116B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Multiple Motors (AREA)

Description

【発明の詳細な説明】 この発明は、一つの負荷にそれぞれエアクラツ
チ等を介して接続される2台の同期電動機の運転
装置に関し、特に複数台の電動機の中の一方の誘
導同期電動機の界磁巻線の励磁に係るものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a driving device for two synchronous motors each connected to one load via an air clutch or the like, and particularly relates to a driving device for two synchronous motors connected to one load via an air clutch or the like, and in particular to This relates to the excitation of the winding.

従来のセメントミル駆動用ツインドライブシス
テムを説明する。第1図は2台の同期電動機にて
ミルを駆動する場合の概念図を示す。図におい
て、1は負荷であるミルであり、その外周の一部
に全周に歯車が設けられている。2,9はミル1
の歯車とかみ合う小歯車、3,10は小歯車2,
9の軸にそれぞれ結合されたエアクラツチ、4,
11はエアクラツチ3,10を介してミル1を駆
動する同期電動機である。一方の電動機4の固定
子外周の一部に全周に歯車が設けられており、こ
の歯車に小歯車7がかみ合つている。8は小歯車
7を駆動するターニング装置で、ブレーキを有し
ている。このターニング装置8と小歯車7及び電
動機4固定子の歯車とで固定子転動装置が構成さ
れており、電動機4の固定子を必要な角度だけ回
動できるようになつている。14は3相交流電
源、5,12はそれぞれ同期電動機4′,11の
界磁巻線であり、6,13は界磁巻線5,12に
それぞれ励磁電流を供給する直流電源である。
A conventional twin drive system for driving a cement mill will be explained. FIG. 1 shows a conceptual diagram when a mill is driven by two synchronous motors. In the figure, 1 is a mill which is a load, and gears are provided around a part of its outer periphery. 2,9 is mil 1
3 and 10 are small gears 2,
air clutches connected to the shafts of 9, 4,
A synchronous motor 11 drives the mill 1 via air clutches 3 and 10. A gear is provided around a part of the outer periphery of the stator of one electric motor 4, and a small gear 7 is meshed with this gear. 8 is a turning device that drives the small gear 7 and has a brake. This turning device 8, the small gear 7, and the gear of the stator of the electric motor 4 constitute a stator rolling device, and the stator of the electric motor 4 can be rotated by a required angle. 14 is a three-phase AC power source, 5 and 12 are field windings of the synchronous motors 4' and 11, respectively, and 6 and 13 are DC power sources that supply exciting current to the field windings 5 and 12, respectively.

次に動作について説明する。2台の同期電動機
4,11は同一の電源14に接続されており、自
己始動を開始し加速して同期速度近傍に達した
ら、直流電源6,13から界磁巻線5,12に直
流が供給され電動機4,11が同期運転に入る。
この際、エアクラツチ3,10には空気が送られ
ておらず小歯車2,9とは機械的に切離されてい
るため、電動機4,11は無負荷始動となつてい
る。次にエアクラツチ3,10に圧縮空気を送り
こむとクラツチ3,10が徐々に接続される。こ
の結果、ミル1に駆動力が与えられて回転を始
め、最終的に定格速度に達する。
Next, the operation will be explained. The two synchronous motors 4, 11 are connected to the same power supply 14, and when they start self-starting and accelerate to near synchronous speed, DC is applied from the DC power supply 6, 13 to the field windings 5, 12. The electric motors 4 and 11 enter synchronous operation.
At this time, air is not sent to the air clutches 3, 10 and they are mechanically disconnected from the small gears 2, 9, so the electric motors 4, 11 are started with no load. Next, when compressed air is fed into the air clutches 3 and 10, the clutches 3 and 10 are gradually connected. As a result, driving force is applied to the mill 1, which starts rotating and eventually reaches its rated speed.

さて、定格が同一(同一設計内容)の2台の同
期電動機4,11が同一電源に接続されて同一の
負荷を取つている場合、その固定子の3相巻線が
作る回転磁界の中心と、回転子である界磁巻線が
作る磁界の中心とが作る角度(内部相差角)は2
台とも同じであり、また、回転磁界の中心は機械
的にも両者で同一となるため、界磁巻線が作る磁
界の中心、即ち、磁極も全く同じ機械的位置で回
転することになる。
Now, when two synchronous motors 4 and 11 with the same rating (same design content) are connected to the same power source and take the same load, the center of the rotating magnetic field created by the three-phase winding of the stator , the angle (internal phase difference angle) formed by the center of the magnetic field created by the field winding of the rotor is 2
The base is also the same, and the center of the rotating magnetic field is mechanically the same for both, so the center of the magnetic field created by the field winding, that is, the magnetic pole, also rotates at exactly the same mechanical position.

この状態で更にエアクラツチ3,10が接続さ
れていき、完全に結合するときの機械的位置が両
者で全く同一であり、かつ、ミル1の歯車と小歯
車2,9との歯の当りが両者で完全に同じである
とすれば、両電動機4,11の内部相差角は全く
同じとなり、完全に両電動機4,11の負荷分担
は同一となる。
In this state, the air clutches 3 and 10 are further connected, and when they are completely connected, the mechanical positions of both are exactly the same, and the teeth of the gear of the mill 1 and the small gears 2 and 9 are in contact with each other. If the two electric motors 4 and 11 are completely the same, the internal phase difference angles of the two electric motors 4 and 11 will be the same, and the load sharing of the two electric motors 4 and 11 will be completely the same.

しかしながら、実際にはエアクラツチにて結合
させるため、エアクラツチの圧縮空気の出具合等
によつて接続状態が2台で完全に一致せず、エア
クラツチの接続位置によつては両電動機の回転子
が作る磁極の中心角度が大幅にずれることが起
る。また、ミルの歯車とそれにかみ合う小歯車と
の当りの状態等の違いによつても両電動機の回転
子位置がずれることがある。これらの結果、両電
動の負荷分担が異なることになり、一方の電動機
の負荷が増加し、他方の電動機の負荷が減少する
ことが起る。このため、電動機の故障のみなら
ず、歯車等の故障を引起す。
However, since they are actually connected using an air clutch, the connection status of the two motors may not match completely depending on the condition of the air clutch's compressed air output, etc., and depending on the connection position of the air clutch, the rotors of both motors may The center angle of the magnetic poles may shift significantly. Further, the rotors of both electric motors may be misaligned due to differences in the contact conditions between the mill gear and the small gear that meshes with it. As a result, the load sharing between the two electric motors becomes different, and the load on one electric motor increases and the load on the other electric motor decreases. This causes not only failure of the electric motor but also failure of gears and the like.

従つて、これを防ぐためには何らかの方法で両
電動機の内部相差角を一致させる必要がある。上
記磁極中心の角度のずれは極端な場合は機械的に
180゜、即ち、正反対の位置になることもあるの
で、360゜のずれの修正を行えるようにしておかね
ばならない。このため、第1図に示すものはター
ニング装置8等の固定子転動装置により一方の電
動機4の固定子を必要角度だけ転動させ、回転磁
界の中心位置を変えることによつて両電動機の内
部相差角を合わせるようにしている。
Therefore, in order to prevent this, it is necessary to match the internal phase difference angles of both motors by some method. In extreme cases, the deviation in the angle of the magnetic pole center described above may be caused mechanically.
Since the position may be 180°, that is, the exact opposite position, it is necessary to be able to correct the 360° deviation. For this reason, in the system shown in FIG. 1, the stator of one electric motor 4 is rolled by a necessary angle using a stator rolling device such as a turning device 8, and the center position of the rotating magnetic field is changed, so that both electric motors can be rotated. The internal phase difference angles are made to match.

従来の運転装置は以上のように構成されている
ので、固定子転動装置の構造が複雑で高価とな
り、保守がむつかしく、また、電動機固定子等の
寸法が大きくなつて電動機のトルクが大きいもの
は製作が困難であるという欠点があつた。
Conventional operating devices are configured as described above, so the structure of the stator rolling device is complicated and expensive, making maintenance difficult, and the dimensions of the motor stator etc. are large, resulting in large motor torque. The disadvantage was that it was difficult to manufacture.

この発明は上記のような従来のものの欠点を除
去するためになされたもので、2台の同期電動機
のうち、一方側の誘導同期電動機とし、他方側を
同期電動機又は誘導同期電動機とし、上記一方側
の誘導同期電動機の多相界磁巻線に流す励磁電流
の方向及び大きさを調整して界磁巻線が作る磁界
の中心を変化させることにより、誘導同期電動機
の内部相差角を調整し、クラツチに起因する2台
の同期電動機の内部相差角のずれを修正して、各
電動機の出力に応じた割合で分担して負荷を駆動
することができるようにした同期電動機の運転装
置を提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and among two synchronous motors, one side is an induction synchronous motor, the other side is a synchronous motor or an induction synchronous motor, and one of the above-mentioned synchronous motors is used as an induction synchronous motor. The internal phase difference angle of the induction synchronous motor can be adjusted by adjusting the direction and magnitude of the excitation current flowing through the multiphase field windings of the side induction synchronous motor and changing the center of the magnetic field created by the field windings. Provided is a synchronous motor operating device that corrects the deviation in the internal phase difference angle of two synchronous motors caused by a clutch, and enables the load to be driven by sharing the load in proportion to the output of each motor. It is intended to.

以下、この発明の一実施例を図に基づいて説明
する。第2図,第3図において、1〜3,5,
6,9,10,14は従来例のものと同様であ
る。15及び17は、負荷であるミル1をそれぞ
れの出力に応じた割合で分担して駆動する回転界
磁形同期電動機である。17は一方の電動機であ
り、誘導同期電動機で構成される。15は他方の
電動機であり、従来のものと同様の同期電動機で
構成されているが、固定子のターニング装置は設
けられていない。なお、この場合、両電動機1
5,17は同一出力(同一定格)に構成されてい
る。16は電動機15の軸端に設けられた回転界
磁の磁極位置を検出する磁極位置検出器である。
第3図は誘導同期電動機17の励磁装置を示す図
である。20は誘導同期電動機17の回転子に設
けられた界磁巻線であり、各相巻線21,22,
23はそれぞれ独立しており、デルタ形3相巻線
を形成する。19は6個のリングからなるスリツ
プリング、18は低圧3相交流電源、30,4
0,50はそれぞれR相巻線21、S相巻線22
及びT相巻線23が接続された励磁回路、31,
41,51はしや断器、32,33は励磁回路3
0に逆並列に接続されたサイリスタ、34,36
はコンタクタ、35は始動抵抗器である。また、
励磁回路40の40番台、励磁回路50の50番台の
符号のものが、励磁回路30の30番台のものに対
応し設けられている。
Hereinafter, one embodiment of the present invention will be described based on the drawings. In Figures 2 and 3, 1 to 3, 5,
6, 9, 10, and 14 are the same as those of the conventional example. Reference numerals 15 and 17 are rotating field type synchronous motors that drive the mill 1, which is a load, in proportions according to their respective outputs. Reference numeral 17 denotes one electric motor, which is composed of an induction synchronous motor. The other motor 15 is a synchronous motor similar to the conventional motor, but is not provided with a stator turning device. In this case, both electric motors 1
5 and 17 are configured to have the same output (same rating). Reference numeral 16 denotes a magnetic pole position detector that detects the magnetic pole position of a rotating field provided at the shaft end of the electric motor 15.
FIG. 3 is a diagram showing an excitation device for the induction synchronous motor 17. 20 is a field winding provided on the rotor of the induction synchronous motor 17, and each phase winding 21, 22,
23 are independent from each other and form a delta type three-phase winding. 19 is a slip ring consisting of 6 rings, 18 is a low voltage 3-phase AC power supply, 30, 4
0 and 50 are R phase winding 21 and S phase winding 22, respectively.
and an excitation circuit to which the T-phase winding 23 is connected, 31,
41, 51 is the cutter, 32, 33 is the excitation circuit 3
Thyristors connected in anti-parallel to 0, 34, 36
is a contactor, and 35 is a starting resistor. Also,
Excitation circuits 40 with numbers in the 40s and excitation circuits 50 with codes in the 50s are provided corresponding to excitation circuits 30 with numbers in the 30s.

次に動作について第2図、第3図によつて説明
する。エアクラツチ3,10を開放しておいて、
電動機15,17を無負荷始動する。同期電動機
15の始動は従来例のものと同様である。誘導同
期電動機17の始動を第3図について説明する。
R相巻線において、しや断器31を開いておい
て、コンタクタ34,36を閉じ始動を開始し、
電動機17が定格速度近傍に達したら、しや断器
31を閉じコンタクタ36を開いて、サイリスタ
32のゲートを点弧してア方向に直流を流してR
相巻線21を励磁する。同様の動作によつて励磁
回路40ではサイリスタ43が点弧されてエ方向
に電流を流してS相巻線22が励磁される。T相
巻線23は電動機17が定格速度近傍に達しても
電源18に接続されず、電流を始動抵抗器55を
通すようにしてダンパ回路のままにしておく。以
上のようにして誘導同期電動機17が定格速度に
達する。両電動機15,17とも定格速度に達し
たらエアクラツチ3,10に空気を投入し両電動
機15,17をミル1に接続すると、負荷が両電
動機に徐々に加わり始め、電動機の内部相差角も
徐々に開いていき、最終的に自由な角度にてエア
クラツチ3,10は強引に接続を完了する。
Next, the operation will be explained with reference to FIGS. 2 and 3. Leave air clutches 3 and 10 open,
The electric motors 15 and 17 are started with no load. Starting of the synchronous motor 15 is similar to that of the conventional example. Starting the induction synchronous motor 17 will be explained with reference to FIG.
In the R phase winding, the shield breaker 31 is opened and the contactors 34 and 36 are closed to start the engine.
When the motor 17 reaches near the rated speed, the shield breaker 31 is closed, the contactor 36 is opened, and the gate of the thyristor 32 is ignited to flow DC in the direction A.
The phase winding 21 is excited. By a similar operation, the thyristor 43 is fired in the excitation circuit 40, causing current to flow in the E direction, and the S-phase winding 22 is excited. The T-phase winding 23 is not connected to the power source 18 even when the motor 17 reaches near the rated speed, and remains in the damper circuit so that the current passes through the starting resistor 55. In the above manner, the induction synchronous motor 17 reaches the rated speed. When both motors 15 and 17 reach their rated speeds, air is injected into air clutches 3 and 10, and both motors 15 and 17 are connected to mill 1. As a result, the load starts to be gradually applied to both motors, and the internal phase difference angle of the motors gradually decreases. The air clutches 3 and 10 are gradually opened, and finally the air clutches 3 and 10 are forcibly connected at a free angle.

次に誘導同期電動機17の内部相差角を変化さ
せて両電動機15,17の内部相差角を一致させ
る方法について説明する。電動機15の磁極位置
は軸端に配置されている磁極位置検出器16によ
つて検出され、この検出器からの信号によつて図
示しない制御装置が動作し各励磁回路30,4
0,50のいずれか又は2個以上の励磁回路のサ
イリスタのゲートが点弧されてサイリスタが導通
する。これによつて誘導同期電動機17の磁極中
心位置が電動機15の磁極中心位置と同じ位置に
くるように電動機17の各相界磁巻線21,2
2,23の全部又は2個以上の界磁巻線に直流電
流を流して励磁し、その直流電流の方向及び大き
さをサイリスタで制御すれば、界磁巻線20が作
る磁界の中心が変化して電動機17の内部相差角
が自由に変化し、両電動機15,17のもつ内部
相差角を一致させることができる。もちろんこの
場合、T相巻線23を励磁する必要がある時は、
しや断器51を閉じコンタクタ56を開くように
する。
Next, a method of changing the internal phase difference angle of the induction synchronous motor 17 to match the internal phase difference angles of both electric motors 15 and 17 will be described. The magnetic pole position of the electric motor 15 is detected by a magnetic pole position detector 16 disposed at the end of the shaft, and a control device (not shown) is operated by a signal from this detector to control each excitation circuit 30, 4.
The gates of the thyristors of either 0 or 50 or two or more of the excitation circuits are fired and the thyristors become conductive. As a result, the field windings 21 and 2 of each phase of the motor 17 are arranged so that the magnetic pole center position of the induction synchronous motor 17 is at the same position as the magnetic pole center position of the electric motor 15.
If all or two or more of the field windings 2 and 23 are excited by flowing a DC current, and the direction and magnitude of the DC current are controlled by a thyristor, the center of the magnetic field created by the field winding 20 will change. As a result, the internal phase difference angle of the electric motor 17 can be changed freely, and the internal phase difference angles of both the electric motors 15 and 17 can be matched. Of course, in this case, when it is necessary to excite the T-phase winding 23,
The breaker 51 is closed and the contactor 56 is opened.

第4図は誘導同期電動機17の界磁巻線20が
作る合成磁束の方向が、励磁電流の方向と大きさ
を変えることによつて360゜変化する原理をベクト
ル図で示したものである。
FIG. 4 is a vector diagram showing the principle that the direction of the composite magnetic flux produced by the field winding 20 of the induction synchronous motor 17 changes by 360° by changing the direction and magnitude of the excitation current.

第3図でR相巻線21にア方向に、S相巻線2
2にエ方向に直流電流を流せば、R相巻線21に
生ずる磁束(ベクトルで示す)は第4図における
A,S相巻線22に生ずる反転された磁束はBと
なつて、両者の合成磁束はEとなり、このベクト
ルEと固定子の回転磁界の中心(例えば、これを
ベクトルAの方向とする)との差の角度(即ち、
内部相差角)がφとなる。流れる電流を制御して
R相、S相巻線の磁束を変化させれば、両者の合
成磁束の方向と大きさは4角形OAEBの領域内
に存在することになる。
In Fig. 3, the R phase winding 21 is
2, the magnetic flux (indicated by a vector) generated in the R-phase winding 21 becomes A in FIG. 4, and the reversed magnetic flux generated in the S-phase winding 22 becomes B. The resultant magnetic flux is E, and the angle of the difference between this vector E and the center of the rotating magnetic field of the stator (for example, this is the direction of vector A) (i.e.,
internal phase difference angle) becomes φ. If the flowing current is controlled to change the magnetic flux of the R-phase and S-phase windings, the direction and magnitude of the combined magnetic flux of both will exist within the area of the quadrilateral OAEB.

ここで更にT相巻線23にカ方向に直流電流を
流せばR相、S相の合成磁束EにT相巻線の反転
された磁束Dが加わり、それらの合成磁束Fは大
きさがOFとなり方向がベクトルAに一致する。
このようにR,S,Tの3相巻線に流す直流電流
の大きさを変えて上記3相巻線の磁束A,B,D
の大きさを変化させれば、3相巻線で作る合成磁
束の方向及び大きさは3角形OFEの領域内に作
られる。
If a direct current is further passed through the T-phase winding 23 in the F direction, the inverted magnetic flux D of the T-phase winding will be added to the composite magnetic flux E of the R and S phases, and the composite magnetic flux F will have a magnitude of OF Therefore, the direction coincides with vector A.
In this way, by changing the magnitude of the DC current flowing through the three-phase windings R, S, and T, the magnetic fluxes A, B, and D of the three-phase windings can be changed.
By changing the magnitude of , the direction and magnitude of the composite magnetic flux created by the three-phase winding are created within the region of the triangle OFE.

ここでT相巻線に流す直流電流の向きを第3図
のオのように逆にし、R,S,Tの3相巻線の電
流の大きさを変えて磁束の大きさを変えれば、3
相巻線で作る合成磁束の方向及び大きさは第4図
の3角形OEGの領域内に作られる。
Now, if we reverse the direction of the DC current flowing through the T-phase winding as shown in Fig. 3, and change the magnitude of the current in the R, S, and T three-phase windings, we can change the magnitude of the magnetic flux. 3
The direction and magnitude of the composite magnetic flux created by the phase windings are created within the area of the triangle OEG in FIG.

このようにして3相界磁巻線が作る合成磁束の
方向及び大きさを変化させて誘導同期電動機の内
部相差角を変えうるが、特に合成磁束を第4図の
点Oを中心とした円Hの円弧上に位置するように
変化させれば、力率を変えずに誘導同期電動機の
内部相差角を変化させることができる。なお、合
成磁束の大きさは円Hの円弧上に位置するときが
最大値であるから、これより小さくして斜線で示
す60゜の領域内にすることは自由である。
In this way, it is possible to change the internal phase difference angle of the induction synchronous motor by changing the direction and magnitude of the composite magnetic flux created by the three-phase field windings. By changing the angle so that it is located on the arc of H, the internal phase difference angle of the induction synchronous motor can be changed without changing the power factor. Incidentally, since the magnitude of the composite magnetic flux is at its maximum value when located on the arc of the circle H, it is free to make it smaller than this so that it falls within the 60° region shown by the diagonal line.

同様にしてR,S,Tの3相巻線に流す各直流
電流の大きさをそれぞれ変化させることにより合
成磁束のベクトルの方向は第5図に示すような円
Hの領域内の角度に自由に動かすことができる。
このようにして界磁巻線20が作る磁束の方向及
び大きさを円H内に動かすことにより、誘導同期
電動機17の内部相差角を360゜の範囲内に変える
ことができる。特に、合成磁束の大きさを円Hの
円弧上になるように一定にしておいて方向のみ変
えれば力率を変えずに内部相差角が変えられるの
で有利である。このように界磁巻線20の各相巻
線RSTに加える励磁電流の調整によつて誘導同
期電動機17の内部相差角を変えて同期電動機1
5の内部相差角に一致させ、両電動機17,20
の負荷分担を均等にすることができる。
Similarly, by changing the magnitude of each DC current flowing through the R, S, and T three-phase windings, the direction of the vector of the composite magnetic flux can be freely adjusted to an angle within the area of circle H as shown in Figure 5. can be moved to
By moving the direction and magnitude of the magnetic flux produced by the field winding 20 within the circle H in this manner, the internal phase difference angle of the induction synchronous motor 17 can be changed within a range of 360°. In particular, it is advantageous if the magnitude of the composite magnetic flux is kept constant so that it lies on the arc of the circle H and only the direction is changed, since the internal phase difference angle can be changed without changing the power factor. In this way, by adjusting the excitation current applied to each phase winding RST of the field winding 20, the internal phase difference angle of the induction synchronous motor 17 is changed, and the synchronous motor 1
5, both electric motors 17 and 20
The load can be shared evenly.

なお、上記システムのように一方が同期電動
機、他方が誘導同期電動機の場合のように両者の
電気的特性が異なる場合には同一負荷に対するそ
れぞれの内部相差角が異なるから、両者の入力電
力の値が等しくなるように誘導同期電動機の内部
相差角をずらして補正する必要がある。
Note that when the electrical characteristics of the two are different, such as in the above system where one is a synchronous motor and the other is an induction synchronous motor, the internal phase difference angle for the same load is different, so the value of the input power for both is different. It is necessary to shift and correct the internal phase difference angle of the induction synchronous motor so that they are equal.

以上のようにツインドライブシステムでも両電
動機の負荷分担が力率を変化させずに精度良く容
易に行なえるようになる。
As described above, even in the twin drive system, load sharing between both electric motors can be easily and accurately performed without changing the power factor.

なお、上記実施例で内部相差角の調整はエアク
ラツチの接続を開始した時点から始めてもよい
し、加速完了後から始めてもよいことはもちろん
である。また、一方の電動機の磁極位置検出器を
設けずに、一方と他方の電動機の入力電力の値を
比較して、その値が異つているときに出力する検
出器を設けて、両電動機の入力電力の値が同一に
なるように一方の誘導同期電動機の内部相差角を
変化させてもよい。なお、一方と他方の電動機の
出力が異なる場合は、各電動機の入力電力が出力
に対応していないとき、即ち、負荷分担の割合が
異常となつたときに検出器から検出信号を出すよ
うにする。上記実施例では他方の電動機15は同
期電動機であつたが、これもまた誘導同期電動機
としてもよい。
In the above embodiment, the adjustment of the internal phase difference angle may be started from the time when the air clutch starts to be connected, or may be started after the acceleration is completed. In addition, instead of providing a magnetic pole position detector for one motor, a detector is provided that compares the input power values of one and the other motors and outputs an output when the values are different. The internal phase difference angle of one of the induction synchronous motors may be changed so that the power values become the same. If the output of one motor is different from the other, the detector will output a detection signal when the input power of each motor does not correspond to the output, that is, when the load sharing ratio becomes abnormal. do. In the above embodiment, the other motor 15 is a synchronous motor, but it may also be an induction synchronous motor.

以上のようにこの発明によれば、2台の同期電
動機で一つの負荷をそれぞれクラツチを介して、
各同期電動機の出力に応じた割合で分担して駆動
させるときに、2台の同期電動機のうち、少なく
とも一方を誘導同期電動機にしておき、上記クラ
ツチの接続状態によつて負荷分担の割合が変わつ
た場合、この変化を、一方と他方の電動機の入力
電力を比較する検出器もしくは他方の電動機に設
けられた界磁の磁極位置検出器で検出して、この
検出器からの検出信号にもとづいて、一方の誘導
同期電動機の多相界磁巻線の少なくとも一つに流
れる励磁電流の方向及び大きさを変えることによ
り、多相界磁巻線が作る合成磁界の方向及び大き
さが変わつて、この合成磁界と固定子回転磁界と
の差である内部相差角が変わつて、上記一方と他
方の電動機の負荷分担の割合を制御できるように
したので2台の同期電動機の負荷分担が精度良く
容易に行えるようになり、クラツチがどのように
接続されても電動機や歯車等の故障のおそれがな
く、固定子転動装置のような複雑な装置のいらな
い高信頼性で応答性の速いものが得られる。ま
た、電動機のトルクの大きいものの製作も容易と
なる。
As described above, according to the present invention, two synchronous motors each handle one load through a clutch.
When driving the synchronous motors by sharing the load at a ratio according to the output of each synchronous motor, at least one of the two synchronous motors is an induction synchronous motor, and the ratio of load sharing changes depending on the connection state of the clutch. In this case, this change is detected by a detector that compares the input power of one and the other motor, or a field magnetic pole position detector installed in the other motor, and the change is detected based on the detection signal from this detector. By changing the direction and magnitude of the excitation current flowing through at least one of the polyphase field windings of one induction synchronous motor, the direction and magnitude of the composite magnetic field created by the polyphase field windings are changed, By changing the internal phase difference angle, which is the difference between this composite magnetic field and the stator rotating magnetic field, it is possible to control the ratio of load sharing between the one motor and the other motor, making it easy to share the load between the two synchronous motors with precision. No matter how the clutch is connected, there is no risk of failure of the motor or gears, etc., and a highly reliable and quick response system that does not require complicated devices such as a stator rolling device can be obtained. It will be done. Furthermore, it becomes easy to manufacture an electric motor with a large torque.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のツインドライブシステムを示す
概念図、第2図はこの発明の一実施例によるツイ
ンドライブシステムを示す概念図、第3図は第2
図の誘導同期電動機の励磁装置を示す回路図、第
4図及び第5図はこの発明の一実施例の誘導同期
電動機の界磁巻線が作る磁束の方向及び大きさが
変る原理を示す図である。 図中、1はミル(負荷)、2,9は小歯車、3,
10はエアクラツチ、16は磁極位置検出器、1
7は一方の電動機(誘導同期電動機)、18は交
流電源、15は他方の電動機(同期電動機)、2
0は多相界磁巻線、21,22,23は各相界磁
巻線、30,40,50は励磁回路、32,3
3,42,43,52,53はサイリスタであ
る。なお、図中同一符号は同一又は相当部分を示
す。
Fig. 1 is a conceptual diagram showing a conventional twin drive system, Fig. 2 is a conceptual diagram showing a twin drive system according to an embodiment of the present invention, and Fig. 3 is a conceptual diagram showing a twin drive system according to an embodiment of the present invention.
Figure 4 is a circuit diagram showing an excitation device for an induction synchronous motor, and Figures 4 and 5 are diagrams showing the principle by which the direction and magnitude of the magnetic flux created by the field winding of an induction synchronous motor according to an embodiment of the present invention changes. It is. In the figure, 1 is a mill (load), 2 and 9 are small gears, 3,
10 is an air clutch, 16 is a magnetic pole position detector, 1
7 is one motor (induction synchronous motor), 18 is an AC power supply, 15 is the other motor (synchronous motor), 2
0 is a multiphase field winding, 21, 22, 23 are each phase field windings, 30, 40, 50 are excitation circuits, 32, 3
3, 42, 43, 52, and 53 are thyristors. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 無負荷始動された2台の回転界磁形同期電動
機を一つの負荷にそれぞれクラツチを介して接続
し、上記負荷を各同期電動機の出力に応じた割合
で分担して駆動させるようにした同期電動機の運
転装置において、上記2台の同期電動機のうち、
少なくとも一方を複数相の界磁巻線を有する誘導
同期電動機とし、この一方の誘導同期電動機の各
相界磁巻線のそれぞれに交流電源と接続された逆
並列サイリスタからなる励磁回路を接続し、上記
他方の電動機の界磁の磁極位置を検出する検出器
もしくは上記一方と他方の電動機の入力電力を比
較する検出器を設け、上記クラツチの接続状態に
よつて上記負荷分担の割合が変つたとき上記検出
器からの検出信号にもとづいて上記逆並列サイリ
スタを点孤制御し、上記一方の誘導同期電動機の
界磁巻線の少なくとも一つに流れる励磁電流の方
向及び大きさを制御して上記界磁巻線が作る磁界
の方向及び大きさを変えて、上記一方の誘導同期
電動機の内部相差角を変化させ、上記一方と他方
の電動機の負荷分担の割合を制御しうるようにし
たことを特徴とする同期電動機の運転装置。
1 Synchronization in which two rotating field type synchronous motors that are started with no load are connected to one load via clutches, and the load is divided and driven in proportions according to the output of each synchronous motor. In the motor driving device, among the two synchronous motors mentioned above,
At least one of the induction synchronous motors is an induction synchronous motor having multiple phases of field windings, and an excitation circuit consisting of an anti-parallel thyristor connected to an AC power source is connected to each phase field winding of the one induction synchronous motor, A detector for detecting the field magnetic pole position of the other motor or a detector for comparing the input power of one motor and the other motor is provided, and when the load sharing ratio changes depending on the connection state of the clutch. Based on the detection signal from the detector, the anti-parallel thyristor is controlled to fire, and the direction and magnitude of the excitation current flowing through at least one of the field windings of the one induction synchronous motor is controlled to control the field of the field. It is characterized by changing the direction and magnitude of the magnetic field created by the magnetic windings to change the internal phase difference angle of the one induction synchronous motor, thereby controlling the ratio of load sharing between the one motor and the other motor. A driving device for a synchronous motor.
JP57148080A 1982-08-24 1982-08-24 Operating device for motor Granted JPS5937898A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57148080A JPS5937898A (en) 1982-08-24 1982-08-24 Operating device for motor
US06/523,797 US4525656A (en) 1982-08-24 1983-08-16 Apparatus for operating plural poly phase A.C. motors having a common load
DE19833330027 DE3330027A1 (en) 1982-08-24 1983-08-19 DEVICE FOR OPERATING A VARIETY OF MULTI-PHASE AC MOTORS WITH A COMMON LOAD
AU18335/83A AU549709B2 (en) 1982-08-24 1983-08-23 Apparatus for operating plural polyphase a.c. motors having a common load
CA000435303A CA1211786A (en) 1982-08-24 1983-08-24 Apparatus for operating plural poly phase a.c. motors having a common load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57148080A JPS5937898A (en) 1982-08-24 1982-08-24 Operating device for motor

Publications (2)

Publication Number Publication Date
JPS5937898A JPS5937898A (en) 1984-03-01
JPH0116116B2 true JPH0116116B2 (en) 1989-03-22

Family

ID=15444773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57148080A Granted JPS5937898A (en) 1982-08-24 1982-08-24 Operating device for motor

Country Status (1)

Country Link
JP (1) JPS5937898A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2732155B2 (en) * 1991-06-10 1998-03-25 株式会社芝浦製作所 Switching element control device and device using the same
JP6289825B2 (en) * 2013-06-28 2018-03-07 株式会社東芝 Generator excitation device and power conversion system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5139128U (en) * 1974-09-19 1976-03-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5139128U (en) * 1974-09-19 1976-03-24

Also Published As

Publication number Publication date
JPS5937898A (en) 1984-03-01

Similar Documents

Publication Publication Date Title
EP0467517B1 (en) Dual-stator induction synchronous motor
JPH04331448A (en) Synchronous motor
JPH0815377B2 (en) Two-stator three-phase squirrel-cage induction motor
US5285124A (en) Brushless induction synchronous motor with two stators
JPS62285690A (en) Adjustable speed induction motor
CA2071542C (en) Multiple-stator induction synchronous motor
JPS63178800A (en) Variable-speed generator
US4525656A (en) Apparatus for operating plural poly phase A.C. motors having a common load
JPH0116116B2 (en)
US3896349A (en) Electric drive for motors interconnected to form a ring circuit
JPH0116117B2 (en)
JP3105231B2 (en) 2 stator induction motor
US3339131A (en) Multi-speed, self-excited ac motor system
JP3105232B2 (en) 2 stator induction motor
US621924A (en) X m means for speed reduction of asynchronous alternating motors
JPH06335271A (en) Synchronous motor
US20050179331A1 (en) Energy conversion apparatus with induction machine and method for operating the same
JP2845366B2 (en) 2 Stator induction motor braking device
JP3358666B2 (en) Synchronous motor
JP3080625B2 (en) Phase difference changing device for multiple stator induction motor
JPS61214783A (en) Emergency stopper of double speed induction motor
RU2176848C2 (en) Dual-motor drive
US1480670A (en) Phase-converting and power-factor-control machine
JPH05316700A (en) Multistator induction motor
JPH03212143A (en) Multi-stator induction synchronous motor