JPH06157416A - Production of glyoxylic acid ester - Google Patents

Production of glyoxylic acid ester

Info

Publication number
JPH06157416A
JPH06157416A JP4308657A JP30865792A JPH06157416A JP H06157416 A JPH06157416 A JP H06157416A JP 4308657 A JP4308657 A JP 4308657A JP 30865792 A JP30865792 A JP 30865792A JP H06157416 A JPH06157416 A JP H06157416A
Authority
JP
Japan
Prior art keywords
copper
acid ester
catalyst
zirconium
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4308657A
Other languages
Japanese (ja)
Inventor
Yukio Sumino
幸男 角野
Tomoharu Oku
智治 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP4308657A priority Critical patent/JPH06157416A/en
Publication of JPH06157416A publication Critical patent/JPH06157416A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To produce a compound useful, e.g. as a raw material of agricultural and medical drugs and a raw material of polymers, with high selective rate and high activity by oxidizing a glycolic acid ester with O2 in the presence of copper or copper and zirconium as a catalyst in a liquid phase. CONSTITUTION:A glyoxylic acid ester is high selectively synthesized without remarkable generation of by-products by reacting a glycolic acid ester with molecular oxygen in the presence of a catalyst containing copper or copper and zirconium in a liquid phase. As the copper-containing catalyst, metallic copper or a copper compound, e.g. a catalyst prepared by oxidizing the surface of metallic copper and subsequently reducing it with hydrogen can be used. The catalyst containing copper and zirconium is prepared preferably, e.g. by dissolving a copper compound and a zirconium compound in water, adding an aqueous alkaline solution to the resultant solution for precipitation of their hydroxide, washing it with water, drying it, subsequently oxidizing it and further reducing it in an atmosphere of H2. In this method, the reaction is carried out under a relatively mild condition and a high-quality product can be provided at low cost while improving the productivity and reducing the service cost and the cost of equipment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、医農薬品の合成原料、
有機薬品合成原料、ポリアセタールポリカルボキシレー
ト等の高分子化合物の原料等として有用なグリオキシル
酸エステルの製造方法に関する。
The present invention relates to a synthetic raw material for medical and agricultural chemicals,
The present invention relates to a method for producing glyoxylic acid ester useful as a raw material for synthesizing organic chemicals, a raw material for polymer compounds such as polyacetal polycarboxylate, and the like.

【0002】[0002]

【従来の技術】グリオキシル酸エステルの製造方法とし
て、従来、アクリル酸エステルをクロムーシリカライト
触媒の存在下過酸化水素と反応させてグリオキシル酸エ
ステルとする方法(特開平3−56439号)が開示さ
れている。この製造方法は高転化率、高収率であるが過
酸化水素の取り扱い等の問題がある。
2. Description of the Related Art As a method for producing a glyoxylic acid ester, a method of reacting an acrylic acid ester with hydrogen peroxide in the presence of a chromium-silicalite catalyst to give a glyoxylic acid ester has been disclosed (Japanese Patent Laid-Open No. 56439/1993). Has been done. This production method has a high conversion and a high yield, but has problems such as handling hydrogen peroxide.

【0003】一方、特開平2−91046号では、グリ
コール酸エステルを燐酸第2鉄触媒等の存在下、気相酸
化することにより、グリオキシル酸エステルとする方法
が開示されているが、反応温度が高く高選択率を得るた
めには転化率を抑える必要があり、転化率と選択率の改
善の問題がある。
On the other hand, Japanese Patent Application Laid-Open No. 2-91046 discloses a method of converting a glycolic acid ester into a glyoxylic acid ester by gas-phase oxidation in the presence of a ferric phosphate catalyst or the like, but the reaction temperature is In order to obtain high and high selectivity, it is necessary to suppress the conversion rate, and there is a problem of improvement in conversion rate and selectivity.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、副生
物が少なく、高収率、高選択率で、複雑な製造工程を必
要とせず経済的に有利なグリオキシル酸エステルを製造
するための新規な方法を提供することにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to produce an economically advantageous glyoxylic acid ester with a small amount of by-products, a high yield, a high selectivity and a complicated production process. It is to provide a new method.

【0005】本発明者らは、上記問題点の無いグリオキ
シル酸エステルの製造方法を種々検討した結果、グリコ
ール酸エステルを液相下、分子状酸素で酸化する方法に
おいて、銅含有触媒がグリオキシル酸エステルの生成に
ついて高活性、高選択性を有することを見いだし、更に
鋭意検討した結果、本発明を完成した。
As a result of various studies on a method for producing a glyoxylic acid ester which does not have the above-mentioned problems, the present inventors have found that in the method of oxidizing a glycolic acid ester with molecular oxygen in a liquid phase, the copper-containing catalyst is a glyoxylic acid ester. The present invention was completed as a result of finding out that it has a high activity and a high selectivity for the production of a.

【0006】[0006]

【課題を解決するための手段】本発明は、グリコール酸
エステルを、銅または銅およびジルコニウムを含有する
触媒の存在下、液相にて分子状酸素と反応させることを
特徴とするグリオキシル酸エステルの製造方法である。
DISCLOSURE OF THE INVENTION The present invention relates to a glyoxylic acid ester characterized by reacting a glycolic acid ester with molecular oxygen in a liquid phase in the presence of a catalyst containing copper or copper and zirconium. It is a manufacturing method.

【0007】本発明に用いられる触媒は、銅または銅お
よびジルコニウムを必須成分として含有するものであ
る。
The catalyst used in the present invention contains copper or copper and zirconium as essential components.

【0008】本発明に用いられる銅を含有する触媒は金
属または銅化合物として使用される。銅の原料として
は、金属銅、硝酸塩、硫酸塩、炭酸塩、酸化物、ハロゲ
ン化物、水酸化物等の無機物、例えば蟻酸塩、酢酸塩、
プロピオン酸塩、乳酸塩等の有機酸塩がある。触媒の形
態は特に限定されない。例えば金属銅表面を酸化後水素
により還元してえられた触媒、ラネー銅合金をアルカリ
水溶液で展開し得られた触媒、蟻酸銅、炭酸銅等を熱分
解及び/または還元して得られた活性化銅をそのまま、
または共沈法や含浸法により担体に担持して使用するこ
とができる。好ましい担体の例としては、アルミナ、シ
リカ、シリカ・アルミナ、酸化チタニウム、酸化ジルコ
ニウム、シリコンカーバイトなどが挙げられる。
The copper-containing catalyst used in the present invention is used as a metal or a copper compound. As a raw material of copper, inorganic substances such as metallic copper, nitrates, sulfates, carbonates, oxides, halides, hydroxides, for example, formates, acetates,
There are organic acid salts such as propionate and lactate. The form of the catalyst is not particularly limited. For example, a catalyst obtained by oxidizing a metal copper surface with hydrogen after reduction, a catalyst obtained by developing a Raney copper alloy with an alkaline aqueous solution, an activity obtained by thermally decomposing and / or reducing copper formate, copper carbonate, etc. As it is, copper
Alternatively, it can be used by supporting it on a carrier by a coprecipitation method or an impregnation method. Examples of preferred carriers include alumina, silica, silica-alumina, titanium oxide, zirconium oxide, silicon carbide and the like.

【0009】本発明に用いられる銅およびジルコニウム
を含有する触媒は金属または金属化合物として使用され
る。原料としては、金属銅、硝酸塩、硫酸塩、炭酸塩、
酸化物、ハロゲン化物、水酸化物等の無機物、例えば蟻
酸塩、酢酸塩、プロピオン酸塩、乳酸塩等の有機酸塩が
ある。触媒の形態は特に限定されない。たとえば銅化合
物とジルコニウム化合物を水に溶解した溶液へアルカリ
水溶液を添加して水酸化物を沈殿せしめ、該沈殿物を水
洗し、乾燥後空気中または酸素中で酸化した後水素雰囲
気中で還元処理した銅およびジルコニウムを含有する触
媒が好適である。また、酸化ジルコニウムに銅化合物水
溶液を含浸させ、乾燥後、空気中または酸素中で酸化し
た後、水素雰囲気中で還元処理した銅を酸化ジルコニウ
ムに担持した触媒も好適である。これらの触媒は担体に
担持して使用することができる。好ましい担体の例とし
ては、アルミナ、シリカ、シリカ・アルミナ、酸化チタ
ニウム、酸化ジルコニウム、シリコンカーバイトなどが
挙げられる。
The catalyst containing copper and zirconium used in the present invention is used as a metal or a metal compound. Raw materials include metallic copper, nitrates, sulfates, carbonates,
There are inorganic substances such as oxides, halides and hydroxides, and organic acid salts such as formates, acetates, propionates and lactates. The form of the catalyst is not particularly limited. For example, an alkaline aqueous solution is added to a solution in which a copper compound and a zirconium compound are dissolved in water to precipitate a hydroxide, the precipitate is washed with water, dried, oxidized in air or oxygen, and then reduced in a hydrogen atmosphere. Preferred are catalysts containing copper and zirconium. Further, a catalyst in which zirconium oxide is impregnated with a copper compound aqueous solution, dried, oxidized in air or oxygen, and then reduced in a hydrogen atmosphere to support copper on zirconium oxide is also preferable. These catalysts can be used by supporting them on a carrier. Examples of preferred carriers include alumina, silica, silica-alumina, titanium oxide, zirconium oxide, silicon carbide and the like.

【0010】銅およびジルコニウムを含有する触媒にお
ける銅の含有量は、銅とジルコニウムの合計量に対して
3〜50重量%、好ましくは5〜35重量%である。
The content of copper in the catalyst containing copper and zirconium is 3 to 50% by weight, preferably 5 to 35% by weight, based on the total amount of copper and zirconium.

【0011】本発明においてバッチ方式で行う場合、触
媒の使用量は、グリコール酸エステルに対して5〜70
重量%、好ましくは10〜40重量%である。固定床等
連続方式で行う場合は、液時空間速度(LHSV)(反
応層体積当たりの反応液の供給容積速度)で0.05〜
50hr-1が使用される。
In the present invention, when a batch method is used, the amount of the catalyst used is 5 to 70 with respect to the glycolic acid ester.
%, Preferably 10-40% by weight. When a continuous system such as a fixed bed is used, the liquid hourly space velocity (LHSV) (reaction liquid supply volume velocity per reaction layer volume) is 0.05 to
50 hr -1 is used.

【0012】本発明において、分子状酸素としては、純
酸素を用いても、空気を用いてもよいが操作上の安全
性、経済性の面から空気が有利である。また分子状酸素
を不活性ガスで希釈して反応を起こさせることもでき
る。不活性ガスとしては窒素、ヘリウム、アルゴンなど
が用いられる。
In the present invention, as the molecular oxygen, either pure oxygen or air may be used, but air is advantageous in terms of operational safety and economical efficiency. Further, molecular oxygen may be diluted with an inert gas to cause a reaction. As the inert gas, nitrogen, helium, argon or the like is used.

【0013】本発明において、グリコール酸エステルと
してはグリコール酸メチル、グリコール酸エチル、グリ
コール酸プロピル、グリコール酸ブチル等が使用され
る。
In the present invention, as the glycolic acid ester, methyl glycolate, ethyl glycolate, propyl glycolate, butyl glycolate and the like are used.

【0014】本発明において、グリコール酸エステルを
出発原料とする場合、そのままで反応を行うこともでき
るし、有機溶剤を用いて行うこともできる。好ましい溶
剤として、エーテル系、ニトリル系、ケトン系などの溶
剤が挙げられる。
In the present invention, when a glycolic acid ester is used as a starting material, the reaction can be carried out as it is or can be carried out using an organic solvent. Preferred solvents include ether type, nitrile type and ketone type solvents.

【0015】反応温度はグリコール酸エステル及び生成
したグリオキシル酸エステルの過剰酸化、脱炭酸を防ぐ
ため200℃以下の温度、好ましくは50〜150℃の
温度範囲内で行われる。
The reaction temperature is 200 ° C. or lower, preferably 50 to 150 ° C., in order to prevent excessive oxidation and decarboxylation of the glycolic acid ester and the generated glyoxylic acid ester.

【0016】本発明において、酸素分圧が高いほど反応
速度は速くなり、高圧下酸素含有ガスを流通しながら反
応を行うのが望ましい。通常、反応を液相で進めるため
の最低圧力以上、好ましくは5〜50Kg/cm2 Gの
範囲内である。
In the present invention, the higher the oxygen partial pressure, the faster the reaction rate, and it is desirable to carry out the reaction under a high pressure while flowing the oxygen-containing gas. Usually, it is at least the minimum pressure for proceeding the reaction in the liquid phase, preferably in the range of 5 to 50 Kg / cm 2 G.

【0017】反応の形式はバッチ、セミバッチ、連続反
応いずれの方法も用いることができる。
As the reaction type, any of batch, semi-batch and continuous reaction methods can be used.

【0018】本発明の方法により反応した後の反応混合
物を濾過して触媒を分離し、溶媒を除去、精製すること
により、目的とするグリオキシル酸エステルが得られ
る。
The target glyoxylic acid ester is obtained by filtering the reaction mixture after the reaction by the method of the present invention to separate the catalyst, removing the solvent and purifying.

【0019】[0019]

【作用】本発明のグリコール酸エステルを、銅または銅
およびジルコニウムを含有する触媒の存在下、液相にて
分子状酸素と反応させる方法により、副生物が少なく目
的とするグリオキシル酸エステルを高選択率で製造でき
る。
By the method of reacting the glycolic acid ester of the present invention with molecular oxygen in the liquid phase in the presence of a catalyst containing copper or copper and zirconium, the target glyoxylic acid ester is highly selected with few by-products. Can be manufactured at a rate.

【0020】[0020]

【実施例】以下、実施例により本発明を具体的に説明す
る。但し、本発明はこれらの実施例により制限されるも
のではない。
EXAMPLES The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these examples.

【0021】ここでグリコール酸エステルの転化率およ
びグリオキシル酸エステルの選択率は下記の式から導き
出される。
Here, the conversion rate of glycolic acid ester and the selectivity of glyoxylic acid ester are derived from the following equations.

【0022】 グリコール酸エステルの転化率(%)=反応したグリコ
ール酸エステルのモル数/反応に供したグリコール酸エ
ステルのモル数×100 グリオキシル酸エステルの選択率(%)=生成したグリ
オキシル酸エステルのモル数/反応したグリコール酸エ
ステルのモル数×100 実施例1 グリコール酸メチル54g、展開ラネー銅11gを撹拌
機、ガス吹き込み管、圧力調節器を設けた内容積500
mlのステンレス製オートクレーブに仕込み、反応温度
100℃、反応圧力10Kg/cm2 Gに維持しなが
ら、空気を毎分1リットルの流量で流通し、5時間反応
を行った。反応終了後、降温、解圧し、触媒を分離後反
応液を分析したところ、グリコール酸メチルの転化率は
38%、グリオキシル酸メチルの選択率は80%であっ
た。
Conversion rate of glycolic acid ester (%) = mol number of reacted glycolic acid ester / mol number of glycolic acid ester subjected to reaction × 100 Glyoxylic acid ester selectivity (%) = produced glyoxylic acid ester Number of moles / Number of moles of reacted glycolic acid ester × 100 Example 1 Internal volume 500 in which 54 g of methyl glycolate and 11 g of expanded Raney copper were provided with a stirrer, a gas blowing tube, and a pressure controller
It was charged into a stainless steel autoclave and the reaction temperature was kept at 100 ° C. and the reaction pressure was kept at 10 kg / cm 2 G, and air was passed at a flow rate of 1 liter per minute to carry out a reaction for 5 hours. After the completion of the reaction, the temperature was lowered, the pressure was released, the catalyst was separated, and the reaction solution was analyzed. As a result, the conversion rate of methyl glycolate was 38% and the selectivity of methyl glyoxylate was 80%.

【0023】実施例2 オキシ塩化ジルコニウム24.8gと硝酸銅4.0gを
水300mlに溶解した溶液へ水酸化ナトリウム水溶液
を添加し水酸化物を沈澱せしめ、この沈澱を水洗し乾燥
後、空気中500℃、3時間加熱処理し、水素気流中2
30℃、6時間還元処理して銅及びジルコニウム含有触
媒を調製した。
Example 2 A solution of 24.8 g of zirconium oxychloride and 4.0 g of copper nitrate dissolved in 300 ml of water was added with an aqueous sodium hydroxide solution to precipitate a hydroxide, and the precipitate was washed with water, dried and then dried in air. Heat treatment at 500 ° C for 3 hours, 2 in hydrogen stream
A reduction treatment was performed at 30 ° C. for 6 hours to prepare a copper- and zirconium-containing catalyst.

【0024】展開ラネー銅の代わりにこの銅およびジル
コニウム含有触媒8gを用いた他は実施例1と同じ条件
で、5時間反応を行なった。反応終了後、降温、解圧
し、触媒を分離後反応液を分析したところ、グリコール
酸メチルの転化率は25%、グリオキシル酸メチルの選
択率は78%であった。
Reaction was carried out for 5 hours under the same conditions as in Example 1 except that 8 g of this copper- and zirconium-containing catalyst was used instead of expanded Raney copper. After the completion of the reaction, the temperature was lowered, the pressure was released, the catalyst was separated, and the reaction solution was analyzed. As a result, the conversion of methyl glycolate was 25% and the selectivity of methyl glyoxylate was 78%.

【0025】比較例1 グリコール酸メチル46gおよび活性炭に担持したパラ
ジウム触媒(担持量5%)9gを撹拌機、ガス吹き込み
管、圧力調節器を設けた内容積500mlのステンレス
製オートクレーブに仕込み、反応温度100℃、反応圧
力10Kg/cm2 Gに維持しながら、空気を毎分1リ
ットルの流量で流通し、5時間反応を行った。反応終了
後、降温、解圧し、触媒を分離後反応液を分析したとこ
ろ、グリコール酸メチルの転化率は11%であり、グリ
オキシル酸メチルの生成は検出されなかった。
Comparative Example 1 46 g of methyl glycolate and 9 g of a palladium catalyst supported on activated carbon (supported amount: 5%) were charged into a stainless steel autoclave having an internal volume of 500 ml equipped with a stirrer, a gas blowing tube, and a pressure controller at a reaction temperature. While maintaining the temperature at 100 ° C. and the reaction pressure at 10 kg / cm 2 G, air was flowed at a flow rate of 1 liter / min to carry out the reaction for 5 hours. After completion of the reaction, the temperature was lowered, the pressure was released, the catalyst was separated, and the reaction solution was analyzed. As a result, the conversion rate of methyl glycolate was 11%, and the production of methyl glyoxylate was not detected.

【0026】比較例2 グリコール酸メチル46gおよび活性炭に担持した白金
触媒(担持量5%)9gを撹拌機、ガス吹き込み管、圧
力調節器を設けた内容積500mlのステンレス製オー
トクレーブに仕込み、反応温度100℃、反応圧力10
Kg/cm2 Gに維持しながら、空気を毎分1リットル
の流量で流通し、5時間反応を行った。反応終了後、降
温、解圧し、触媒を分離後反応液を分析したところ、グ
リコール酸メチルの転化率は6%であり、グリオキシル
酸メチルの生成は検出されなかった。
Comparative Example 2 46 g of methyl glycolate and 9 g of a platinum catalyst supported on activated carbon (support amount: 5%) were charged into a stainless steel autoclave having an internal volume of 500 ml equipped with a stirrer, a gas blowing tube and a pressure controller, and the reaction temperature was set. 100 ° C, reaction pressure 10
While maintaining Kg / cm 2 G, air was flowed at a flow rate of 1 liter / min to carry out a reaction for 5 hours. After completion of the reaction, the temperature was lowered, the pressure was released, the catalyst was separated, and the reaction liquid was analyzed. As a result, the conversion of methyl glycolate was 6%, and the production of methyl glyoxylate was not detected.

【0027】[0027]

【発明の効果】本発明の方法により、グリコール酸エス
テルから副生物が少なく目的とするグリオキシル酸エス
テルを高選択率で製造できる。液相下比較的穏和な条件
で反応が行えるため、生産性が高く、用役費、設備費用
が低減でき、高品質の製品が安価に供給できる。
Industrial Applicability According to the method of the present invention, the target glyoxylic acid ester can be produced with high selectivity from glycolic acid ester with few by-products. Since the reaction can be performed under a relatively mild condition in the liquid phase, the productivity is high, the utility cost and equipment cost can be reduced, and high quality products can be supplied at low cost.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 グリコール酸エステルを、銅または銅お
よびジルコニウムを含有する触媒の存在下、液相にて分
子状酸素と反応させることを特徴とするグリオキシル酸
エステルの製造方法。
1. A process for producing a glyoxylic acid ester, which comprises reacting a glycolic acid ester with molecular oxygen in a liquid phase in the presence of a catalyst containing copper or copper and zirconium.
JP4308657A 1992-11-18 1992-11-18 Production of glyoxylic acid ester Pending JPH06157416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4308657A JPH06157416A (en) 1992-11-18 1992-11-18 Production of glyoxylic acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4308657A JPH06157416A (en) 1992-11-18 1992-11-18 Production of glyoxylic acid ester

Publications (1)

Publication Number Publication Date
JPH06157416A true JPH06157416A (en) 1994-06-03

Family

ID=17983721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4308657A Pending JPH06157416A (en) 1992-11-18 1992-11-18 Production of glyoxylic acid ester

Country Status (1)

Country Link
JP (1) JPH06157416A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110627645A (en) * 2018-06-25 2019-12-31 中国石油化工股份有限公司 Production method for preparing glyoxylic acid ester from glycolate
CN112354542A (en) * 2020-11-20 2021-02-12 浙江工业大学 V-shaped groove2O5-CuO/TiO2Catalyst, preparation method and application thereof
CN115672336A (en) * 2021-07-29 2023-02-03 中国石油化工股份有限公司 Catalyst for synthesizing glyoxylate by oxidation method, preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110627645A (en) * 2018-06-25 2019-12-31 中国石油化工股份有限公司 Production method for preparing glyoxylic acid ester from glycolate
CN110627645B (en) * 2018-06-25 2022-06-03 中国石油化工股份有限公司 Production method for preparing glyoxylic acid ester from glycolate
CN112354542A (en) * 2020-11-20 2021-02-12 浙江工业大学 V-shaped groove2O5-CuO/TiO2Catalyst, preparation method and application thereof
CN112354542B (en) * 2020-11-20 2023-07-11 浙江工业大学 V (V) 2 O 5 -CuO/TiO 2 Catalyst, preparation method and application thereof
CN115672336A (en) * 2021-07-29 2023-02-03 中国石油化工股份有限公司 Catalyst for synthesizing glyoxylate by oxidation method, preparation method and application thereof

Similar Documents

Publication Publication Date Title
JPH10306047A (en) Production of 1,6-hexanediol
JP2008518001A (en) Process for producing cyclohexanol and cyclohexanone
JPH04225836A (en) Worganic body carried catalyst for producing ethylidenediacetate, its manufacture and manufacture of ethylidenediacetate using the same
JP5055262B2 (en) Method for producing p-toluic acid by liquid phase oxidation of p-xylene in water
JP4788022B2 (en) Process for producing aromatic polycarboxylic acid
JPH06157416A (en) Production of glyoxylic acid ester
KR0131203B1 (en) Process for the production of ñò-butyrolactone
JP3129547B2 (en) Method for producing glycolate
JP4846575B2 (en) Process for producing α, β-unsaturated carboxylic acid
JPH06157399A (en) Production of glyoxylic acid
JPH06135895A (en) Production of glycolic acid ester
JPH1112207A (en) Improved catalyst for hydrogenating aqueous maleic acid capable of being hydrogenated to produce 1,4-butanediol
JPH03141243A (en) Production of carbonic acid diester
JP4014287B2 (en) Method for producing 3-acyloxycyclohexene
JP3132141B2 (en) Method for producing γ-butyrolactone
JPH11255684A (en) Production of 1,6-hexanediol
JP3147422B2 (en) Method for producing naphthalenedicarboxylic acid
KR100757719B1 (en) Method for producing alcohol and/or ketone
JPH08301815A (en) Production of glyoxylic acid ester
JP2001253847A (en) Method for producing (hydroxyalkyl)cycloaliphatic carboxylic acids
JPH04139152A (en) Production of carbonate diester
JPH09253489A (en) Method for regeneration of catalyst for preparing carboxylate
JPH05213926A (en) Production of 2-furancarboxylic acid
JPH1160524A (en) Production of 1,6-hexanediol
JP2000319220A (en) Production of pyromellitic acid