JPS5935174B2 - Radiant pyrolysis furnace for manufacturing semi-hermetic solid electrolytic capacitors - Google Patents

Radiant pyrolysis furnace for manufacturing semi-hermetic solid electrolytic capacitors

Info

Publication number
JPS5935174B2
JPS5935174B2 JP50134272A JP13427275A JPS5935174B2 JP S5935174 B2 JPS5935174 B2 JP S5935174B2 JP 50134272 A JP50134272 A JP 50134272A JP 13427275 A JP13427275 A JP 13427275A JP S5935174 B2 JPS5935174 B2 JP S5935174B2
Authority
JP
Japan
Prior art keywords
furnace
anode body
manganese dioxide
pyrolysis furnace
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50134272A
Other languages
Japanese (ja)
Other versions
JPS5258858A (en
Inventor
昭彦 吉田
敦 西野
林 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP50134272A priority Critical patent/JPS5935174B2/en
Publication of JPS5258858A publication Critical patent/JPS5258858A/en
Publication of JPS5935174B2 publication Critical patent/JPS5935174B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Resistance Heating (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は、焼結型固体電解コンデンサの固体電解質であ
る二酸化マンガン、二酸化鉛等の固体電解質の生成のた
めの輻射型熱分解炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiation-type pyrolysis furnace for producing solid electrolytes such as manganese dioxide and lead dioxide, which are solid electrolytes for sintered solid electrolytic capacitors.

普通一般に固体電解コンデンサは、タンタル。Generally, solid electrolytic capacitors are tantalum.

ニオブのような弁金属の焼結体よりなる陽極体上に、酢
酸、リン酸を用いて陽極化成により誘電体酸化皮膜を形
成する。
A dielectric oxide film is formed on an anode body made of a sintered body of a valve metal such as niobium by anodization using acetic acid and phosphoric acid.

次に適当な濃度の硝酸マンガン、硝酸鉛等の熱分解性金
属塩溶液を上記陽極体に含浸し、200〜400℃の温
度でこの溶液の熱分解を行ない、誘電体酸化物皮膜上に
、二酸化マンガン、二酸化鉛等の半導体性酸化物皮膜を
生成させる。
Next, the above anode body is impregnated with a thermally decomposable metal salt solution such as manganese nitrate or lead nitrate at an appropriate concentration, and this solution is thermally decomposed at a temperature of 200 to 400°C to form a layer on the dielectric oxide film. Generates semiconductor oxide films such as manganese dioxide and lead dioxide.

そして最後に、アクアダック、シルバーペイント、半田
によって陰極導電体をもうけて構成されている。
Finally, the cathode conductor is made of Aquaduck, silver paint, and solder.

ところで従来、上記熱分解性金属塩溶液の熱分解は対流
伝熱を主体とした熱風循環型熱分解炉が用いられていた
By the way, conventionally, a hot air circulation type thermal decomposition furnace mainly using convection heat transfer has been used for thermal decomposition of the above-mentioned thermally decomposable metal salt solution.

この種の熱分解炉は炉内伝熱が対流でおきるため、陽極
体に付着した硝酸マンガン液の熱分解が表面から開始し
、時間とともに焼結型陽極体細孔内部に進行していく。
In this type of pyrolysis furnace, heat transfer within the furnace occurs through convection, so thermal decomposition of the manganese nitrate liquid adhering to the anode body starts from the surface and progresses into the pores of the sintered anode body over time.

故に、硝酸アンガンが分解して発生するNOxガスのた
め、陽極体上に生成した二酸化マンガン層は非常に多孔
質であり、第1図の電子顕微鏡写真に示すようなものし
かできない。
Therefore, due to the NOx gas generated by the decomposition of amganese nitrate, the manganese dioxide layer formed on the anode body is extremely porous and can only be formed as shown in the electron micrograph of FIG. 1.

そして、このようにして生成した二酸化マンガン層は下
地誘電体酸化皮膜との接触が悪く、その多孔質さとあい
まってコンデンサの損失値が大きくなり、かつ周波数特
性もあまり満足な値が得られない。
The manganese dioxide layer thus produced has poor contact with the underlying dielectric oxide film, and combined with its porosity, the loss value of the capacitor becomes large, and the frequency characteristics are not very satisfactory.

また、熱分解反応が突発的に起きるため、発生したNO
xガス(非常に腐食性)が下地誘電体酸化物を侵し、コ
ンデンサ特性の重要部である漏れ電流が非常に犬になる
In addition, since the thermal decomposition reaction occurs suddenly, the generated NO
The x-gas (which is highly corrosive) attacks the underlying dielectric oxide, making leakage currents, which are a key part of capacitor characteristics, very high.

さらにこのような熱分解を数回くり返して行なうと、非
常に多孔質な二酸化マンガン層が陽極体外部にだんごの
ように生成し、所望の径の外装ケースに入れるために余
分な二酸化マンガンをけずりとらねばならず、工程的に
も非常に不利である。
Furthermore, when such thermal decomposition is repeated several times, a highly porous manganese dioxide layer forms like a dumpling on the outside of the anode body, and the excess manganese dioxide is scraped off in order to fit it into the outer case of the desired diameter. This is extremely disadvantageous in terms of process.

一方、このような従来の対流伝熱型熱風循環炉の上述し
た欠点を克服するため、第2図に示すようなステンレス
ブロック製の輻射型熱分解炉が開発されている。
On the other hand, in order to overcome the above-mentioned drawbacks of the conventional convection heat transfer type hot air circulation furnace, a radiation type pyrolysis furnace made of stainless steel blocks as shown in FIG. 2 has been developed.

すなわち、加熱ヒータ1を備えた加熱装置2上に、ステ
ンレスなどからなる炉本体3を配置し、この炉本体3の
開口部に小孔よりなる排気孔4を設けた蓋5を被せて構
成されている。
That is, a furnace body 3 made of stainless steel or the like is placed on a heating device 2 equipped with a heater 1, and a lid 5 having an exhaust hole 4 made of a small hole is placed over the opening of the furnace body 3. ing.

この種の熱分解炉の特徴は以下の如くである。The characteristics of this type of pyrolysis furnace are as follows.

すなわち、炉本体3中におかれた陽極体6は、その炉壁
面から輻射によって熱を供給される。
That is, the anode body 6 placed in the furnace body 3 is supplied with heat by radiation from the furnace wall surface.

すなわち、陽極体6に付着した硝酸マンガン溶液の熱分
解は、焼結型陽極体6の細孔内部から始まり、徐々に陽
極体6の外部へと進行していく。
That is, thermal decomposition of the manganese nitrate solution adhering to the anode body 6 starts from inside the pores of the sintered anode body 6 and gradually progresses to the outside of the anode body 6.

このため従来炉の時みられたような非常に多孔質な二酸
化マンガンの生成はなく、非常に粒径の小さい、緻密で
均一な二酸化マンガンが陽極体の陽極酸化皮膜上に生成
する。
For this reason, extremely porous manganese dioxide is not produced as seen in conventional furnaces, but dense and uniform manganese dioxide with extremely small particle sizes is produced on the anodic oxide film of the anode body.

この場合、輻射伝熱であるため炉から陽極体6への熱の
供給速度は非常に速かに行われる。
In this case, since the heat is transferred by radiation, the heat is supplied from the furnace to the anode body 6 at a very high rate.

さらに下記1式で発生したNO2ガスは、炉の排気孔4
を適当に制御することにより炉内に滞留し、熱分解反応
が突発的に起きるのを防ぐ働きをする。
Furthermore, the NO2 gas generated in the following 1 system is transferred to the exhaust hole 4 of the furnace.
By controlling it appropriately, it stays in the furnace and works to prevent sudden thermal decomposition reactions.

このようにしてできた二酸化マンガンは前にも述べたよ
うに非常に緻密で第3図の電子顕微鏡写真でわかるよう
に粒径も非常に小さい。
As mentioned above, the manganese dioxide produced in this manner is extremely dense and, as shown in the electron micrograph in Figure 3, its particle size is also extremely small.

結局、tanδ周波数特性も改善され、L、Cも安定し
たものが得られる。
As a result, the tan δ frequency characteristics are improved, and L and C are also stable.

ところで普通一般に陽極体上に熱分解によって二酸化マ
ンガンを生成させる時、はじめ陽極体に含浸された硝酸
マンガン溶液は、その重みのためにその下部にたれ下っ
たようになり、すなわち、陽極体下部に上部より多量の
硝酸マンガン溶液が付着し、これを熱分解炉中に入れる
と、そのままの位置で硝酸マンガンの熱分解が進行し、
生成した二酸化マンガンもやはり、陽極体上部に少なく
、陽極体下部に大量に存在するようになる。
By the way, when manganese dioxide is generally generated on the anode body by thermal decomposition, the manganese nitrate solution that is initially impregnated into the anode body will drip down to the bottom of the anode body due to its weight. A large amount of manganese nitrate solution adheres from the top, and when this is put into the pyrolysis furnace, the pyrolysis of the manganese nitrate proceeds in that position,
The generated manganese dioxide is also present in a small amount in the upper part of the anode body and in a large amount in the lower part of the anode body.

熱分解操作を何度も繰り返すと、このような現象が一層
顕著になり、陽極体はあたかも二酸化マンガンのスカー
トをはいたようになる。
If the pyrolysis operation is repeated many times, this phenomenon becomes even more pronounced, and the anode body becomes as if it were covered with a manganese dioxide skirt.

このように焼結型陽極体上に二酸化マンガンが不均一に
生成付着すると、 が小さくなり、この場合完成後の耐湿特性、周波数特性
が著しく悪くなる。
If manganese dioxide is non-uniformly formed and adhered to the sintered anode body in this way, then the value of will become small, and in this case, the moisture resistance and frequency characteristics after completion will be significantly deteriorated.

またtanδ、L、C。耐圧についても陽極体上で二酸
化マンガン膜厚が不均一で一部薄く付着しているところ
があると、共に悪くなる傾向である。
Also tan δ, L, C. Withstand voltage also tends to deteriorate if the thickness of the manganese dioxide film is uneven on the anode body and is thinly deposited in some areas.

そしてさらに充分量の二酸化マンガン層を得るため熱分
解回数を増加すると、誘電体酸化皮膜が熱的に侵され、
漏れ電流がさらに増加する。
When the number of thermal decompositions is increased to obtain a sufficient amount of manganese dioxide layer, the dielectric oxide film is thermally attacked.
Leakage current increases further.

以上のような二酸化マンガンの陽極体上での局在化を防
ぎ、均一全体付着を達成するため、従来は陽極体を熱分
解時に炉内で上下左右の方向に保持していた。
In order to prevent the localization of manganese dioxide on the anode body as described above and achieve uniform overall adhesion, conventionally the anode body was held vertically and horizontally in the furnace during thermal decomposition.

ところがこの方法によると、均一な二酸化マンガンの付
着は得られるものの、操業上非常に不便であり、かなら
ずしも最適な方法ではなかった。
However, although this method allows for uniform deposition of manganese dioxide, it is extremely inconvenient in terms of operation, and is not necessarily the optimal method.

そしてこれら付着状態についての欠点は、炉壁から直接
輻射によって熱供給される前述の輻射型熱分解炉におい
て非常に顕著である。
These disadvantages regarding the adhesion state are very noticeable in the above-mentioned radiation-type pyrolysis furnace, which is supplied with heat by direct radiation from the furnace wall.

さらに焼結型陽極体の形状、焼結型陽極体内の細孔密度
の不均一性などを考慮した場合、陽極体内部の所望の位
置に二酸化マンガンを集中的に付着させることができる
と非常に便利である。
Furthermore, when considering the shape of the sintered anode body and the non-uniformity of the pore density within the sintered anode body, it is extremely possible to deposit manganese dioxide in a concentrated manner at the desired position inside the anode body. It's convenient.

本発明は、上記のような種々の付着上の不均一さを克服
すべく、さらには二酸化マンガンの陽極体内所望部分へ
の集中付着を目的としたもので、炉内温度分布が可変な
輻射型熱分解炉に関するものである。
The present invention aims to overcome the various non-uniformities in adhesion as described above, and further aims to concentrate adhesion of manganese dioxide to a desired part of the anode body. It relates to a pyrolysis furnace.

第4図に示す本発明の輻射型熱分解炉は、蓋7の部分と
炉本体8部とその底部にそれぞれ温度センサー9を入れ
て三者を個別のヒータ10で温度コントロールし、上下
方向に所望の温度勾配を持たせることが可能な構成とし
たものである。
The radiation type pyrolysis furnace of the present invention shown in FIG. The structure is such that it is possible to provide a desired temperature gradient.

なお、図中11は基台、12は蓋7に設けた排気孔、1
3は陽極体、14は陽極体13の支持棒、15は断熱材
である。
In addition, in the figure, 11 is a base, 12 is an exhaust hole provided in the lid 7, and 1
3 is an anode body, 14 is a support rod for the anode body 13, and 15 is a heat insulating material.

第5図〜第7図は、このような本発明の輻射型熱分解炉
において、底の部分、中間周辺部分、蓋7部分をそれぞ
れ表1のように温度設定制御した時の二酸化マンガンの
素子への付着状態を示すものである。
Figures 5 to 7 show the manganese dioxide elements in the radiation type pyrolysis furnace of the present invention when the temperature settings of the bottom part, middle peripheral part, and lid 7 part are controlled as shown in Table 1. This shows the state of adhesion to the surface.

すなわち例1では二酸化マンガンが陽極体中央部に付着
しており、例2では陽極体上部に、例3では陽極体下部
に付着生成している。
That is, in Example 1, manganese dioxide adheres to the center of the anode body, in Example 2 to the upper part of the anode body, and in Example 3 to the lower part of the anode body.

第5図〜第7図に8いて、点々で示した部分は二酸化マ
ンガンの付着生成部分であり炉温設定方式によっては二
酸化マンガンが偏在していることがわかる。
The dotted portions in FIGS. 5 to 7 are areas where manganese dioxide is deposited, and it can be seen that manganese dioxide is unevenly distributed depending on the furnace temperature setting method.

表1の条件と第5図〜第7図とを対応させると次のよう
なことが予測される。
When the conditions in Table 1 are made to correspond to those in FIGS. 5 to 7, the following is predicted.

すなわち、陽極体13に含浸した硝酸マンガン溶液は、
炉内で熱分解する時、重力に支配されず温度の高い側か
ら低い側に押しやられ、熱分解し、結局その部分で二酸
化マンガンとして生成し、固定する。
That is, the manganese nitrate solution impregnated into the anode body 13 is
When it is thermally decomposed in a furnace, it is not controlled by gravity and is pushed from the high temperature side to the low temperature side, decomposes, and eventually forms manganese dioxide in that part and fixes it.

このように炉温の設定のし方によって上記のような効果
が得られるのは、まさしく、陽極体が壁面からの輻射に
よる速かな熱供給により受熱するためであり、この点が
本発明の大きな特徴の1つである。
The reason why the above effects can be obtained by setting the furnace temperature in this way is precisely because the anode body receives heat by rapid heat supply through radiation from the wall surface, and this point is a major advantage of the present invention. This is one of its characteristics.

熱風循環型炉ではこのような効果は期待、できない。Such an effect cannot be expected or achieved with a hot air circulation type furnace.

以上の記載のように、本発明の輻射型熱分解炉のような
、上下方向に任意の温度勾配を設定できる炉を用いると
、陽極体の所望の位置に二酸化マンガンを生成付着でき
、前述の陽極体への均−何体(着、部分集中付着は、こ
れらの組合わせによって達成される。
As described above, by using a furnace that can set an arbitrary temperature gradient in the vertical direction, such as the radiation-type pyrolysis furnace of the present invention, manganese dioxide can be produced and deposited at a desired position on the anode body, and as described above. Uniform and partially concentrated deposition on the anode body is achieved by a combination of these.

な8、このような効果は、その重力との関係から比重の
軽い硝酸マンガン液において特に顕著である。
8. Such an effect is particularly remarkable in manganese nitrate liquid, which has a light specific gravity due to its relationship with gravity.

このことは、初期希薄硝酸マンガンの熱分解生成付着状
態に大きく影響される容量達成率の改善に大いに役立つ
This greatly helps in improving the capacity achievement rate, which is greatly influenced by the adhesion state of the initially diluted manganese nitrate produced by thermal decomposition.

また大型焼結陽極体の場合に効果が顕著になるのは云う
までもないことである。
Needless to say, the effect becomes more pronounced in the case of a large sintered anode body.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例 重量3grのタンタル焼結体を0.05%のクエン酸中
で室温の2hr70Vの化成皮膜を形成させる。
EXAMPLE A chemical conversion coating was formed on a tantalum sintered body weighing 3 grams in 0.05% citric acid at room temperature for 2 hours at 70V.

次にこの陽極体に比重1.4の硝酸マンガン溶液を含浸
させ、前記例1,2,3,1,2,3゜1.2,3の順
に第4図の本発明炉を温度設定して9回の熱分解を行な
う。
Next, this anode body was impregnated with a manganese nitrate solution having a specific gravity of 1.4, and the temperature of the furnace of the present invention as shown in Fig. 4 was set in the order of Examples 1, 2, 3, 1, 2, 3°1.2, 3. Thermal decomposition was carried out nine times.

さらにアクアダック、シルバーペイント、半田により陰
極導電層を設けて特性測定を行なう。
Furthermore, a cathode conductive layer is provided using Aquaduck, silver paint, and solder, and the characteristics are measured.

二三の従来例の結果とともに本発明の結果を表2に示す
Table 2 shows the results of the present invention along with the results of a few conventional examples.

以下記載のように、輻射型熱分解炉においてその上、中
、下部をそれぞれ別個に温度コントロールして上下方向
の温度勾配を作ると、そのM勾配の種類によって任意希
望の位置に二酸化マンガンの付着を得ることができる。
As described below, if a temperature gradient is created in the vertical direction by separately controlling the temperature at the top, middle, and bottom of a radiation-type pyrolysis furnace, manganese dioxide will be deposited at any desired position depending on the type of M gradient. can be obtained.

この結果、陽極体への均一な二酸化マンガンの付着が達
成される。
As a result, uniform deposition of manganese dioxide onto the anode body is achieved.

さらに得られた二酸化マンガン層は輻射型熱分解炉特有
の粒径の小さな緻密なものであり、tanδ、容量達成
率、LC1周波数特性等、非常に良好な固体電解コンデ
ンサがより少ない熱分解回数で得られる。
Furthermore, the obtained manganese dioxide layer has a small particle size and is dense, which is characteristic of a radiation-type pyrolysis furnace, and the solid electrolytic capacitor has very good properties such as tan δ, capacity achievement rate, and LC1 frequency characteristics. can get.

特に大型焼結陽極体においてその効果が著しい。This effect is particularly remarkable in large sintered anode bodies.

なお、本発明では炉の上、中、下三部分での温度設定、
制御を行ったが、炉の蓋部と、底部の三部分のみの温度
設定、制御によっても本発明と同−効果が得られる。
In addition, in the present invention, temperature settings in the upper, middle, and lower parts of the furnace,
However, the same effect as the present invention can be obtained by setting and controlling the temperature of only the lid and bottom of the furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱風循環炉により生成した二酸化マンガン層の
電子顕微鏡写真(X100O)、第2図は最近開発され
た輻射型熱分解炉の断面図、第3図は輻射型熱分解炉に
より生成した二酸化マンガン層の電子顕微鏡写真(X1
00O)、第4図は本発明による輻射型熱分解炉の断面
図、第5図は表1の例1による二酸化マンガン付着状態
を示す正面図、第6図は表1の例2による二酸化マンガ
ン付着状態を示す正面図、第1図は表1の例3による二
酸化マンガン付着状態を示す正面図である。 7・・・・・・蓋、8・・・・・・炉本体、9・・・・
・・温度センサー、10・・・・・セータ、12・・・
・・・排気孔、13・・・・・・陽極体。
Figure 1 is an electron micrograph (X100O) of a manganese dioxide layer produced in a hot air circulation furnace, Figure 2 is a cross-sectional view of a recently developed radiation-type pyrolysis furnace, and Figure 3 is a manganese dioxide layer produced in a radiation-type pyrolysis furnace. Electron micrograph of manganese dioxide layer (X1
00O), FIG. 4 is a cross-sectional view of the radiation type pyrolysis furnace according to the present invention, FIG. 5 is a front view showing the state of adhesion of manganese dioxide according to Example 1 in Table 1, and FIG. 6 is a cross-sectional view of the manganese dioxide according to Example 2 in Table 1. FIG. 1 is a front view showing the state of adhesion of manganese dioxide according to Example 3 in Table 1. 7... Lid, 8... Furnace body, 9...
...Temperature sensor, 10...Sweater, 12...
...exhaust hole, 13...anode body.

Claims (1)

【特許請求の範囲】[Claims] 1 熱分解性金属塩溶液を含浸した固体電解コンデンサ
の焼結型陽極体を炉内に保持した時陽極体の上方の炉壁
部、陽極体の周辺の炉壁部、陽極体の下方の炉壁部がそ
れぞれ別々に温度設定、制御できるようにし、かつ炉体
または蓋部に排気孔を有する半密閉式固体電解コンデン
サ製造用輻射型熱分解炉。
1 When a sintered anode body of a solid electrolytic capacitor impregnated with a pyrolyzable metal salt solution is held in a furnace, the furnace wall above the anode body, the furnace wall around the anode body, and the furnace below the anode body A semi-closed radiant pyrolysis furnace for producing solid electrolytic capacitors, which allows temperature setting and control of each wall section to be set and controlled separately, and has an exhaust hole in the furnace body or lid.
JP50134272A 1975-11-08 1975-11-08 Radiant pyrolysis furnace for manufacturing semi-hermetic solid electrolytic capacitors Expired JPS5935174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50134272A JPS5935174B2 (en) 1975-11-08 1975-11-08 Radiant pyrolysis furnace for manufacturing semi-hermetic solid electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50134272A JPS5935174B2 (en) 1975-11-08 1975-11-08 Radiant pyrolysis furnace for manufacturing semi-hermetic solid electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPS5258858A JPS5258858A (en) 1977-05-14
JPS5935174B2 true JPS5935174B2 (en) 1984-08-27

Family

ID=15124398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50134272A Expired JPS5935174B2 (en) 1975-11-08 1975-11-08 Radiant pyrolysis furnace for manufacturing semi-hermetic solid electrolytic capacitors

Country Status (1)

Country Link
JP (1) JPS5935174B2 (en)

Also Published As

Publication number Publication date
JPS5258858A (en) 1977-05-14

Similar Documents

Publication Publication Date Title
US4105513A (en) Solid electrolyte capacitor having metallic cathode collector in direct contact with manganese dioxide electrolyte and method of producing same
US4252629A (en) Electrode for electrochemical processes especially electrowinning and method for manufacturing same
US4042420A (en) Method of producing manganese oxide solid electrolyte capacitor
JP2006049816A (en) Porous bulb metal film
US4164455A (en) Process of forming a solid tantalum capacitor
CA1056235A (en) Method for fabrication of manganese oxide solid electrolyte capacitor
US3248612A (en) Capacitor electrode and method
JPS5935174B2 (en) Radiant pyrolysis furnace for manufacturing semi-hermetic solid electrolytic capacitors
US3356912A (en) Porous electrode
US3544434A (en) Thick film capactors for miniaturized circuitry
US3641399A (en) Cluster anode for electrolytic capacitors
US4054500A (en) Method of making refractory metal-ceramic crucible
US3258826A (en) Method of producing a solid electrolytic capacitor having a semi-conductive electrolyte
US3182376A (en) Silicon dioxide capacitor
Wahlin The thermionic properties of chromium
US3404030A (en) Method for impregnating porous battery supports with meltable hydrated salts
US4214293A (en) Electrolytic capacitors
JPS6258526B2 (en)
JPS63105469A (en) Manufacture of nickel substrate for alkaline battery
RU2110611C1 (en) Method of coating titanium and its alloys
JPH0623057B2 (en) Float glass manufacturing equipment
JPS5833689B2 (en) Kotai Denkai Capacitor Noseizouhou
JPS6014502B2 (en) Manufacturing method of aluminum solid electrolytic capacitor
JPH01211826A (en) Indirectly heated cathode for electron tube
JP2773499B2 (en) Solid electrolytic capacitor and method of manufacturing the same