JPS5936514B2 - Inverter device and its driving method - Google Patents

Inverter device and its driving method

Info

Publication number
JPS5936514B2
JPS5936514B2 JP54034919A JP3491979A JPS5936514B2 JP S5936514 B2 JPS5936514 B2 JP S5936514B2 JP 54034919 A JP54034919 A JP 54034919A JP 3491979 A JP3491979 A JP 3491979A JP S5936514 B2 JPS5936514 B2 JP S5936514B2
Authority
JP
Japan
Prior art keywords
circuit
inverter
power
power supply
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54034919A
Other languages
Japanese (ja)
Other versions
JPS55127884A (en
Inventor
敏昭 上符
忠男 郷司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP54034919A priority Critical patent/JPS5936514B2/en
Publication of JPS55127884A publication Critical patent/JPS55127884A/en
Publication of JPS5936514B2 publication Critical patent/JPS5936514B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ac-Ac Conversion (AREA)
  • Inverter Devices (AREA)

Description

【発明の詳細な説明】 本発明は負荷電動機群の可変周波電源となるインバータ
に係り、特にゲート回路、制御装置及びシーケンス回路
の動作電源の取り方に特徴のあるインバータを提供しよ
うとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inverter that serves as a variable frequency power source for a load motor group, and particularly aims to provide an inverter that is unique in how the operating power is obtained for a gate circuit, a control device, and a sequence circuit. be.

一般にインバータと云つてもサイリスタを使用したもの
であれば電圧形、電流形とあり、さらにゲートターンオ
フサイリスタを使用したものであればパルス幅変調形と
云う様に王回路構成或は制御方法によつて各種のインバ
ータが開発され製品化されている。これらインバータと
して代表的なものを第1図に示す。この第1図では1は
ダイオードをブリツジ接続した順変換部で、2はサイリ
スタを純ブリツジ接続した逆変換部で、3はゲート回路
,シーケンス回路及び制御回路等を含めた制御装置5の
動作電源となる電源トランスで、4は交流入力電源電圧
を適当な電圧に降圧するトランスで、このトランス4の
二次側は図示する様に電圧,周波数等の自動制御を行な
う制御回路の動作電源土15Vを得る巻線と、逆変換部
の素子群の点弧順序を決定し、且つ過電流発生時に逆変
換部の素子群に供給するゲート信号をプロツクしてイン
バータを保護すると共に、回生運転を行わせるロジック
シーケンス回路の動作電源+12Vを得る巻線と、ダイ
オード整流器であればラツシユ電流を制限してインバー
タの始動をシーケンス的に行なうシーケンス回路の動作
電源+70を得る巻線、さらには商用周波の交流入力電
源の停電一回復等を検出する為の巻線等、複数組に分割
された二次巻線があり、これら二次側巻線電圧が制御装
置5で代表する部に入力される。61〜63は逆変換部
2の素子群のゲート電源となるゲートトランスで図では
三相インバータであるので3組のゲートトランスを用意
して、例えば61のトランスは逆変換部2のU相とX相
に、同様に62のトランスはv相とY相に、一方63の
トランスはW相とZ相と云う様に予じめ前以て各ゲート
トランスの二次側巻線は規定してある。
Generally speaking, inverters are classified into voltage type and current type if they use thyristors, and pulse width modulation type if they use gate turn-off thyristors, depending on the circuit configuration or control method. Various inverters have been developed and commercialized. Typical of these inverters are shown in FIG. In FIG. 1, 1 is a forward conversion section with bridge-connected diodes, 2 is an inverse conversion section with thyristors connected in a pure bridge, and 3 is an operating power supply for the control device 5 including gate circuits, sequence circuits, control circuits, etc. 4 is a transformer that steps down the AC input power supply voltage to an appropriate voltage, and the secondary side of this transformer 4 is a 15V operating power supply for a control circuit that automatically controls voltage, frequency, etc., as shown in the figure. It determines the firing order of the winding that obtains the current and the element group of the inverter, and protects the inverter by blocking the gate signal supplied to the element group of the inverter when an overcurrent occurs, and performs regenerative operation. A winding that obtains an operating power supply of +12V for a logic sequence circuit that uses a diode rectifier, a winding that obtains an operating power supply of +70V for a sequence circuit that limits the rush current and starts the inverter in a sequential manner when using a diode rectifier, and a commercial frequency alternating current. There are secondary windings divided into a plurality of sets, such as windings for detecting power outage and recovery of the input power supply, and the voltages of these secondary windings are input to a section represented by the control device 5. Reference numerals 61 to 63 refer to gate transformers that serve as the gate power supply for the element group of the inverse converter 2. In the figure, since it is a three-phase inverter, three sets of gate transformers are prepared. For example, the transformer 61 is connected to the U phase of the inverse converter 2. The secondary windings of each gate transformer are specified in advance such that transformer 62 has V phase and Y phase, while transformer 63 has W phase and Z phase. be.

これら各二次側巻線の出力側には直流電力を得る為の整
流回路群71〜7,が設けられ、これら整流回路群の直
流出力側にはコンデンサ群Cu−Cw,Cx−Czが個
々に並列輌入される。このコンデンサ群は交流入力電源
の停電時に際してゲート電源をある所定期間に渡つて確
保する必要性より何10万μFと云う様な大容量のもの
が適用されている。なお、停電対策として何もゲート回
路のみにあるものではなく、例えば上紀した制御装置の
自動制御を行なう制御回路の電源側にも何万μFと云う
大容量のコンデンサが使用されている。さて、再び第1
図に戻つて9は直流中間回路の平滑用コンデンサC1−
C2の端子間電圧を検出する直流電圧検出回路で、10
はコンパレータで設定器11よりの電圧設定信号と電圧
検出信号とを比較する為のもので,12はホトカプラで
コンパレータよりの電圧信号を入力してこの電気信号を
光信号に変換する為のもので,周知の様に直流中間回路
の電圧入力側と制御装置5側との電位差による絶縁をと
る為に設けられる。
Rectifier circuit groups 71 to 7 for obtaining DC power are provided on the output side of each of these secondary windings, and capacitor groups Cu-Cw and Cx-Cz are individually installed on the DC output side of these rectifier circuit groups. will be delivered in parallel. This group of capacitors has a large capacity of several hundred thousand μF because it is necessary to secure gate power supply for a certain period of time in the event of a power outage of the AC input power supply. Note that as a countermeasure against power outages, not only the gate circuit is used, but also a large capacitor of tens of thousands of μF is used on the power supply side of the control circuit that automatically controls the control device described above, for example. Now, the first
Returning to the diagram, 9 is the DC intermediate circuit smoothing capacitor C1-
A DC voltage detection circuit that detects the voltage between the terminals of C2.
12 is a comparator for comparing the voltage setting signal from the setting device 11 with the voltage detection signal, and 12 is a photocoupler for inputting the voltage signal from the comparator and converting this electrical signal into an optical signal. , as is well known, is provided to provide insulation due to the potential difference between the voltage input side of the DC intermediate circuit and the control device 5 side.

これらホトカプラ12−コンバータ10一電圧検出回路
9等を含めた構成のものは、例えばインバータが回生運
転時にある場合、回生パワーが大で直流中間回路の電圧
が異常に上昇するのを検出する過電圧検出用としての機
能を有するものであつて、この様に回生時に直流中間回
路の過電圧が検出されると制御装置5によつて回生パワ
ーを減少すべく所定の制御が行なわれる。Ldは直流中
間回路の直流リアクトルで、R1−R2は直流中間回路
の直流電圧を分圧する分圧抵抗で、平滑用コンデンサC
1−C2は周知の様に直流電力を平滑する為のものであ
る。なお,順変換部1のダイオード素子群及び逆変換部
2のサイリスタ素子群に並列接続した抵抗−コンデンサ
の回路,ダイオード−コンデンサー抵抗の回路は素子群
の転流時に生ずるサージを吸収するスナバ一回路で、さ
らに第1図に示すインバータは順変換部1としてダイオ
ード整流器を適用した場合を示したが、サイリスタ整流
器を適用しても動作上は全く同一である事は申す迄もな
い。なお、ダイオード整流器の場合は周知の様に電圧調
整機能を新たに附加しなければならず、この電圧調整機
能を有するものとしてチヨツパ一回路を順変換部の直流
出力側に挿入すればよい。さて、この様に構成されるイ
ンバータの動作は既に周知であるので説明は省略するも
のとし、ここではインバータの構造そのものに言及する
事にする。
The configuration including the photocoupler 12, converter 10, voltage detection circuit 9, etc. is used for overvoltage detection, which detects when the regenerative power is large and the voltage of the DC intermediate circuit increases abnormally when the inverter is in regenerative operation, for example. When an overvoltage in the DC intermediate circuit is detected during regeneration, the control device 5 performs a predetermined control to reduce the regeneration power. Ld is a DC reactor of the DC intermediate circuit, R1-R2 are voltage dividing resistors that divide the DC voltage of the DC intermediate circuit, and smoothing capacitor C
1-C2 is for smoothing DC power as is well known. Note that the resistor-capacitor circuit and the diode-capacitor resistor circuit connected in parallel to the diode element group of the forward converter 1 and the thyristor element group of the inverse converter 2 are snubber circuits that absorb surges that occur during commutation of the element group. Further, although the inverter shown in FIG. 1 uses a diode rectifier as the forward conversion section 1, it goes without saying that the operation is exactly the same even if a thyristor rectifier is used. In the case of a diode rectifier, as is well known, a voltage adjustment function must be newly added, and a chopper circuit having this voltage adjustment function may be inserted on the DC output side of the forward conversion section. Now, since the operation of the inverter configured in this manner is already well known, the explanation will be omitted, and the structure of the inverter itself will be referred to here.

先ず負荷電動機Lを正一逆運転する場合に必要な制御系
としては図示しないが周知の様に電流制御系をマイナー
ループとし、この外側にメジヤーループとしての速度制
御系を設けた王として所定の電圧制御を行なう電圧制御
系と、逆変換部2を制御する事によりインバータ出力周
波数を制御する周波数制御系とがあり、これら制御系を
含めた自動制御回路の動作電源±15Vを得る第1の電
源部と、逆変換部の素子群の点弧順序を決定し、且つ過
電流発生時に逆変換部の素子群に供給するゲート信号を
プロツクしてインバータを保護すると共に、回生運転を
行なわせるロジツクシ一ケンス回路の動作電源+12V
を得る第2の電源部と、ダイオード整流器であるので始
動時のラツシュ電流を抑制して直流中間回路の平滑用コ
ンデンサを所定値に充電し、インバータ始動時の予備光
電操作をシーケンス的に行なう部と停止操作をシーケン
ス的に行なう部とを含めたシーケンス回路の動作電源+
70Vを得る第3の電源部と、交流入力電源の停電−復
電を検出する部の動作電源を得る第4の電源部との電源
入力法は、第1図に示す如く配線用遮断器MCB−交流
入力電源電圧が400Vであれば400Vを200Vに
降圧する電源トランス3−各種の動作電源を得るトラン
ス4の構成をもつて行なつており、さらに逆変換部2の
ゲート電源は3組のゲートトランス6,〜63−6組の
整流回路T,〜T6の構成をもつて入力しており、さら
に回生時の過電圧検出にはホトカプラ12を含めた構成
をもつて入力している。即ち所定の動作を行なう各部の
動作電源はイ動りでしかも単独で行なつているので図示
する様に回路構成が複雑で、且つ電源トランス3−トラ
ンス4−ゲートトランス61〜63と云う様に容量が大
で大型のものばかりでプリント板には到底組み入れる事
はできず,盤そのものが大きくなつて非常に不経済であ
ると云う事である。特に重要な事は交流入力電源が停電
した場合の停電対策である。即ち逆変換部のゲート回路
には数10万μFと云う様な大容量のコンデンサ群Cu
−Cw,Cx−Czを配しており、さらに自動制御を行
なう制御電源側には図示はしないが上記した様に数万μ
Fと云う大容量のコンデンサを適用しており.これらコ
ンデンサ群は大型でしかも非常に高価であるので、イン
バータそのものの大型化を一層助長する事となり決して
好ましいものではない。本発明はこの点に鑑みて発明さ
れたものであつて、本願は特にインバータ各部の動作電
源は一括して直流中間回路より取り出す様にして信頼性
の向上.さらにはプリント板による縮少化を図つた事を
一大特徴として以下第2図に示す実施例に基づき詳述す
る。
First, as a control system required when the load motor L is operated in forward and reverse directions, as is well known, although not shown, the current control system is a minor loop, and the speed control system as a major loop is provided outside of this, and a predetermined voltage is set as the main control system. There is a voltage control system that performs control, and a frequency control system that controls the inverter output frequency by controlling the inverse converter 2, and the first power supply that obtains an operating power supply of ±15V for the automatic control circuit including these control systems. A logic unit that determines the firing order of the inverter and the element group of the inverse converter, protects the inverter by blocking the gate signal supplied to the inverter's element group when an overcurrent occurs, and performs regenerative operation. Operating power supply for the can circuit +12V
and a second power supply section that uses a diode rectifier to suppress the rush current at startup, charges the smoothing capacitor of the DC intermediate circuit to a predetermined value, and performs preliminary photoelectric operations in sequence when starting the inverter. The operating power supply for the sequence circuit including the part that performs the stop operation in sequence
The power input method for the third power supply section that obtains 70V and the fourth power supply section that obtains the operating power for the section that detects the power failure/return of the AC input power source is as shown in Fig. 1, using the molded case circuit breaker MCB. - If the AC input power supply voltage is 400V, it has a power transformer 3 that steps down 400V to 200V - A transformer 4 that obtains various operating power supplies.Furthermore, the gate power supply of the inverter 2 has three sets of A configuration of gate transformers 6, 63-6, to 63-6 rectifier circuits T, to T6 is input, and a configuration including a photocoupler 12 is input for overvoltage detection during regeneration. In other words, the operating power supply for each part that performs a predetermined operation is independent and independent, so the circuit configuration is complicated as shown in the figure, and the power transformer 3 - transformer 4 - gate transformers 61 to 63 are used. Most of them have a large capacity and are large, so it is impossible to incorporate them into a printed board, and the board itself becomes large, which is extremely uneconomical. What is particularly important is countermeasures against power outages in the event of a power outage of the AC input power supply. In other words, the gate circuit of the inverse conversion section is equipped with a group of capacitors Cu with a large capacity of several hundred thousand μF.
-Cw, Cx-Cz are arranged, and the control power supply side that performs automatic control is not shown, but as mentioned above, tens of thousands of μ
A large capacity capacitor called F is used. Since these capacitor groups are large and very expensive, they encourage the inverter itself to become even larger, which is not at all desirable. The present invention was devised in view of this point, and the present invention particularly aims to improve reliability by extracting the operating power for each part of the inverter from the DC intermediate circuit all at once. Furthermore, the main feature is that the size is reduced by using a printed board, and will be described in detail below based on the embodiment shown in FIG.

第2図の実施例で第1図と同一のものは同一符号を附し
ており、13は本願の主要部たる動作電源確立回路であ
つて、この動作電源確立回路13は直流中間回路より所
望の直流電力を取込むべく直流中間回路の正極母線側に
は抵抗R3−ダイオードD,の直列回路を配して、この
直列回路より得る直流電圧を分圧する回路としてコンデ
ンサC3,C4−抵抗R4,R,の分圧回路を設け.さ
らにこの分圧回路のコンデンサC3,C4にチヤージさ
れる光電電圧を動作源とする、例えばトランジスタTr
l,Tr2−ダイオードD2,D3−制御回路14−コ
ンデンサC5とで構成される並列インバータを設けて、
このインバータの交流出力を一方は逆変換部2のサイリ
スタ素子のゲート電源に利用すると共に.交流出力の他
方は制御装置15を構成する各部の動作電源として利用
する。
In the embodiment shown in FIG. 2, the same parts as those in FIG. A series circuit of resistor R3 and diode D is arranged on the positive bus side of the DC intermediate circuit in order to take in the DC power, and capacitors C3 and C4 and resistor R4 are used as a circuit to divide the DC voltage obtained from this series circuit. A voltage dividing circuit of R is provided. Furthermore, the photoelectric voltage charged to the capacitors C3 and C4 of this voltage dividing circuit is used as an operation source, for example, a transistor Tr.
A parallel inverter consisting of l, Tr2, diodes D2, D3, control circuit 14, and capacitor C5 is provided,
One side uses the AC output of this inverter as a gate power source for the thyristor element of the inverter 2. The other of the AC outputs is used as an operating power source for each part constituting the control device 15.

ここで制御装置15の構成としては第1図の従来例で述
べた様に自動制御回路一ロジツクシーケンズ回路−シー
ケンス回路−停電−復電検出回路を含む事は申す迄もな
く、さらに本願では制御装置の電源トランスの二次側に
新たに二次巻線を附加して、この附加した二次巻線の出
力を回生時に於ける直流中間回路の過電圧検出用として
利用する様にしたものである。さて逆変換部2のゲート
回路の構成であるが、このゲート回路の電源は上記した
様に直列インバータの交流出力を利用する。この場合、
各ゲートトランスは図示した様に交流出力端子A− B
間に夫々並列的に配置して転流コンデンサC,とで共振
回路を構成する。直列インバータの動作周波数は、例え
ば10KHzと云う様な高周波で所定の動作を行なうと
前以て予じめ規定してあるので.逆変換部の各相個々に
ゲートトランスを分割配置する方式を採用して、しかも
高周波であるのでゲートトランスそのものは非常に小型
にできゲート回路のプリント板に夫々のゲートトランス
を塔載する事ができる。なお、直列インバータの制御回
路14の構成は何ら図示しないが、例えばスィツチング
素子の各トランジスタTr,,Tr2をベースドライブ
する為に発振回路を含めたベースドライブ回路を少なく
とも最小限含んで成るものである。さて、この様に構成
される本発明の動作を述べると、先ず従来周知の予備充
電操作により順変換部1のダイオード整流回路を通して
直流中間回路の平滑用コンデンサCI,C2がある所定
値まで光電され、しかも直流中間回路の直流電力が抵抗
R3→ダイオードD1の経路を通して動作電源確立回路
13に入力されて、この動作電源確立回路で入力される
直流電力を分圧した分圧コンデンサC3,C4の充電電
圧を以て直列インバータが所定の動作を行なつて所望の
交流電力を出力し、この交流電力を入力して制御装置1
5の自動制御装置等の各部の動作電源電圧が確立してい
るものとする。
It goes without saying that the configuration of the control device 15 includes an automatic control circuit, a logic sequence circuit, a sequence circuit, a power outage, and a power restoration detection circuit as described in the conventional example shown in FIG. In this case, a new secondary winding is added to the secondary side of the power transformer of the control device, and the output of this added secondary winding is used for overvoltage detection of the DC intermediate circuit during regeneration. It is. Now, regarding the configuration of the gate circuit of the inverse conversion section 2, the power supply for this gate circuit utilizes the AC output of the series inverter as described above. in this case,
Each gate transformer has AC output terminals A-B as shown in the diagram.
A resonant circuit is constituted by commutating capacitors C, which are arranged in parallel between them. The operating frequency of a series inverter is predetermined in advance to perform a specified operation at a high frequency such as 10 KHz. A method is adopted in which a gate transformer is placed separately for each phase of the inverse conversion section, and since the frequency is high, the gate transformer itself can be made very small, and each gate transformer can be mounted on the printed board of the gate circuit. can. Although the configuration of the control circuit 14 of the series inverter is not shown in the drawings, it includes at least a base drive circuit including an oscillation circuit to drive the bases of the transistors Tr, Tr2 of the switching elements, for example. . Now, to describe the operation of the present invention configured as described above, first, by a conventionally well-known pre-charging operation, photovoltaic power is passed through the diode rectifier circuit of the forward converter 1 to a certain predetermined value of the smoothing capacitors CI and C2 of the DC intermediate circuit. Moreover, the DC power of the DC intermediate circuit is input to the operating power supply establishment circuit 13 through the path of resistor R3 → diode D1, and the voltage dividing capacitors C3 and C4, which divide the input DC power in this operating power supply establishment circuit, are charged. The series inverter performs a predetermined operation using the voltage and outputs the desired AC power, and this AC power is input to the control device 1.
It is assumed that the operating power supply voltage of each part of the automatic control device etc. in No. 5 has been established.

ここで上記した予備充電操作とは,順変換部がダイオー
ド整流器の場合、サイリスタ整流器と異なり順変換部の
交流入力側に挿入される王の配線用遮断器を投入すると
、直流中間回路の平滑用コンデンサが無充電状態である
ので大きなラツシュ電流が流れインバータの始動に大き
な弊害を生ずる事となる。この始動時のラツシユ電流を
防止する意味で、例えば補助の遮断器とラツシユ電流を
制限する電流制限抵抗等で構成した予備充電回路を設け
て、インバータの始動に際して予備充電回路を以て直流
中間回路の平滑用コンデンサを所定値にまで充電してお
く事を予備光電操作と云う。この予備充電操作によつC
直流中間回路の平滑用コンデンサの充電が進行するのに
応じて、例えば第2図の動作電源確立回路13で直列イ
ンバータが所定のベースドライブによつて高周波動作を
行ない所望の交流電力を出力して、この交流出力で制御
装置14に供給する動作電源が確立する事となる。さて
、動作電源確立回路13より供給される交流電力を動作
電源として制御装置14のシーケンス回路で「インバー
タ始動0K」が確認されると、順変換部1の交流入力側
に挿入される図示しない王の配線用遮断器が投入されイ
ンバータが始動する事となる。先ずインバータを始動す
る場合は動作電源確立回路13で自動制御回路,ゲート
回路等の各部の動作電源は全て確立してあるので、例え
ば制御装置15の図示しないロジックシーケンス回路一
自動匍脚回路一ゲートトランスを含めた各ゲート回路G
u−Gw,Gx−Gzを通して逆変換部2の各相のサイ
リスタ群に所望のゲート信号が供給され、電圧一周波数
設定指令量に応じて逆変換部2を含めたインバータが所
定の動作を行なつて負荷電動機Lを可変速制御するもの
である。インバータの定常運転時、例えばインバータが
回生運転時にあるとすれば、この回生時に際して直流中
間回路の直流電圧を動作電源確立回路13→制御装置1
5の経路を介して監視しており、さらにインバータが力
行運転又は回生運転を問わず定常時の交流入力電源電圧
の異常有無を動作電源確立回路13→制御装置15の経
路を介して監視している。
The pre-charging operation described above means that when the forward conversion section is a diode rectifier, unlike a thyristor rectifier, when a circuit breaker is inserted on the AC input side of the forward conversion section, it is used to smooth the DC intermediate circuit. Since the capacitor is in an uncharged state, a large rush current flows, causing a serious problem in starting the inverter. In order to prevent this rush current at the time of starting, for example, a pre-charging circuit consisting of an auxiliary circuit breaker and a current-limiting resistor that limits the rush current is provided, and the pre-charging circuit is used to smooth the DC intermediate circuit when starting the inverter. Preliminary photoelectric operation is when the capacitor is charged to a predetermined value. Due to this pre-charging operation, C
As charging of the smoothing capacitor in the DC intermediate circuit progresses, for example, the series inverter in the operating power supply establishment circuit 13 of FIG. 2 performs high frequency operation by a predetermined base drive and outputs the desired AC power. With this AC output, an operating power supply to be supplied to the control device 14 is established. Now, when "inverter start 0K" is confirmed in the sequence circuit of the control device 14 using the AC power supplied from the operating power supply establishment circuit 13 as the operating power supply, a plug (not shown) is inserted into the AC input side of the forward converter 1. The circuit breaker will be turned on and the inverter will start. First, when starting the inverter, the operating power source establishment circuit 13 has established the operating power source for all parts such as the automatic control circuit and the gate circuit. Each gate circuit G including transformer
A desired gate signal is supplied to the thyristor group of each phase of the inverse converter 2 through u-Gw, Gx-Gz, and the inverter including the inverter 2 performs a predetermined operation according to the voltage-frequency setting command amount. In other words, the load motor L is controlled at variable speed. During steady operation of the inverter, for example, if the inverter is in regenerative operation, during this regeneration, the DC voltage of the DC intermediate circuit is changed from the operating power supply establishment circuit 13 to the control device 1.
In addition, whether the inverter is in power running or regenerative operation, whether or not there is an abnormality in the AC input power supply voltage during steady state is monitored via the operating power supply establishment circuit 13→control device 15 route. There is.

従つて本願によれば前者の回生時の過電圧検出であれば
第1図に示すホトカプラ12を含めた電圧検出系が全く
不要となり回路構成が簡素化する事は明らかであり、さ
らに後者の交流入力電源電圧の異常有無の検出であれば
第1図に示す配線用遮断器MCB一電源トランス3の各
パーツ品は全く不要となり、特に重要な事は交流入力電
源電圧が瞬時停電した場合である。即ち本願のものはイ
ンバータの定常運転時に動作電源確立回路13の分圧用
コンデンサC3,C4に図示極性で電荷がチヤージして
あるので、この充電電圧が制御回路14の動作不能レベ
ルまで落ち込む期間、直列インバータが所定の動作を行
なつて制御装置15の各部の動作電源とゲート回路の動
作電源とを夫々確保して、これによりインバータがある
所定期間,動作を継続する事ができる。この場合、負荷
電動機Lを直流中間回路の平滑用コンデンサCl,C2
と動作電源確立回路のコンデンサC3,C4に蓄積され
た充電エネルギーを以て単に1駆動する方法は、充電エ
ネルギーが直ちに無くなるので好ましいものではない。
従つてインバータを回生動作させ負荷の慣性エネルギー
を直流中間回路の平滑用コンデンサに一旦蓄積して、し
かも直流中間回路の直流電力を動作電源確立回路13の
コンデンサC3,C4に入力する様にして、さらにコン
デンサの充電電圧が一定値となる様に制御すれば上記方
法に比し瞬停時の運転期間が長くできる利点がある。何
れにしろ本願では瞬停対策として動作電源確立回路13
に単に2個の大容量のコンデンサC3,C4を配してい
るのみである。これに対して第1図の従来例では大容量
のコンデンサをゲート回路に6個,自動制御回路に少な
くとも2個以上設けているので、本願のものはいかに小
型化されしかも非常に経済的なインバータであるかは容
易に理解できるものである。さらに動作電源確立回路の
直列インバータを10KHzと云う様な高周波で動作す
るものであるから逆変換部各相のゲートトランスが非常
に小さくなつて、プリント板にゲートトランスそのもの
を塔載できる事である。しかもこのゲートトランスは三
相インバータであれば各相毎に分散配置する方法を採用
しているので、例えば1台のゲートトランスで複数の相
を共用する共用方式であれば、各二次側巻線の相互間に
は浮遊キヤパシタンスが必然的に存在するので、この浮
遊キヤパシタンスによつて他の相へ悪影響を及ぼし点弧
すべきでない相の素子が誤点弧すると云う様に、動作そ
のものが非常に不安定となり最悪の場合インバータの運
転継続が不可能となつてしまう事である。この点本願の
ものは各相共に夫々専用のゲートトランスを配している
ので何ら誤動作する事なく運転全域に渡つて安定した動
作を行なう事ができるのは勿論の事、上記した小型,軽
量化の効果と相俟つて理想的なインバータを提供できる
ものである。以上の説明は全て1台のインバータを対象
としたが、次に複数台のインバータを対象とした場合を
述べてみるに、従来周知の様に、例えば順変換部を共用
して.この順変換部に複数台の逆変換部を並列接続した
構成の所謂゛多数台のインバータの並列運転法″なるも
のがある。この並列運転時の場合でも最も問題となるの
は停電対策である。即ちインバータを紡糸ラインで使用
する場合、糸の断線は生産性に大きな影響を与えるので
インバータ個々に停電対策を施さなければならないが、
従来装置であれば第1図で説明した様にゲート回路に6
個,制御回路に少なくとも2個と合わせて8個の大容量
のコンデンサを必要とする。並列運転するインバータが
n台であれば8n個もの大容量のコンデンサを適用しな
ければならないが、この点本願によれば第2図の実施例
で説明した様に単位ィンバータ当り動作電源確立回路に
2個のみ適用すればよいので、6n個のコンデンサが本
願によれば全く不要となる。この事は他のゲート回路一
ロジツクシーケンス回路−電圧検出回路等に言えるのは
申す迄もない。この様に並列運転を行なう様な大規模シ
ステムの場合、本願を適用すればいかにシステムそのも
のの設備費を非常に経済的なものにできるかが理解でき
よう。なお、上記した説明は一般構造のサイリスタを適
用したサイリスタインバータの場合であるが、例えばゲ
ートで0N−0FF可能なゲートターンオフサイリスタ
を用いたインバータに本願を適用できる事は申す迄もな
く、この場合、周知の様にゲートターンオフサイリスタ
は0Nゲート用と0FFゲート用とを必要とするので、
本願・を適用すれば回路構成がいかに簡素化できるかは
容易に理解できるものである。
Therefore, according to the present application, it is clear that in the case of the former type of overvoltage detection during regeneration, the voltage detection system including the photocoupler 12 shown in FIG. If the presence or absence of an abnormality in the power supply voltage is to be detected, the parts of the molded circuit breaker MCB and the power transformer 3 shown in FIG. 1 are completely unnecessary, and what is particularly important is when there is a momentary power outage of the AC input power supply voltage. That is, in the present invention, during steady operation of the inverter, the voltage dividing capacitors C3 and C4 of the operating power supply establishment circuit 13 are charged with the polarity shown, so during the period when this charging voltage drops to the level at which the control circuit 14 cannot operate, the series The inverter performs a predetermined operation to secure operating power for each part of the control device 15 and the gate circuit, respectively, so that the inverter can continue operating for a certain predetermined period of time. In this case, the load motor L is connected to the smoothing capacitors Cl and C2 of the DC intermediate circuit.
A method in which the capacitors C3 and C4 of the operating power supply establishment circuit are simply driven once using the charging energy stored in the capacitors C3 and C4 is not preferable because the charging energy immediately runs out.
Therefore, the inverter is operated regeneratively to temporarily store the inertial energy of the load in the smoothing capacitor of the DC intermediate circuit, and the DC power of the DC intermediate circuit is input to the capacitors C3 and C4 of the operating power supply establishment circuit 13. Furthermore, if the charging voltage of the capacitor is controlled to be a constant value, there is an advantage that the operation period during momentary power failure can be extended compared to the above method. In any case, in this application, the operating power supply establishment circuit 13 is used as a countermeasure against instantaneous power failure.
In this case, only two large capacitance capacitors C3 and C4 are arranged. On the other hand, in the conventional example shown in Fig. 1, six large-capacity capacitors are provided in the gate circuit and at least two or more in the automatic control circuit, so the inverter of the present application is very compact and extremely economical. It is easy to understand whether this is the case. Furthermore, since the series inverter in the operating power supply establishment circuit operates at a high frequency such as 10 KHz, the gate transformer for each phase of the inverse conversion section becomes extremely small, and the gate transformer itself can be mounted on the printed board. . Moreover, if this gate transformer is a three-phase inverter, a method is adopted in which it is distributed for each phase. Since there is inevitably stray capacitance between the wires, this stray capacitance can have a negative effect on other phases, causing elements in phases that should not be fired to erroneously fire. In the worst case, the inverter will not be able to continue operating. In this regard, since the device of the present application has a dedicated gate transformer for each phase, it is possible to perform stable operation over the entire operating range without any malfunction, and it is also possible to achieve the above-mentioned compactness and weight reduction. Combined with this effect, it is possible to provide an ideal inverter. All of the above explanations have been made for one inverter, but next we will discuss the case where multiple inverters are used, as is well known in the art, for example, by sharing a forward conversion section. There is a so-called "parallel operation method of multiple inverters" in which a plurality of inverter converters are connected in parallel to this forward converter.Even during this parallel operation, the biggest problem is countermeasures against power outages. In other words, when an inverter is used in a spinning line, breakage of yarn has a major impact on productivity, so measures must be taken to prevent power outages for each inverter.
In the case of a conventional device, the gate circuit would have 6
In total, eight large-capacity capacitors are required, including at least two in the control circuit. If there are n inverters to be operated in parallel, it is necessary to use as many as 8n large capacitors, but in this regard, according to the present application, as explained in the embodiment of FIG. Since only two need to be applied, 6n capacitors are completely unnecessary according to the present application. Needless to say, this also applies to other gate circuits, logic sequence circuits, voltage detection circuits, etc. In the case of a large-scale system that performs parallel operation in this way, it will be understood how the equipment cost of the system itself can be made extremely economical by applying the present application. The above explanation is for a thyristor inverter that uses a thyristor with a general structure, but it goes without saying that the present application can be applied to an inverter that uses a gate turn-off thyristor that can turn 0N-0FF at the gate, for example, and in this case. As is well known, the gate turn-off thyristor requires one for 0N gate and one for 0FF gate.
It is easy to understand how the circuit configuration can be simplified by applying the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はグィオード整流器を適用した従来の代表的なイ
ンバータ装置を示す具体的な回路構成図、第2図は本発
明による一実施例を示すィンバータ装置の具体的な回路
構成図。 1は順変換部、2は逆変換部、13は動作電源確立回路
、15は制御装置、Ldは直流リアクトル、C,− C
2は平滑用コンデンサ、C3−C4は分圧用コンデンサ
FIG. 1 is a specific circuit diagram showing a typical conventional inverter device using a guiode rectifier, and FIG. 2 is a specific circuit diagram showing an inverter device according to an embodiment of the present invention. 1 is a forward conversion section, 2 is an inverse conversion section, 13 is an operating power supply establishment circuit, 15 is a control device, Ld is a DC reactor, C, -C
2 is a smoothing capacitor, C3-C4 is a voltage dividing capacitor.

Claims (1)

【特許請求の範囲】 1 入力される交流電力を直流電力に変換する順変換部
と、直流電力を平滑化する直流リアクトルと平滑用コン
デンサよりなる直流中間回路と、直流電力を交流電力に
逆変換する逆変換部とで構成したものに於て、直流中間
回路より入力される直流電力を動作電源として動作する
動作電源確立回路を設けて、逆変換部の素子群をゲート
ドライブするゲート回路と、逆変換部の素子群の点弧順
序を決定し且つ過電流発生時に逆変換部の素子群に供給
するゲート信号をブロックしてインバータを保護すると
共に、回生運転を行なわせるロジックシーケンス回路と
、電圧−周波数制御を自動的に行なう自動制御回路と、
商用周波交流入力電源の停電−回復を検出する第1の検
出回路と、回生運転時に直流中間回路の過電圧の有無を
検出する第2の検出回路とを夫々上記動作電源確立回路
より出力される電力を以て動作する様にした事を特徴と
するインバータ装置。 2 動作電源確立回路としてインバータ又は高周波イン
バータを適用する様にした、特許請求の範囲第1項記載
のインバータ装着。 3 逆変換部の素子群をゲートドライブするゲート回路
のゲートトランスをプリント板に塔載する様にした、特
許請求の範囲第1項記載のインバータ装置。 4 入力される交流電力を直流電力に変換する順変換部
と、直流電力を平滑化する直流リアクトルと平滑用コン
デンサよりなる直流中間回路と、直流電力を交流電力に
逆変換する逆変換部とで構成したインバータ装置で、直
流中間回路より入力される直流電力を動作電源として動
作する動作電源確立回路を設けて、逆変換部の素子群を
ゲートドライブするゲート回路と、逆変換部の素子群の
点弧順序を決定し、且つ過電流発生時に逆変換部の素子
群に供給するゲート信号をブロックしてインバータを保
護すると共に、回生運転を行わせるロジックシーケンス
回路と、電圧−周波数制御を自動的に行なう自動制御回
路と、商用周波交流入力電源の停電−回復を検出する第
1の検出回路と、回生運転時に直流中間回路の過電圧の
有無を検出する第2の検出回路とを、夫々定常時は上記
動作電源確立回路より入力される電力を以て動作する様
にし、商用周波交流入力電源の停電時、逆変換部の動作
電源として直流中間回路の平滑用コンデンサにチャージ
してあるエネルギーを利用する様にし、ゲート回路−シ
ーケンス回路−自動制御回路−第1、第2の検出回路の
動作電源は、動作電源確立回路より出力される交流電力
を利用してインバータを所定期間、動作せしめた事を特
徴とするインバータ装置。
[Scope of Claims] 1. A forward converter that converts input AC power into DC power, a DC intermediate circuit consisting of a DC reactor and a smoothing capacitor that smoothes DC power, and reverse converts DC power into AC power. a gate circuit that gate drives the element group of the inverse conversion section by providing an operating power supply establishment circuit that operates using DC power input from the DC intermediate circuit as an operating power source; A logic sequence circuit that determines the firing order of the element group of the inverse converter, blocks the gate signal supplied to the element group of the inverse converter when an overcurrent occurs to protect the inverter, and performs regenerative operation; - An automatic control circuit that automatically controls the frequency;
A first detection circuit that detects a power outage/recovery of the commercial frequency AC input power supply and a second detection circuit that detects the presence or absence of overvoltage in the DC intermediate circuit during regenerative operation are controlled by the power output from the operating power supply establishment circuit, respectively. An inverter device characterized in that it operates by. 2. The inverter installation according to claim 1, in which an inverter or a high-frequency inverter is applied as the operating power supply establishment circuit. 3. The inverter device according to claim 1, wherein the gate transformer of the gate circuit for gate driving the element group of the inverse conversion section is mounted on a printed board. 4 A forward conversion unit that converts input AC power into DC power, a DC intermediate circuit consisting of a DC reactor and a smoothing capacitor that smoothes DC power, and an inverse conversion unit that converts DC power back into AC power. In the configured inverter device, an operating power supply establishment circuit that operates using DC power input from the DC intermediate circuit as an operating power supply is provided, and a gate circuit that gate drives the element group of the inverse conversion section and a gate circuit that gate drives the element group of the inverse conversion section are provided. A logic sequence circuit that determines the firing order and protects the inverter by blocking the gate signal supplied to the elements of the inverter when an overcurrent occurs, and performs regenerative operation, and automatically controls the voltage and frequency. A first detection circuit that detects a power failure/recovery of the commercial frequency AC input power supply, and a second detection circuit that detects the presence or absence of overvoltage in the DC intermediate circuit during regenerative operation. is operated by the power input from the above-mentioned operating power supply establishment circuit, and in the event of a power outage of the commercial frequency AC input power supply, the energy stored in the smoothing capacitor of the DC intermediate circuit is used as the operating power supply of the inverse conversion section. The operating power supply for the gate circuit, sequence circuit, automatic control circuit, and first and second detection circuits is characterized in that the inverter is operated for a predetermined period using AC power output from the operating power supply establishment circuit. Inverter device.
JP54034919A 1979-03-24 1979-03-24 Inverter device and its driving method Expired JPS5936514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54034919A JPS5936514B2 (en) 1979-03-24 1979-03-24 Inverter device and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54034919A JPS5936514B2 (en) 1979-03-24 1979-03-24 Inverter device and its driving method

Publications (2)

Publication Number Publication Date
JPS55127884A JPS55127884A (en) 1980-10-03
JPS5936514B2 true JPS5936514B2 (en) 1984-09-04

Family

ID=12427616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54034919A Expired JPS5936514B2 (en) 1979-03-24 1979-03-24 Inverter device and its driving method

Country Status (1)

Country Link
JP (1) JPS5936514B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211192A (en) * 1990-01-05 1992-08-03 General Electric Co <Ge> Method of pretreating surface for plating polyimide surface
JP2013146142A (en) * 2012-01-13 2013-07-25 Denso Corp Motor drive device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5866886U (en) * 1981-10-30 1983-05-07 株式会社東芝 Inverter control printed circuit board
JPS5895984A (en) * 1981-11-30 1983-06-07 Matsushita Electric Works Ltd Dc/ac converter
JPS59185167A (en) * 1983-03-31 1984-10-20 Meidensha Electric Mfg Co Ltd Control power source circuit of power converter
DE3472867D1 (en) * 1984-02-29 1988-08-25 Ibm Power switching circuit
JPS61109468A (en) * 1984-10-30 1986-05-27 Yokogawa Hokushin Electric Corp Regulated power source
JPS6298496U (en) * 1985-12-12 1987-06-23
JP2569723Y2 (en) * 1991-06-03 1998-04-28 日本エヌエスシー株式会社 Underlay cushioning material for coating finishing work
JP2003339164A (en) 2002-05-22 2003-11-28 Hitachi Industrial Equipment Systems Co Ltd Switching power circuit and inverter device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211192A (en) * 1990-01-05 1992-08-03 General Electric Co <Ge> Method of pretreating surface for plating polyimide surface
JP2013146142A (en) * 2012-01-13 2013-07-25 Denso Corp Motor drive device

Also Published As

Publication number Publication date
JPS55127884A (en) 1980-10-03

Similar Documents

Publication Publication Date Title
KR950015173B1 (en) Ac motor control apparatus
US5373195A (en) Technique for decoupling the energy storage system voltage from the DC link voltage in AC electric drive systems
US4847747A (en) Commutation circuit for load-commutated inverter induction motor drives
US7026783B2 (en) Drive system
JPS5840918B2 (en) Electric motor operation control device
EP2814162B1 (en) Medium voltage inverter system
KR920001165B1 (en) Power source trasforming apparatus with protecting overvoltage
KR101356277B1 (en) Alternating current motor drive device
EP0554903B1 (en) Snubber energy recovery circuit for protecting switching devices from voltage and current
JPS5936514B2 (en) Inverter device and its driving method
US5449993A (en) Regenerative ac to dc converter
EP0982843B1 (en) Power converter
JP3237719B2 (en) Power regeneration controller
EP0314669B1 (en) Switched capacitor induction motor drive
JPH11313490A (en) Power converter and its additional device for regeneration
JP2002320390A (en) Power storage apparatus
JPS63186505A (en) Controller for ac electric car
JP4171862B2 (en) Elevator drive device
JPS6322156B2 (en)
SU1394373A1 (en) A.c.-to-d.c. voltage converter
SU1005252A1 (en) Gate-type converter, driven by mains
JPH069434B2 (en) Power storage system
JPH10304669A (en) Pwm converter device
JP3068966B2 (en) Snubber energy regeneration device
JPH0145315B2 (en)