JPS593436B2 - Charcoal-fired silicon powder composition for sintering - Google Patents

Charcoal-fired silicon powder composition for sintering

Info

Publication number
JPS593436B2
JPS593436B2 JP57019637A JP1963782A JPS593436B2 JP S593436 B2 JPS593436 B2 JP S593436B2 JP 57019637 A JP57019637 A JP 57019637A JP 1963782 A JP1963782 A JP 1963782A JP S593436 B2 JPS593436 B2 JP S593436B2
Authority
JP
Japan
Prior art keywords
sintered body
silicon carbide
powder
sintering
beryllium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57019637A
Other languages
Japanese (ja)
Other versions
JPS57166365A (en
Inventor
幸男 竹田
浩介 中村
安男 松下
時夫 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57019637A priority Critical patent/JPS593436B2/en
Publication of JPS57166365A publication Critical patent/JPS57166365A/en
Publication of JPS593436B2 publication Critical patent/JPS593436B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は新規な焼結用炭化ケイ素粉末組成物、特に電気
絶縁性を有する炭化ケイ素焼結体を得るのに好適な粉末
組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel silicon carbide powder composition for sintering, particularly to a powder composition suitable for obtaining a silicon carbide sintered body having electrical insulation properties.

近年、半導体工業の進歩は目ざましく、大規模集積回路
等に使用される絶縁基板には半導体チップ等の回路構成
要素が増々高密度に搭載形成されるようになつてきた。
In recent years, the semiconductor industry has made remarkable progress, and circuit components such as semiconductor chips are increasingly mounted on insulating substrates used in large-scale integrated circuits and the like at a higher density.

さらに大容量、小型化に対する要請も大きくなり、使用
する絶縁基板は熱放散性の良い材料が要求されるように
なつてきた。従来、こうした絶縁基板用材料としてはア
ルミナ焼結体が使用されているが、アルミナ基板は熱放
散性があまり良くないのでこラした目的を達成するため
には、より熱放散の大きい絶縁基板の開発が要請される
ようになつてきた。絶縁基板材料としては、 (1)電気絶縁性が大きいこと、 (2)熱伝導率が大きいこと、 (3)熱膨張係数がシリコンの熱膨張係数に近いこと、
(4)機械的強度が大きいこと、 などが要求される。
Furthermore, there is a growing demand for larger capacity and smaller size, and the insulating substrate used is now required to be made of a material with good heat dissipation properties. Conventionally, alumina sintered bodies have been used as the material for such insulating substrates, but since alumina substrates do not have very good heat dissipation, in order to achieve this purpose, insulating substrates with higher heat dissipation are needed. There is a growing demand for development. As an insulating substrate material, (1) it has high electrical insulation, (2) it has high thermal conductivity, (3) its coefficient of thermal expansion is close to that of silicon,
(4) High mechanical strength is required.

ところで炭化ケイ素焼結体は、その熱膨張係数が約4×
10−6/℃で、アルミナのそれの約8×10−6/℃
に比べて小さく、シリコンの熱膨張係数約3.3XIO
−6/℃に近い。
By the way, the thermal expansion coefficient of silicon carbide sintered body is approximately 4×
10-6/℃, that of alumina is about 8×10-6/℃
The coefficient of thermal expansion of silicon is approximately 3.3XIO
Close to -6/℃.

また機械強度も曲げ強さで50に9/d以上を有し、ア
ルミナのそれの約20に9/72a2に比べると極めて
高強度であることが知られている。また炭化ケイ素焼結
体の熱伝導率は0.1〜0.3cal/(n−sec・
℃でアルミナの約3倍以上の値を有する。これらの点か
ら、炭化ケイ素は電気絶縁性の大きいものが開発される
と、大規模集積回路などの絶縁基板用材料として極めて
有用である。炭化ケイ素は炭素とケイ素から成る■−■
族化合物半導体である。
It is also known that it has a mechanical strength of 50/9/d or more in terms of bending strength, which is extremely high compared to that of alumina, which is about 20/9/72a2. In addition, the thermal conductivity of silicon carbide sintered body is 0.1 to 0.3 cal/(n-sec・
It has a value approximately three times higher than that of alumina at °C. From these points, if silicon carbide with high electrical insulation properties is developed, it will be extremely useful as a material for insulating substrates such as large-scale integrated circuits. Silicon carbide consists of carbon and silicon ■−■
It is a group compound semiconductor.

このため、電気絶縁性を有する高密度焼結体を得ること
は困難と考えられており、事実、こうしたものはこれま
で見当らなかつた。炭化ケイ素は共有結合性の大きい化
合物であるため、硬く強靭で、1500℃以上の高温で
も耐酸化性、耐食性に優れた安定な物質であることは良
く知られているが、この強い共有結合性のため高密度焼
結が困難な材料であつた。
For this reason, it is considered difficult to obtain a high-density sintered body having electrical insulation properties, and in fact, such a body has not been found to date. Because silicon carbide is a compound with strong covalent bonds, it is well known that it is hard and strong, and is a stable substance with excellent oxidation and corrosion resistance even at high temperatures of 1500°C or higher. Therefore, it was a difficult material to sinter at high density.

そこで高密度炭化ケイ素焼結体を得るために種種の焼結
助剤が用いられてきた。
Therefore, various sintering aids have been used to obtain high-density silicon carbide sintered bodies.

例えば、アルミニウムや鉄を添加してホツトプレスする
ことにより、炭化ケイ素の理論密度の98%の密度を有
する焼結体が得られることが知られている〔Allle
grOetal.J.Am.Ceram.SOc.,3
9,386〜389(1956)〕。
For example, it is known that a sintered body having a density of 98% of the theoretical density of silicon carbide can be obtained by hot pressing with the addition of aluminum or iron.
grOetal. J. Am. Ceram. SOc. ,3
9, 386-389 (1956)].

また、ホウ素と炭素を用いて、ホツトプレス法または無
加圧法で高密度の焼結体を得る方法が知られている(特
開昭49−99308号)。これらはいずれもガスター
ビン用部品等の耐熱構造材を提供することを目的とする
ものであ悦これらの焼結助剤を用いた炭化ケイ素焼結体
の熱伝導率の値はいずれも0.4ca2/CIrL−S
ec・゜C以下である。また、炭化ケイ素にBe炭化物
を添加して焼結したものが、特開昭53−6711号、
特開昭55−32796号公報およびその対応米国特許
第4172109号に示されているが、これは原料の炭
化ケイ素粉末中に0.5〜5重量%の過剰炭素を含むも
のを用いて焼結した高強度材料に関するも9で、とくに
こうした過剰炭素はその焼結体の熱伝導性を著しく損う
。本発明の目的は、焼結密度が高く、室温で電気絶縁性
を有する焼結体を形成することのできる焼結用炭化ケイ
素粉末組成物を提供するにある。
Furthermore, a method of obtaining a high-density sintered body using boron and carbon by a hot press method or a non-pressure method is known (Japanese Patent Laid-Open No. 49-99308). All of these are intended to provide heat-resistant structural materials such as gas turbine parts, and the thermal conductivity values of silicon carbide sintered bodies using these sintering aids are all 0. 4ca2/CIrL-S
It is less than ec・°C. In addition, silicon carbide with Be carbide added and sintered is disclosed in JP-A No. 53-6711.
JP-A-55-32796 and its corresponding U.S. Pat. No. 4,172,109 disclose sintering using silicon carbide powder containing 0.5 to 5% by weight of excess carbon as a raw material. 9 regarding high-strength materials, in particular, such excess carbon significantly impairs the thermal conductivity of the sintered body. An object of the present invention is to provide a silicon carbide powder composition for sintering that can form a sintered body having high sintering density and having electrical insulation properties at room temperature.

本発明は、主にα型結晶からなる平均粒径10μm以下
の炭化ケイ素粉末を主成分とし、平均粒径が10μm以
下であり、ベリリウム量が0.1〜3.5重量%である
酸化ベリリウム粉末を含む混合粉末からなることを特徴
とする焼結用炭化ケイ素粉末組成物にある。酸化ベリリ
ウム粉末は焼結性を高め、電気絶縁性を有する焼結体を
得るために添加するもので、ベリ゛リウム量で0.19
1)未満では効果がない。
The present invention is based on beryllium oxide, which has silicon carbide powder mainly composed of α-type crystals and has an average particle size of 10 μm or less, has an average particle size of 10 μm or less, and has a beryllium content of 0.1 to 3.5% by weight. A silicon carbide powder composition for sintering is characterized in that it is composed of a mixed powder containing powder. Beryllium oxide powder is added to improve sinterability and obtain a sintered body with electrical insulation, and the amount of beryllium is 0.19.
If it is less than 1), there is no effect.

逆に3.5%のベリリウム量の酸化ベリリウムを越える
添加はそれ自身蒸気圧が高いので、焼結の際に蒸発し易
く、焼結体の内外部での特性にバラツキを生じ、まずい
。微量の酸化ベリリウムの添加によつて内外部での特性
のバラツキの少ない焼結体が得られる。本発明屯不純物
として遊離炭素0.4重量%以下、アルミニウム0.1
重量%以下及びホウ素0.1重量%以下の炭化ケイ素粉
末に、ベリリウム0.1〜3.5重量%の酸化ベリリウ
ム粉末を含む混合粉末によりより電気絶縁性の高い焼結
体が得られる。
On the other hand, adding beryllium in an amount exceeding 3.5% of beryllium oxide has a high vapor pressure and is likely to evaporate during sintering, causing variations in the properties inside and outside of the sintered body, which is undesirable. By adding a small amount of beryllium oxide, a sintered body with less variation in internal and external properties can be obtained. In the present invention, free carbon is 0.4% by weight or less and aluminum is 0.1% as impurities.
A mixed powder containing beryllium oxide powder containing 0.1 to 3.5% by weight of beryllium and silicon carbide powder containing 0.1% by weight or less of boron can provide a sintered body with higher electrical insulation.

特に、ベリリウム量が3.5重量%より多いと焼結体の
熱膨脹係数が4X10−6/℃よりも大きくなり、シリ
コン半導体素子用の絶縁基板として使用する場合にはま
ずい。本発明において各粉末は、平均粒径を10μm以
下とすべきであり、好ましくは2μm以下の微粉末であ
る。
In particular, if the amount of beryllium is more than 3.5% by weight, the coefficient of thermal expansion of the sintered body will be greater than 4×10 −6 /° C., which is undesirable when used as an insulating substrate for silicon semiconductor devices. In the present invention, each powder should have an average particle size of 10 μm or less, preferably a fine powder of 2 μm or less.

平均粒径が10μmを越えると焼結性が急激に低下し、
緻密な焼結体が得られない。炭化ケイ素はその主成分と
してα型結晶を有する粉末を用いて焼結することにより
緻密な焼結体が得られる。本発明の粉末組成物の焼結は
非酸化性雰囲気で行うのがよい。
When the average particle size exceeds 10 μm, sinterability decreases rapidly,
A dense sintered body cannot be obtained. A dense sintered body of silicon carbide can be obtained by sintering a powder having α-type crystals as its main component. Sintering of the powder composition of the present invention is preferably carried out in a non-oxidizing atmosphere.

本発明の粉末組成物の好ましい焼結温度は1850〜2
500℃、更に好ましくは1900〜2300℃である
The preferred sintering temperature of the powder composition of the present invention is 1850-2
The temperature is 500°C, more preferably 1900 to 2300°C.

温度が1850℃より低い場合には高密度な焼結体が得
られにくく、2500℃より高い場合には炭化ケイ素の
昇華が激しく、焼結体は過焼成になり、緻密な磁器にな
りにくい。焼結時に試料を高圧で加圧するホツトプレス
法では、加圧する荷重は使用するダイスの材質によつて
決められ、黒鉛製は約700Kf/Cniまで圧力を加
えることができる。しかし、こうした大きな圧力を加え
なくとも高密度な焼結体を得ることができる。
If the temperature is lower than 1850°C, it is difficult to obtain a high-density sintered body, and if the temperature is higher than 2500°C, the sublimation of silicon carbide is intense, the sintered body becomes overfired, and it is difficult to obtain a dense porcelain. In the hot press method, which presses the sample under high pressure during sintering, the pressurizing load is determined by the material of the die used, and graphite can be applied with a pressure of up to about 700 Kf/Cni. However, a high-density sintered body can be obtained without applying such a large pressure.

通常の圧力は100〜300kg/Ctliである。ま
たサブミクロンの粒径を有する炭化ケイ素粉末を使用す
ることにより、加圧しないでも緻密(理論値90%)な
焼結体を得ることができる。焼結時間は原料粉末の粒径
、温度、焼結時に加える荷重により最適値が決められる
。実施例 1 平均粒径2μmのα型結晶を有する炭化ケイ素粉末に粒
径10μm以下の酸化ベリリウム粉末を0.1〜20重
量%添加し混合した。
Typical pressures are 100-300 kg/Ctli. Further, by using silicon carbide powder having a submicron particle size, a dense sintered body (90% of the theoretical value) can be obtained without pressurization. The optimum value of the sintering time is determined by the particle size of the raw powder, the temperature, and the load applied during sintering. Example 1 0.1 to 20% by weight of beryllium oxide powder with a particle size of 10 μm or less was added to silicon carbide powder having α-type crystals with an average particle size of 2 μm and mixed.

次いで混合粉末を室温で1000K−9/mlの圧力を
加えて成形体とした。成形体は1.60〜1.67g/
dの密度(炭化ケイ素の理論密度に対し50〜52%の
相対密度)を有する。次に成形体を黒鉛製のダイスに入
れ、減圧度1X10−5〜1X10−3t0rr中でホ
ツトブレス法により焼結した。焼結圧力は300Kf/
!−JモV1で、加熱は室温から2000℃まで約2hで
昇温し、2000℃で1h保持したのち加熱電源を切つ
て放冷した。圧力は温度が1500℃以下になつてから
解除した。上記によつて製造した炭化ケイ素焼結体の特
性とベリリウムの含有量との関係を第1図〜第4図に示
す〇第1図〜第4図の結果より、炭化ケイ素焼結体に含
有するベリリウムの量が0.1〜3.5重量%の範囲の
場合に相対密度95%以上の高密度で、室温で0.5c
a1/ClIL−Sec・℃以上の高熱伝導率、室温で
109Ω・傭以上の高電気抵抗率、低熱膨張係数(4X
10−6/℃以下)を併せ有する焼結体が得られる。
Next, a pressure of 1000K-9/ml was applied to the mixed powder at room temperature to form a compact. The molded product is 1.60-1.67g/
d (relative density of 50-52% to the theoretical density of silicon carbide). Next, the molded body was placed in a graphite die and sintered by the hot press method at a reduced pressure of 1×10 −5 to 1×10 −3 t0rr. Sintering pressure is 300Kf/
! In -J Mo V1, the temperature was raised from room temperature to 2000°C in about 2 hours, maintained at 2000°C for 1 hour, and then the heating power was turned off and allowed to cool. The pressure was released after the temperature dropped to below 1500°C. The relationship between the characteristics of the silicon carbide sintered body produced as described above and the content of beryllium is shown in Figures 1 to 4. From the results shown in Figures 1 to 4, it is clear that the content of beryllium in the silicon carbide sintered body is When the amount of beryllium to be used is in the range of 0.1 to 3.5% by weight, the relative density is 95% or more, and 0.5c at room temperature.
High thermal conductivity of a1/ClIL-Sec・℃ or more, high electrical resistivity of 109Ω・min or more at room temperature, low coefficient of thermal expansion (4X
10-6/°C or less) is obtained.

相対密度とは炭化ケイ素の理論密度に対する密度を示す
。実施例 2 実施例1と同様に炭化ケイ素粉末に対し酸化ベリリウム
粉末を4重量%添加した混合粉末を実施例1と同様にし
てホツトプレス法により焼結体を得た。
Relative density refers to the density relative to the theoretical density of silicon carbide. Example 2 A sintered body was obtained by hot pressing a mixed powder obtained by adding 4% by weight of beryllium oxide powder to silicon carbide powder in the same manner as in Example 1.

このときの焼結体に含まれるベリリウムの含有量は約1
重量%であつた。この例においてはホツトプレス条件を
変えて焼結体を作製した。第1表は得られた焼結体の特
性とホツトプレス条件との関係を示すもので、温度18
50〜2500℃、圧力100Kf/d以上で焼結する
ことにより、理論密度の90%以上、0.4Ca1/C
ffL・8eC・℃以上の熱伝導率、1011Ω・d以
上の電気抵抗率および3.3X10−6/℃の熱膨張係
数の焼結体を得た。相対密度95%以上では室温で0.
5ca1/Sec−礪・℃以上の熱伝導率を有する。実
施例 3 実施例1と同様に炭化ケイ素粉末及び酸化ベリリウム粉
末を使用して得た炭化ケイ素の焼結体は実施例1と同様
に酸化ベリリウム粉末の添加量を3重量%とし、焼結時
の雰囲気をアルゴンガス、ヘリウムガスおよび窒素ガス
を使用し製造した。
The content of beryllium contained in the sintered body at this time is approximately 1
It was in weight%. In this example, sintered bodies were produced by changing hot pressing conditions. Table 1 shows the relationship between the properties of the obtained sintered body and the hot pressing conditions.
By sintering at 50 to 2500℃ and a pressure of 100Kf/d or more, 90% or more of the theoretical density and 0.4Ca1/C
A sintered body having a thermal conductivity of ffL·8 eC·°C or more, an electrical resistivity of 10 11 Ω·d or more, and a thermal expansion coefficient of 3.3×10 −6 /°C was obtained. When the relative density is 95% or more, the temperature is 0.
It has a thermal conductivity of 5ca1/Sec-1°C or higher. Example 3 A sintered body of silicon carbide obtained using silicon carbide powder and beryllium oxide powder in the same manner as in Example 1 was prepared by adding 3% by weight of beryllium oxide powder in the same manner as in Example 1, and at the time of sintering. The atmosphere was prepared using argon gas, helium gas and nitrogen gas.

得られた焼結体中のベリリウムの含有量は0.9重量%
であつた。その特性は実施例1のベリリウム含有量1重
量%の焼結体とほぼ同じであつた。実施例 4平均粒径
が0.2〜20μmのα型結晶を有する炭化ケイ素粉末
に酸化ベリリウム粉末を2重量%添加して混合したのち
、実施例1と同様にしてホツトプレス法により焼結体を
製造した。
The content of beryllium in the obtained sintered body is 0.9% by weight
It was hot. Its properties were almost the same as those of the sintered body of Example 1 with a beryllium content of 1% by weight. Example 4 After adding and mixing 2% by weight of beryllium oxide powder to silicon carbide powder having α-type crystals with an average particle size of 0.2 to 20 μm, a sintered body was formed by hot pressing in the same manner as in Example 1. Manufactured.

第2表は炭化ケイ素原料粉末の平均粒径と得られた焼結
体の相対密度の関係である。また、第6図は相対密度と
平均粒径との関係を示す線図である。焼結体は炭化ケイ
素原料粉末の平均粒径が10μm以下であれば相対密度
95%以上に緻密化する。また、相対密度が95%以上
に緻密化した焼結体は実施例1のベリリウム含有量0.
4重量%の場合と同様に室温で0.5ca1/C!IL
.sec.℃以上の熱伝導率及び1010Ω・礪以上の
電気抵抗率を有する特性を示した。炭化ケイ素原料粉末
の平均粒径が10μmより大きく、緻密化が十分進行し
なかつた焼結体では熱伝導率が0.2ca11/C7l
L−Sec・℃以下、機械的強度が10K9/7!IJ
I?以下と小さい値であつたO実施例 5 実施例1と同様に炭化ケイ素粉末に酸化ベリリウム粉末
を2重量%添加し、さらに不純物としてカーボンブラツ
ク(粒径0.1μm以下の微粉末)を炭化ケイ素に対し
て0.3〜1重量%添加して混合粉末とした。
Table 2 shows the relationship between the average particle size of the silicon carbide raw material powder and the relative density of the obtained sintered body. Moreover, FIG. 6 is a diagram showing the relationship between relative density and average particle size. If the average particle size of the silicon carbide raw material powder is 10 μm or less, the sintered body will be densified to a relative density of 95% or more. In addition, the sintered body whose relative density was densified to 95% or more had a beryllium content of 0.
0.5ca1/C at room temperature as in the case of 4% by weight! IL
.. sec. It exhibited characteristics of thermal conductivity of ℃ or higher and electrical resistivity of 1010 Ω/cm or higher. In a sintered body in which the average particle size of the silicon carbide raw material powder is larger than 10 μm and densification has not progressed sufficiently, the thermal conductivity is 0.2ca11/C7l.
L-Sec・℃ or less, mechanical strength is 10K9/7! I.J.
I? Example 5: As in Example 1, 2% by weight of beryllium oxide powder was added to silicon carbide powder, and carbon black (fine powder with a particle size of 0.1 μm or less) was added as an impurity to silicon carbide. 0.3 to 1% by weight was added to prepare a mixed powder.

混合粉末は実施例1に記載したものと同様にしてホツト
プレス法により焼結体を得た。第3表はカーボンブラツ
クの添加量と焼結体の特性との関係を示し、カーボンブ
ラツクの添加量が0.5重量%になると電気抵抗率10
6Ω・Uとなる。本実施例においては実施例5において
不純物として添加したカーボンブラツクに換えて窒化ア
ルミニウム粉末(粒径2μm以下の微粉末)を炭化ケイ
素VLfJ切1L/%−枇゛口切小乙したO第4表はア
Jカ■■し、アルミニウムの含有量が0.1重量%より
多くなると電気抵抗率が著しく小さくなる。
A sintered body was obtained from the mixed powder by hot pressing in the same manner as described in Example 1. Table 3 shows the relationship between the amount of carbon black added and the properties of the sintered body. When the amount of carbon black added is 0.5% by weight, the electrical resistivity is 10
It becomes 6Ω・U. In this example, in place of the carbon black added as an impurity in Example 5, aluminum nitride powder (fine powder with a particle size of 2 μm or less) was used as silicon carbide VLfJ cut 1L/% - Table 4. Haa
However, when the aluminum content exceeds 0.1% by weight, the electrical resistivity decreases significantly.

実施例 7 実施例5と同様にして不純物として添加したカーボンブ
ラツクに換えて窒化ホウ素粉末(粒径5μm以下の微粉
末)を炭化ケイ素に添加して混合粉末とした。
Example 7 In the same manner as in Example 5, boron nitride powder (fine powder with a particle size of 5 μm or less) was added to silicon carbide instead of carbon black added as an impurity to obtain a mixed powder.

第5表はホウ素の含有量と焼結体の特性との関係を示し
、ホウ素の含有量が0.1重量%より多くなると熱伝導
率が著しく小さくなる。炭化ケイ素粉末は高周波熱プラ
ズマ中で合成したα型結晶を有する粉末を使用した。粉
末は200A〜0.2μmの粒径を有する極めて微細な
粉末である。粉末に平均粒径が1μmである酸化ベリリ
ウム粉末を2重量%添加して混合した。次いで混合粉末
は1000助/Cdの圧力を加えて成形体としたのち、
成形体は1X10−4t0rrの真空中で焼結した。加
熱は室温から2100℃まで約2hで昇温し、2100
℃で0.5h保持したのち、加熱電源を切つて放冷した
。焼結体中のベリリウム含有量は約0.4重量%であつ
た。第6表に焼結体の特性を示す。焼結体は緻密化して
おり、高熱伝導率、高電気抵抗率及び小さい熱膨張係数
を有している。比較例 1 実施例1と同様の炭化ケイ素粉末に添加剤を加えない粉
末を用い、実施例1と同様にしてホツトプレス法により
焼結体を得た。
Table 5 shows the relationship between the boron content and the properties of the sintered body. When the boron content exceeds 0.1% by weight, the thermal conductivity becomes significantly small. The silicon carbide powder used was a powder having α-type crystals synthesized in high-frequency thermal plasma. The powder is a very fine powder with a particle size of 200A to 0.2 μm. 2% by weight of beryllium oxide powder having an average particle size of 1 μm was added to the powder and mixed. Next, the mixed powder was made into a compact by applying a pressure of 1000/Cd, and then
The compact was sintered in a vacuum of 1×10 −4 t0rr. Heating was performed by increasing the temperature from room temperature to 2100°C in about 2 hours.
After maintaining the temperature at 0.5 h for 0.5 h, the heating power source was turned off and the mixture was left to cool. The beryllium content in the sintered body was approximately 0.4% by weight. Table 6 shows the properties of the sintered body. The sintered body is dense and has high thermal conductivity, high electrical resistivity, and low coefficient of thermal expansion. Comparative Example 1 A sintered body was obtained by hot pressing in the same manner as in Example 1 using the same silicon carbide powder as in Example 1 without adding any additives.

焼結体の特性は第7表に示す通りで、緻密化されないた
め、熱伝導率、電気抵抗率、機械的強度のいずれの値も
小さ比較例 2実施例1と同様の炭化ケイ素粉末に添加
剤として酸化アルミニウムを2重量%添加混合した混合
粉末を実施例1と同様にして成形体としたのち、ホツト
ブレス法により焼結体を得た。
The properties of the sintered body are shown in Table 7, and since it is not densified, the values of thermal conductivity, electrical resistivity, and mechanical strength are all small. Comparative Example 2 Added to the same silicon carbide powder as in Example 1. A mixed powder containing 2% by weight of aluminum oxide as an agent was made into a molded body in the same manner as in Example 1, and then a sintered body was obtained by hot pressing.

焼結体の特性は第8表に示す通りで、焼結体はナ分に緻
密化し、機械的強度は大きいが、熱伝導率、電気抵抗率
はいずれも小さい値を示している。また、炭化アルミニ
ウム、窒化アルミニウム、リン酸アルミニウムを添加剤
として使用した場合にも第8表に示したものと同様な特
性を示した。A¥1^:±; 実施例 9 本発明の粉末組成物を用いて形成した焼結体からなる電
気絶縁基板の具体的な適用例として、実施例1で得たベ
リリウム含有量が0.5重量%の炭化ケイ素焼結体を基
板として用いた半導体パワーモジユールで説明する。
The properties of the sintered body are shown in Table 8, and the sintered body is reasonably dense and has high mechanical strength, but both thermal conductivity and electrical resistivity show small values. Furthermore, properties similar to those shown in Table 8 were also exhibited when aluminum carbide, aluminum nitride, and aluminum phosphate were used as additives. A¥1^:±; Example 9 As a specific application example of an electrically insulating substrate made of a sintered body formed using the powder composition of the present invention, the beryllium content obtained in Example 1 was 0.5. A semiconductor power module using a silicon carbide sintered body of % by weight as a substrate will be explained.

第6図は従来構造の組立断面図である。導体4とヒート
シンク6及びヒートシンク6と金属支持板8の間を有機
絶縁物5及びアルミナ基板7を絶縁し、またシリコン素
子1とヒートシンク6との熱膨張係数の差によるひずみ
を緩和するためにスペーサ3を介在させてある。第7図
は本発明になる絶縁基板を用いたモジユールの組立断面
図である。基板15はシリコン素子11と直接ろう付さ
れており、非常に簡単な構造を有する。上記半導体装置
を−60℃で30分保持したのち室温にして5分保持し
、さらに125℃に昇温して30分保持するヒートサイ
クルを加えた。
FIG. 6 is an assembled sectional view of the conventional structure. A spacer is provided between the conductor 4 and the heat sink 6 and between the heat sink 6 and the metal support plate 8 to insulate the organic insulator 5 and the alumina substrate 7, and to alleviate the strain caused by the difference in thermal expansion coefficient between the silicon element 1 and the heat sink 6. 3 is interposed. FIG. 7 is an assembled sectional view of a module using an insulating substrate according to the present invention. The substrate 15 is directly brazed to the silicon element 11 and has a very simple structure. The above semiconductor device was held at -60°C for 30 minutes, then brought to room temperature and held for 5 minutes, and then subjected to a heat cycle in which the temperature was raised to 125°C and held for 30 minutes.

従来法になる半導体装置(第6図)は20回のヒートサ
イクルで基板にクラツクが発生するとともにハンダ付箇
所にはがれが生じた。本発明になる半導体装置(第7図
)は150回のヒートサイクル後でも異常が認められな
かつた。本発明による炭化ケイ素粉末組成物は焼結性が
すぐれており、高熱伝導率、高電気抵抗率および低熱膨
張係数を有する焼結体が得られるという特徴を有する。
In the conventional semiconductor device (FIG. 6), cracks occurred on the board after 20 heat cycles, and peeling occurred at the soldered areas. No abnormality was observed in the semiconductor device according to the present invention (FIG. 7) even after 150 heat cycles. The silicon carbide powder composition according to the present invention has excellent sinterability, and is characterized in that a sintered body having high thermal conductivity, high electrical resistivity, and low coefficient of thermal expansion can be obtained.

従つて前述した如き電気絶縁用基板材料、を得るのに好
適である。
Therefore, it is suitable for obtaining the electrically insulating substrate material as described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明の粉末組成物によつて得られた
焼結体の性状を示し、第1図はベリリウム含有量と焼結
体の相対密度との関係を示す図、第2図はベリリウム含
有量と焼結体の室温における熱伝導率との関係を示す図
、第3図はベリリウム含有量と焼結体の室温における電
気抵抗率との関係を示す図、第4図はベリリウム含有量
と焼結体の室温〜300℃における熱膨張係数の平均値
との関係を示す図、第5図は相対密度と平均粒径との関
係を示す線図、第6図は従来法によるシリコン半導体装
置の組立断面図、第7図は本発明による基板を用いたシ
リコン半導体装置の断面図である。 1および11・・・シリコン素子、2および12・・・
アルミニウムリード線、3・・・モリブデンスペーサ、
4および13・・・導体、5・・・有機絶縁物、6・・
・ヒートシンク、7・・・アルミナ基板、8・・・支持
板、9,10および14・・・半田、15・・・炭化ケ
イ素焼結体基板。
1 to 4 show the properties of the sintered body obtained using the powder composition of the present invention, FIG. 1 is a diagram showing the relationship between the beryllium content and the relative density of the sintered body, and FIG. Figure 2 shows the relationship between the beryllium content and the thermal conductivity of the sintered body at room temperature, Figure 3 shows the relationship between the beryllium content and the electrical resistivity of the sintered body at room temperature, and Figure 4 is a diagram showing the relationship between the beryllium content and the average value of the coefficient of thermal expansion of the sintered body at room temperature to 300°C, Figure 5 is a diagram showing the relationship between relative density and average grain size, and Figure 6 is the diagram of the conventional FIG. 7 is a cross-sectional view of a silicon semiconductor device using a substrate according to the present invention. 1 and 11... silicon element, 2 and 12...
Aluminum lead wire, 3...Molybdenum spacer,
4 and 13...Conductor, 5...Organic insulator, 6...
- Heat sink, 7... Alumina substrate, 8... Support plate, 9, 10 and 14... Solder, 15... Silicon carbide sintered body substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 主にα型結晶からなる平均粒径10μm以下の炭化
ケイ素粉末を主成分とし、平均粒径が10μm以下であ
り、ベリリウム量が0.1〜3.5重量%である酸化ベ
リリウム粉末を含む混合粉末からなることを特徴とする
焼結用炭化ケイ素粉末組成物。
1 The main component is silicon carbide powder mainly composed of α-type crystals with an average particle size of 10 μm or less, and contains beryllium oxide powder with an average particle size of 10 μm or less and a beryllium content of 0.1 to 3.5% by weight. A silicon carbide powder composition for sintering, comprising a mixed powder.
JP57019637A 1982-02-12 1982-02-12 Charcoal-fired silicon powder composition for sintering Expired JPS593436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57019637A JPS593436B2 (en) 1982-02-12 1982-02-12 Charcoal-fired silicon powder composition for sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57019637A JPS593436B2 (en) 1982-02-12 1982-02-12 Charcoal-fired silicon powder composition for sintering

Publications (2)

Publication Number Publication Date
JPS57166365A JPS57166365A (en) 1982-10-13
JPS593436B2 true JPS593436B2 (en) 1984-01-24

Family

ID=12004725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57019637A Expired JPS593436B2 (en) 1982-02-12 1982-02-12 Charcoal-fired silicon powder composition for sintering

Country Status (1)

Country Link
JP (1) JPS593436B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162177A (en) * 1983-03-02 1984-09-13 株式会社日立製作所 Electrically insulative silicon carbide powder composition

Also Published As

Publication number Publication date
JPS57166365A (en) 1982-10-13

Similar Documents

Publication Publication Date Title
US4571610A (en) Semiconductor device having electrically insulating substrate of SiC
US4796077A (en) Electrical insulating, sintered aluminum nitride body having a high thermal conductivity and process for preparing the same
JP2000303126A (en) Aluminum/diamond composite material and its manufacture
JPS6337065B2 (en)
JPS5831755B2 (en) Base for electrical insulation
JPS5969473A (en) Sintering silicon carbide powder composition
JPS593436B2 (en) Charcoal-fired silicon powder composition for sintering
JPS5815953B2 (en) Board for electrical equipment
JP2677748B2 (en) Ceramics copper circuit board
JPS6236988B2 (en)
JPH0247856B2 (en)
JPS6246512B2 (en)
JP2000192182A (en) Silicon carbide composite material and its production
JPH0313190B2 (en)
JPH0515668B2 (en)
JPS631268B2 (en)
JPS61261270A (en) Manufacture of aluminum nitride sintered body
JPS6236989B2 (en)
JPS59162177A (en) Electrically insulative silicon carbide powder composition
JP2001158933A (en) Al-SiC COMPOSITE MATERIAL, PRODUCING METHOD THEREFOR AND SEMICONDUCTOR SYSTEM USING SAME
JPS6227487B2 (en)
JPS61205665A (en) Electrically insulating substrate and manufacture
JPH01188472A (en) Production of aluminum nitride sintered body
JPH06183864A (en) Metallized silicon nitride substrate
JPS6025389B2 (en) Electrically insulating silicon carbide powder composition