JPS5936894B2 - Method for producing nuclear substituted benzyl ester - Google Patents

Method for producing nuclear substituted benzyl ester

Info

Publication number
JPS5936894B2
JPS5936894B2 JP15706076A JP15706076A JPS5936894B2 JP S5936894 B2 JPS5936894 B2 JP S5936894B2 JP 15706076 A JP15706076 A JP 15706076A JP 15706076 A JP15706076 A JP 15706076A JP S5936894 B2 JPS5936894 B2 JP S5936894B2
Authority
JP
Japan
Prior art keywords
nuclear
substituted benzyl
catalyst
reaction
benzyl ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15706076A
Other languages
Japanese (ja)
Other versions
JPS5379832A (en
Inventor
照夫 松田
民雄 白藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP15706076A priority Critical patent/JPS5936894B2/en
Publication of JPS5379832A publication Critical patent/JPS5379832A/en
Publication of JPS5936894B2 publication Critical patent/JPS5936894B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は核置換トルエンを酸化して核置換ベンジルエス
テルを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a nuclear-substituted benzyl ester by oxidizing nuclear-substituted toluene.

核置換ベンジルエステル例えば核置換酢酸ベンジルは工
業的には核置換トルエンを塩素化して得られる核置換塩
化ベンジルを酢酸で処理することによつて製造されてい
るが、この方法は反応が2段階に実施されること並びに
核置換酢酸ベンジル中に塩素化合物が混在し高純度の核
置換酢酸ベンジルが要求される場合にはその精製に手間
がかかる等の欠点がある。
Nuclear-substituted benzyl ester For example, nuclear-substituted benzyl acetate is industrially produced by treating nuclear-substituted benzyl chloride obtained by chlorinating nuclear-substituted toluene with acetic acid, but this method involves a two-step reaction. There are drawbacks such as the fact that it is difficult to carry out the process, and that it takes time and effort to purify the nuclear-substituted benzyl acetate when a chlorine compound is present in the nuclear-substituted benzyl acetate and a highly pure nuclear-substituted benzyl acetate is required.

また核置換塩化ベンジルを経由することなく核置換トル
エンを直接酸化する方法としては、例えば「ジャーナル
オブ ザ オルガニック ケミストリー」(Jour
naloftheOrganicChemistry)
33巻、4123頁、1969に酢酸パラジウムを触媒
として使用し、酢酸中で酢酸錫の存在下に核置換トルエ
ンを酸化して核置換酢酸ベンジルを得る方法が報告され
ている。しかし、この方法においては触媒として使用す
る酢酸パラジウムが反応開始直後は溶解した均一触媒で
あるが、暫く反応を継続すると金属パラジウムとなり、
触媒活性が失われ、触媒活性持続時間が短いという欠点
がある。本発明者等はこのような観点から不均一系触媒
で触媒活性が長時間持続する触媒について種々研究を行
つた結果、特定の原子組成をもつ固体触媒を使用するこ
とによりこれらの目的が達成されることを知り本発明を
完成した。
In addition, as a method for directly oxidizing nuclear-substituted toluene without going through nuclear-substituted benzyl chloride, for example, "Journal of the Organic Chemistry"
naloftheOrganicChemistry)
33, p. 4123, 1969, reports a method for obtaining nuclear-substituted benzyl acetate by oxidizing nuclear-substituted toluene in acetic acid in the presence of tin acetate using palladium acetate as a catalyst. However, in this method, the palladium acetate used as a catalyst is a dissolved homogeneous catalyst immediately after the start of the reaction, but as the reaction continues for a while, it becomes metallic palladium.
Disadvantages include loss of catalytic activity and short duration of catalytic activity. From this perspective, the present inventors have conducted various studies on heterogeneous catalysts with long-lasting catalytic activity, and have found that these objectives can be achieved by using a solid catalyst with a specific atomic composition. After learning that, the present invention was completed.

即ち本発明は核置換トルエン(核置換基としては−CH
3、−OPh;−OHあるいは−OCOR:R=アルキ
ル基)を低級脂肪酸の存在下にPdaBibXc(X=
Mn)そしてa=1のとき、0<b≦20、、0≦c≦
20)で示される原子組成をもつ固体触媒を使用して酸
素あるいは酸素含有ガスにより酸化することによる核置
換ベンジルエステルの製造方法である。
That is, the present invention uses nuclear-substituted toluene (-CH as a nuclear substituent)
3. -OPh; -OH or -OCOR: R = alkyl group) in the presence of lower fatty acid PdaBibXc (X =
Mn) and when a=1, 0<b≦20, 0≦c≦
This is a method for producing a nuclear-substituted benzyl ester by using a solid catalyst having the atomic composition shown in 20) and oxidizing it with oxygen or an oxygen-containing gas.

この方法によれば核置換基に不都合な副反応をおこすこ
となく核置換ベンジルエステルを製造することができる
。本発明に用いられる触媒の製造にあたつてはこの種の
貴金属触媒の公知の調製方法が一般的に使用される。た
とえば触媒の構成原料にはパラジウム化合物として酢酸
パラジウム、塩化パラジウム、硝酸パラジウム等の可溶
性塩が使用される。ビスマス、マンガン化合物としては
それぞれの硝酸塩、炭酸塩、硫酸塩、有機酸塩、ハロゲ
ン化物等の可溶性塩を使用するのが好ましいが、難溶性
物質でも硝酸、塩酸、硫酸、蓚酸などの酸あるいはアン
モニア、メチルアミン、ジメチルアミン、水酸化ナトリ
ウムなどの塩基を添加して均一な溶液にすることにより
使用することができる。これらの触媒成分は水あるいは
酸に溶解した後、通常担体上に均一に分散させた後、還
元処理して使用される。パラジウムの担持量及び助触媒
として添加する元素群の担持量は担体に対して、元素と
して通常各々0.01〜30重量%および0.01〜9
0重量%、好ましくは0.1〜20重量%及び0.1〜
40重量%の範囲内で適宜選択される。触媒中のパラジ
ウムに対する助触媒元素の比率は通常、パラジウム1グ
ラム原子に対してその合計量が0.01〜20グラム原
子となるようにするのが好ましく、特にパラジウム1グ
ラム原子に対しその合計量が0.05〜10グラム原子
となるようにするのが有利である。本発明によれば触媒
は担体上に触媒成分を担持させた後、還元処理される。
According to this method, a nuclear-substituted benzyl ester can be produced without causing any unfavorable side reactions to the nuclear substituents. In producing the catalyst used in the present invention, known methods for preparing noble metal catalysts of this type are generally used. For example, soluble salts such as palladium acetate, palladium chloride, palladium nitrate, etc. are used as palladium compounds as raw materials for the catalyst. It is preferable to use soluble salts of bismuth and manganese compounds such as their respective nitrates, carbonates, sulfates, organic acid salts, and halides, but even for sparingly soluble substances, acids such as nitric acid, hydrochloric acid, sulfuric acid, oxalic acid, or ammonia It can be used by adding a base such as , methylamine, dimethylamine, or sodium hydroxide to make a homogeneous solution. These catalyst components are used after being dissolved in water or acid, uniformly dispersed on a carrier, and then subjected to reduction treatment. The supported amount of palladium and the supported amount of the elements added as promoters are usually 0.01 to 30% by weight and 0.01 to 9% by weight, respectively, based on the carrier.
0% by weight, preferably 0.1-20% by weight and 0.1-20% by weight
It is appropriately selected within the range of 40% by weight. The ratio of promoter elements to palladium in the catalyst is usually such that the total amount per gram atom of palladium is 0.01 to 20 gram atoms, particularly the total amount per gram atom of palladium. is advantageously from 0.05 to 10 gram atoms. According to the present invention, the catalyst is subjected to a reduction treatment after supporting catalyst components on a carrier.

処理温度は200℃以上が有効であり、通常200〜6
00℃で行なわれる。処理時間は30分以上が適当であ
る。還元は周知の適当な方法により行なわれる。たとえ
ば水素または還元力のある有機化合物の気流中で還元す
るかあるいはヒドラジンまたはホルマリンなでの周知の
還元剤により還元される。パラジウムならびに助触媒元
素は同時に担体上に担持させてもよいし、また順次に担
持させてもよい。
A treatment temperature of 200°C or higher is effective, and usually 200°C to 6°C.
It is carried out at 00°C. Appropriate treatment time is 30 minutes or more. Reduction is carried out by any suitable method known in the art. For example, it may be reduced in a stream of hydrogen or a reducing organic compound, or with well-known reducing agents such as hydrazine or formalin. Palladium and the promoter element may be supported on the carrier simultaneously or sequentially.

助触媒元素成分をまず担持して分子状酸素あるいは酸素
含有ガスの存在下焼成した後、パラジウムを担持して還
元処理することもできる。焼成温度は特に限定されない
が400〜900℃が好適であり、触媒活性向上に有効
である。触媒の調製のために用いられる担体には、活性
炭、シリカゲル、シリカアルミナ、アルミナ、シリコー
ンカーバイド、マグネシア、硅藻士、軽石、チタニア等
が使用できる。
It is also possible to first support a promoter component and sinter it in the presence of molecular oxygen or an oxygen-containing gas, and then to support palladium and perform a reduction treatment. Although the firing temperature is not particularly limited, 400 to 900°C is suitable and effective for improving catalyst activity. Activated carbon, silica gel, silica alumina, alumina, silicone carbide, magnesia, silica, pumice, titania, etc. can be used as the carrier for preparing the catalyst.

本発明による核置換トルエンと低級脂肪酸との反応は固
定床方式、流動床方式、懸濁触媒方式など任意の方式で
実施することができる。
The reaction between nuclear-substituted toluene and lower fatty acids according to the present invention can be carried out by any method such as a fixed bed method, a fluidized bed method, or a suspended catalyst method.

また分子状酸素含有ガスは純粋な酸素である必要はなく
、不活注ガスで希釈された酸素たとえば空気でもよい。
Further, the molecular oxygen-containing gas does not need to be pure oxygen, and may be oxygen diluted with an inert gas, such as air.

酸素量は核置換トルエンのメチル基一個あたり0.5モ
ルが理論量であるが、空気を使用する場合0.5〜5モ
ルの範囲が好ましい。触媒の使用量は核置換トルエン/
モルに対してパラジウムは0.01グラム原子以下の少
量でも十分であり、高価なパラジウムがきわめて少量で
すむ。担体付触媒使用量は核置換トルエンと低級脂)肪
酸との全重量の1〜10重量%に相当する量が有効に用
いられる。
The theoretical amount of oxygen is 0.5 mol per methyl group in the nuclear-substituted toluene, but when air is used, it is preferably in the range of 0.5 to 5 mol. The amount of catalyst used is nuclear substituted toluene/
A small amount of palladium of less than 0.01 gram atom per mole is sufficient, and an extremely small amount of expensive palladium is required. The supported catalyst is effectively used in an amount corresponding to 1 to 10% by weight of the total weight of the nuclear-substituted toluene and the lower aliphatic acid.

本発明で使用される低級脂肪酸としてはC2〜C5の脂
肪酸が好ましい。
The lower fatty acids used in the present invention are preferably C2 to C5 fatty acids.

なかでも酢酸が有利な結果を与える。低級脂肪酸の使用
量は限定的ではないが、核置換トルエンに対して1〜3
0モルの範囲が好適である。上記低級脂肪酸以外に反応
媒体中には水あるいは反応に不活性な有機溶媒、たとえ
ば飽和炭化水素、エステル等が存在していてもよい。
Among them, acetic acid gives advantageous results. The amount of lower fatty acids used is not limited, but it is 1 to 3 per nuclear-substituted toluene.
A range of 0 moles is preferred. In addition to the lower fatty acids mentioned above, water or an organic solvent inert to the reaction, such as saturated hydrocarbons, esters, etc., may be present in the reaction medium.

しかし好ましくは反応媒体の50重量%以上は原料の低
級脂肪酸であるべきである。本発明では必要があれば反
応系にさらに低級脂肪酸塩が添加される。
However, preferably at least 50% by weight of the reaction medium should be raw lower fatty acids. In the present invention, a lower fatty acid salt is further added to the reaction system if necessary.

低級脂肪酸塩としてはアルカリ金属塩が良い結果を与え
る。その使用量は核置換トルエン1モルに対して0.5
モル以下で十分である。反応は通常20℃以上の温度で
行なわれる。
As lower fatty acid salts, alkali metal salts give good results. The amount used is 0.5 per mole of nuclear-substituted toluene.
A mole or less is sufficient. The reaction is usually carried out at a temperature of 20°C or higher.

反応速度及び副生物の生成などを考慮すると、好適な反
応温度範囲は50〜250℃である。反応圧力は通常、
常圧ないし数気圧の加圧下で行なわれる。もちろんさら
に高い圧力下で実施することもできる。以上詳述した如
く、本発明によれば核置換トルエンからほとんど副生物
を生じることなく、核置換ベンジルエステルを収率良く
得ることができるので核置換ベンジルエステルの工業的
製法としてきわめて有利である。
Considering the reaction rate and the production of by-products, the preferred reaction temperature range is 50 to 250°C. The reaction pressure is usually
It is carried out under normal pressure to several atmospheres of pressure. Of course, it is also possible to carry out the process under even higher pressure. As detailed above, according to the present invention, a nuclear-substituted benzyl ester can be obtained in high yield from nuclear-substituted toluene with almost no by-products, and therefore it is extremely advantageous as an industrial method for producing a nuclear-substituted benzyl ester.

以下、実施例をあげて本発明を具体的に説明するが、本
発明はこれら実施例によつて限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

なお本発明明細書における核置換トルエン反応率、核置
換ベンジルエステル選択率は次のように定義する。
In the present specification, the nuclear-substituted toluene reaction rate and the nuclear-substituted benzyl ester selectivity are defined as follows.

分析方法としてガスクロマトグラフイ一及び液体クロマ
トグラフイ一を使用した。
Gas chromatography and liquid chromatography were used as analytical methods.

実施例 1 硝酸ビスマス2.709を硝酸水溶液(1+1)10m
1に溶解させ、これにシリカゲル( 30〜70メツシ
ユ)10.09を浸漬させてロータリーエバポレーター
で蒸発乾固させた。
Example 1 Bismuth nitrate 2.709 was added to 10 m of nitric acid aqueous solution (1+1)
1, silica gel (30 to 70 mesh) was immersed in the solution and evaporated to dryness using a rotary evaporator.

生成物に空気を0.51/分の速度で通しながら500
℃において2時間焼成した。この焼成物を硝酸マンガン
0.381と硝酸パラジウム1.161を溶解含有する
硝酸水溶液(1+1)20m1に浸漬させてロータリー
エバポレーターで蒸発乾固させた。生成物を窒素気流中
150℃において2時間乾燥し、続いてこれに0.51
/分の速度でメタノールを含む窒素気流を通じながら2
00℃で2時間還元し、次いで400℃で1時間還元し
てPd3Bi3.4MnO.9SilOOなる組成情素
は除く)の触媒を得た。
500 while passing air through the product at a rate of 0.51/min.
C. for 2 hours. This fired product was immersed in 20 ml of a nitric acid aqueous solution (1+1) containing dissolved 0.381 g of manganese nitrate and 1.16 g of palladium nitrate, and evaporated to dryness using a rotary evaporator. The product was dried for 2 hours at 150°C in a stream of nitrogen, followed by 0.51
2 while passing a nitrogen stream containing methanol at a rate of
Pd3Bi3.4MnO.Pd3Bi3.4MnO. A catalyst of 9SilOO (excluding the compositional element) was obtained.

このようにして得た触媒0.10y)酢酸1.001お
よびp−キシレン0.19を内容積*15m1の耐圧反
応管に仕込み酸素置換した後90℃で4時間反応させた
。耐圧反応管を冷却後生成物をガスクロマトグラフイ一
により分析したところp−キシレン反応率100%、A
cOCH2−<Oン一CH3の選択率47%、AcOC
H2X○〉−CH2OAcの選択率37%であつた。
0.10 y) of the catalyst thus obtained) 1.001 ml of acetic acid and 0.19 ml of p-xylene were charged into a pressure-resistant reaction tube having an internal volume of *15 ml, and after replacing the tube with oxygen, the reaction was carried out at 90° C. for 4 hours. After cooling the pressure-resistant reaction tube, the product was analyzed by gas chromatography and found that the p-xylene reaction rate was 100%.
Selectivity of cOCH2-<ON-CH3 47%, AcOC
The selectivity of H2X○>-CH2OAc was 37%.

実施例 2〜3 硝酸マンガンを使用しなかつたこと(実施例2)、硝酸
マン、ガンに代えて硝酸クロムを用いたこと(実施例3
)以外は実施例1と同じ方法により酸化反応を行ない、
表1の結果を得た。
Examples 2 to 3 Manganese nitrate was not used (Example 2), and chromium nitrate was used in place of manganese nitrate and gun (Example 3)
) The oxidation reaction was carried out in the same manner as in Example 1 except for
The results shown in Table 1 were obtained.

実施例 4〜6 触媒として実施例1,2,3に使用したものを用いたこ
とおよび反応系に酢酸ソーダを0.01g共存させたこ
と以外は実施例1と同じ方法により酸化反応を行ない表
2の結果を得た。
Examples 4 to 6 Oxidation reactions were carried out in the same manner as in Example 1, except that the catalyst used in Examples 1, 2, and 3 was used and 0.01 g of sodium acetate was coexisting in the reaction system. 2 results were obtained.

実施例 7〜12 核置換トルエンとしてm−フエノキシトルエン0.10
9を用いたこと、反応を120℃で4時間行つたこと以
外は実施例1と同じ方法によつて得た結果は表3の通り
であつた。
Examples 7-12 m-phenoxytoluene 0.10 as nuclear substituted toluene
Table 3 shows the results obtained by the same method as in Example 1 except that 9 was used and the reaction was carried out at 120° C. for 4 hours.

なお触媒は実施例1,2,3に使用したものと同じ触媒
を使用した。また実施例10,11,12は反応系に酢
酸ソーダ0.011を共存させた場合の例を示す。実施
例 13〜24核置換トルエンとしてo−クレゾール、
p−クレゾール、o−クレジルアセテートを夫々0.1
9用いたこと、反応を70℃で4時間(0−クレゾール
、p−クレゾール)又は90℃で4時間(0−クレジル
アセテート)行つたこと以外は実施例*1と同じ方法に
よつて表4の結果を得た。
Note that the same catalyst used in Examples 1, 2, and 3 was used. Further, Examples 10, 11, and 12 show examples in which 0.011 l of sodium acetate was allowed to coexist in the reaction system. Examples 13-24 o-cresol as nuclear substituted toluene,
0.1 each of p-cresol and o-cresyl acetate
9 was used, and the reaction was carried out at 70°C for 4 hours (0-cresol, p-cresol) or at 90°C for 4 hours (0-cresyl acetate). A result of 4 was obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 核置換トルエン(核置換基としては−CH_3、−
OPh、−OHあるいは−OCOR:R=アルキル基)
を低級脂肪酸の存在下にPd_aBi_bMn_c(a
=1のとき0<b≦20、0≦c≦20)で示される原
子組成をもつ固体触媒を使用して酸素あるいは酸素含有
ガスにより酸化することを特徴とする核置換ベンジルエ
ステルの製造方法。
1 Nuclear substituted toluene (nuclear substituents include -CH_3, -
OPh, -OH or -OCOR: R = alkyl group)
Pd_aBi_bMn_c(a
1. A method for producing a nuclear-substituted benzyl ester, which comprises oxidizing with oxygen or an oxygen-containing gas using a solid catalyst having an atomic composition as expressed by 0<b≦20, 0≦c≦20 when =1.
JP15706076A 1976-12-24 1976-12-24 Method for producing nuclear substituted benzyl ester Expired JPS5936894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15706076A JPS5936894B2 (en) 1976-12-24 1976-12-24 Method for producing nuclear substituted benzyl ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15706076A JPS5936894B2 (en) 1976-12-24 1976-12-24 Method for producing nuclear substituted benzyl ester

Publications (2)

Publication Number Publication Date
JPS5379832A JPS5379832A (en) 1978-07-14
JPS5936894B2 true JPS5936894B2 (en) 1984-09-06

Family

ID=15641324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15706076A Expired JPS5936894B2 (en) 1976-12-24 1976-12-24 Method for producing nuclear substituted benzyl ester

Country Status (1)

Country Link
JP (1) JPS5936894B2 (en)

Also Published As

Publication number Publication date
JPS5379832A (en) 1978-07-14

Similar Documents

Publication Publication Date Title
JP2742091B2 (en) Catalyst compositions, methods for their preparation and methods for hydrogenating chlorofluoroalkenes with these compositions
JP2847921B2 (en) Dimerization of aromatic halogen compounds
US3830833A (en) Process for isomerizing allylic esters of carboxylic acid
JP2757885B2 (en) Method for producing carbonic acid diester
JP3343982B2 (en) Acetic acid production method
JPS5936894B2 (en) Method for producing nuclear substituted benzyl ester
JPH0125731B2 (en)
JPS6362525B2 (en)
KR910003426B1 (en) Process for the preparation of a diester of oxalic acid
JP2870738B2 (en) Method for producing carbonic acid diester
US4319054A (en) Process for producing pyrogallol
JPS6039653B2 (en) Method for producing oxygen-containing hydrocarbon compound
JPH10158227A (en) Production of n,n-dimethylformamide
JPS627445A (en) Catalyst for liquid phase synthesis of beta-acetoxystyrene
JPH0155265B2 (en)
JPS62121645A (en) Catalyst for liquid phase synthesis of benzaldehyde
JPH06157416A (en) Production of glyoxylic acid ester
JPH04297443A (en) Production of carbonic acid diester
JPS5919735B2 (en) Catalyst for producing carboxylic acid esters
JP2001097922A (en) Production of phenyl ester and preparation of catalyst
JPH09253489A (en) Method for regeneration of catalyst for preparing carboxylate
JPS5848534B2 (en) Method for producing carboxylic acid alkenyl ester
JPS62123149A (en) Liquid phase synthesis of beta-acetoxystyrene
JPS5950659B2 (en) Production method of xylene side chain acetoxy compound
JPS59227831A (en) Production of oxygen-containing hydrocarbon compound