JPS5933065A - Production of hollow cylindrical composite casting - Google Patents

Production of hollow cylindrical composite casting

Info

Publication number
JPS5933065A
JPS5933065A JP14312282A JP14312282A JPS5933065A JP S5933065 A JPS5933065 A JP S5933065A JP 14312282 A JP14312282 A JP 14312282A JP 14312282 A JP14312282 A JP 14312282A JP S5933065 A JPS5933065 A JP S5933065A
Authority
JP
Japan
Prior art keywords
casting
mold
molten metal
metal
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14312282A
Other languages
Japanese (ja)
Other versions
JPS635184B2 (en
Inventor
Toshiaki Morichika
森近 俊明
Kazuyuki Takubo
和之 田久保
Atsushi Funakoshi
淳 船越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP14312282A priority Critical patent/JPS5933065A/en
Publication of JPS5933065A publication Critical patent/JPS5933065A/en
Publication of JPS635184B2 publication Critical patent/JPS635184B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/06Centrifugal casting; Casting by using centrifugal force of solid or hollow bodies in moulds rotating around an axis arranged outside the mould

Abstract

PURPOSE:To obtain a product having a desired shape and size at a low cost, by casting molten metal and carbide particles having the specific gravity larger than the specific gravity of the molten metal into a hollow cylindrical casting mold while rotating said mold and making the composite phase of the composite phase with the formed metallic phase into a product. CONSTITUTION:A casting mold 1 consisting of a product forming part 1.1 and a riser forming part 1.2 is rotated on a horizontal rotary table 4, and the casting port 61 of a hopper 6 is placed to face to the opening end in the upper part thereof. Carbide powder P is charged from a charging jig 8 into the hopper 6 and molten metal M' is charged therein from a ladle 10, respectively through the port 61. Since the powder P has the specific gravity larger than the specific gravity of the molten metal M', the powder flocculates in a product forming part 1.1, thus forming a composite phase with the metal M'. Only the metallic phase is formed in a riser forming part 1.1. The metal M' is removed from the mold 1 upon thorough solidification and the composite phase and the metallic phase are cut along a line V to remove the metallic phase part B, whereby a hollow cylindrical casting A is obtd.

Description

【発明の詳細な説明】 本発明は、金属と炭化物粒子とから々る複合組織を有す
る中空円筒状鋳物の?製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a hollow cylindrical casting having a composite structure consisting of metal and carbide particles. Regarding manufacturing methods.

金属と炭化物粒子(例えば炭化タングステンなど)から
なる複合材料は、金属のみでは得られぬ特性、例えば高
耐摩耗性等を有する。従来、この種材料の製造法として
一般に粉末冶金法が適用さ門.て℃るが・同法は製造工
程が煩瑣で・″トも高くつき、かつ製作可能な製品の形
状・ザイズに制約がある。
Composite materials made of metal and carbide particles (such as tungsten carbide) have properties that cannot be obtained from metal alone, such as high wear resistance. Conventionally, powder metallurgy has been generally applied as a manufacturing method for this type of material. However, the manufacturing process is complicated and expensive, and there are restrictions on the shape and size of the products that can be manufactured.

本発明は、そのような製造法に代えて、鋳造法により複
合鋳物を製造しようとするものである。
The present invention attempts to manufacture a composite casting by a casting method instead of such a manufacturing method.

本発明者等の研究によれば、金属溶湯と該溶湯よシ比重
の大きい炭化物粒子とを鋳型内に鋳造し、比重差により
炭化物粒子を沈降・凝集させること1″′″γ炭化物粒
{−CP)が緻密に集合し・.が″棹子間隙に金属(財
)が充填されてなる複合組織を有する鋳物を製造するこ
とク;できる。かがる鋳造法.・にょれば、前記従来法
に比七、製造工程が一挙に簡略化され、製造コストが大
幅に低減すると同時に、製造可能な製品の形状・サイズ
の制約も著しく緩和される。′: 上記鋳造において、目的とする鋳物の全体を複合組織と
するだめには、釡属溶湯とともに鋳込まれる炭化物粒子
を鋳型内の所定領域全体に均等に分布させねばならない
。しかしながら、使用される炭化物粒子は比重が比較的
大きいものであるため、鋳型の形状によっては全体にわ
たる均等な分布が困難である。特に、直立に設置された
中空円筒状鋳型に金属溶湯と炭化物粉体とを鋳込んで中
空円筒形状の鋳物を製造する鋳造においては、極端な場
今、炭化物粉体が鋳型内の一隅に偏在してしまうため、
得られる鋳物は、第7図に示すように、一部領域のみに
炭化物粒子(P)が集中し、残余の部分は炭化物粒子の
存在し碌い金属(財)のみの単相となってしまう。・ 本発明は、このような不具合を解消じ、鋳物全体にわた
り緻密かつ均一に炭化物粒子.が混在してなる健全な複
合組織を有する中空円筒状鋳物を製造し得るようにした
ものである。
According to the research of the present inventors, 1''''γ carbide particles {- CP) are densely aggregated. However, it is possible to manufacture castings with a composite structure in which metal (goods) are filled in the gaps between the rods.The overcasting method is seven times faster than the conventional method, and the manufacturing process is reduced at once. This greatly reduces manufacturing costs, and at the same time significantly eases restrictions on the shape and size of products that can be manufactured.': In the above casting, in order to make the entire target casting have a composite structure, , the carbide particles that are cast together with the molten metal must be evenly distributed throughout the predetermined area within the mold.However, since the carbide particles used have a relatively high specific gravity, depending on the shape of the mold, the carbide particles must be evenly distributed over the entire predetermined area within the mold. Even distribution is difficult.Especially in casting, where molten metal and carbide powder are poured into a hollow cylindrical mold set upright to produce hollow cylindrical castings, in extreme cases, carbide powder Because the body is unevenly located in one corner of the mold,
As shown in Figure 7, in the resulting casting, carbide particles (P) are concentrated only in a certain area, and the remaining part has carbide particles and is a single phase consisting of only a strong metal (goods). .・The present invention solves these problems and allows carbide particles to be formed densely and uniformly throughout the casting. This makes it possible to manufacture a hollow cylindrical casting having a healthy composite structure in which a mixture of .

すなわち、本発明は、直立設置された中空円筒形状を有
する鋳型の上部に金属溶湯と炭化物粉体とを鋳造するだ
めの鋳込みホッパを配置してその鋳込み口を鋳型の上部
開口端にのぞませるとともに、該鋳型をその軸心を中心
に水平面内で回転させるか、もしくはホッパ一の鋳込み
口を鋳型の開口にそって円周方向に移動させながら、鋳
型内に金属溶湯と炭化物粉体とを鋳込むようにした中空
円筒状複合鋳物の製造方法を提供する。
That is, in the present invention, a casting hopper for casting molten metal and carbide powder is disposed on the upper part of a hollow cylindrical mold that is installed upright, and the casting hopper is made to look into the upper open end of the mold. At the same time, the molten metal and carbide powder are poured into the mold by rotating the mold in a horizontal plane around its axis or by moving the pouring port of the hopper in the circumferential direction along the opening of the mold. A method for manufacturing a hollow cylindrical composite casting by casting is provided.

以下、本発明について詳しく説明する。The present invention will be explained in detail below.

第1図は本発明による複合鋳物の製造要領の具体例を示
す。図中、(1)は鋳型、(4)は鋳型をその軸心を中
心に回転させるだめの水平回転テーブル、(6)は鋳込
みホッパーであり、ホッパーの鋳込み口(61)は鋳型
(1)の上部開口端にのぞむよう設置されている。(8
)は炭化物粉体投大治具であり、それには必要に応じて
粉体流量調節機(9)が取付けられる。
FIG. 1 shows a specific example of the procedure for manufacturing a composite casting according to the present invention. In the figure, (1) is a mold, (4) is a horizontal rotary table for rotating the mold around its axis, (6) is a casting hopper, and the casting opening (61) of the hopper is connected to the mold (1). It is installed so that it looks into the upper opening end of the (8
) is a carbide powder throwing jig, to which a powder flow rate regulator (9) is attached as necessary.

鋳型(1)は下部の鋳物製品の形成部(1・1)と上部
の押湯形成部(1・2)とからなる。該鋳型は、例えば
ロストワックス精密鋳造などに使用される焼成モールド
であシ、バックサンド(2)とともにケース(3)内に
セットされ、回転テーブル(4)上にその回軸支軸(5
)と同軸に設置されている。回転テーブル(4)は図示
しない駆動機構により適当な回転速度で回転駆動するこ
とによって鋳型(1)に回転を与える。
The mold (1) consists of a lower part for forming a cast product (1, 1) and an upper part for forming a feeder (1, 2). The mold is a firing mold used for lost wax precision casting, for example, and is set in a case (3) together with a back sand (2), and its pivot shaft (5) is placed on a rotary table (4).
) is installed coaxially with the The rotary table (4) is driven to rotate at an appropriate rotational speed by a drive mechanism (not shown), thereby imparting rotation to the mold (1).

一方、粉体投与治具(8)には、鋳造される金属溶湯よ
シ比重の大きい炭化物粉休が装入されている。
On the other hand, the powder dosing jig (8) is charged with carbide powder, which has a higher specific gravity than the molten metal to be cast.

その投入口031)N:鋳込みホツパー(6)に指向す
る。
Its input port 031)N: points toward the casting hopper (6).

鋳込みホツパー(6)には、取鍋叫から金民溶楊(d)
、粉休投大治具(8)から炭化物粉体(.P)が幼込祉
れ、溶湯と粒子とは混合状態となって鋳込み口(61)
がち鋳型(1)内に流下する。
For the casting hopper (6), there is a ladle cry to a kinmin ryang (d).
, the carbide powder (.P) is poured from the powder suspension large jig (8), and the molten metal and particles become mixed and enter the casting port (61).
It flows down into the mold (1).

上記装置において、鋳型(1)を回転テーブル(4)に
て適当な一定の回転速度で回転させながら、ホッパ−(
6)から溶湯a)と炭化物粉休の混合物を連続的に鋳造
する。鋳型(1)内には、?第1回目の回転、第2回目
の回転・・・と各次の回転を経ていくにつれ、第2図に
示すように、各次の回転時に円周方向にそって形成され
る鋳造層(CIXC2)’(C8XC4)・・・が底部
から上方へと順次積層される6”+つとも、各鋳造層は
各別に独立する境界面を有するわけではなく、溶湯およ
び炭化物粒子とも上下方向に連続す’h一休的状態にあ
ることは言うまでもない。こうして所定量の金属溶湯と
炭化物粉体の全量を鋳造する。
In the above device, the mold (1) is rotated on the rotary table (4) at an appropriate constant rotation speed while the hopper (
From step 6), a mixture of molten metal a) and carbide powder is continuously cast. What is inside the mold (1)? As each rotation progresses through the first rotation, second rotation, etc., as shown in Figure 2, a cast layer (CIXC2) is formed along the circumferential direction during each rotation. )'(C8 Needless to say, the process is in a temporary state.In this way, a predetermined amount of molten metal and the entire amount of carbide powder are cast.

その鋳造中、鋳型内溶湯の酸化防止等を目的として、常
法にしだがい鋳型内にフラツクスを投与して溶湯表面を
被覆するのも好ましいことである。
During casting, it is preferable to inject flux into the mold to coat the surface of the molten metal in a conventional manner for the purpose of preventing oxidation of the molten metal within the mold.

このように、炭化物粉体の鋳込みをー,j型の回転下に
行なえば、炭化物粉体の鋳型内への流下点が円周方向に
連続的に推移・するのセ、^II記第7図のように一型
内の一部に偏在することが々〈、鋳如め軸方向はもとよ
り、丙周方向にも均等に分散した状態が得ち?れる。む
ろん、鋳造が終了すれ畝鋳型の回転を停止してよい。′
? ・鋳造終了後の鋳型内の金属溶湯と炭化物粒子は、すぐ
には十分に比重分離されず、第3図〔I″lに示すよう
に、炭化物粒子(P)は溶湯a)中を分散浮遊している
が、経時的に沈降し、同図〔n〕のように、鋳型内乍部
の製品形成部?ぐ1・1)に凝集して緻密外複合相(混
在相)を形成するに到る。それに伴い、上部は炭化物粒
子が比重分離された実質的に粒子の存在しない金属相d
)となる。かくして金属溶湯を完全凝固させたのち、鋳
型から取出し、そあ鋳造体を第4図に示すようにV−■
で切断して金属相部CB)を除去すれば全周全長にわた
り複合血織を有する中空円筒状鋳物(4)が樽られ為。
In this way, if the carbide powder is cast under the rotation of the -J mold, the point at which the carbide powder flows into the mold changes continuously in the circumferential direction. As shown in the figure, it is often unevenly distributed in a part of one mold. It will be done. Of course, the rotation of the ridged mold may be stopped once the casting is completed. ′
?・The molten metal and carbide particles in the mold after casting are not separated by specific gravity immediately, and as shown in Figure 3 [I''l], the carbide particles (P) are dispersed and suspended in the molten metal a). However, as shown in the same figure [n], it settles over time and aggregates in the product forming area in the mold to form a dense and extra-dense composite phase (mixed phase). Along with this, the upper part is a metal phase d in which carbide particles are separated by specific gravity and are substantially free of particles.
). After the molten metal has completely solidified in this way, it is taken out from the mold and the cast body is shaped like V-■ as shown in Fig. 4.
If the metal phase part CB) is removed by cutting, a hollow cylindrical casting (4) having a composite weave over the entire circumference and length is formed.

なおJ上記鋳造において、鋳込みホツ・ぐーは必ずしも
J基に限らず、適当な複数基のホッパを用い、各鋳込み
口を鋳型(1)の上部開口端の円周方向にそって配列し
、それぞれのホツパーから溶湯と炭化物粉体の混合物を
鋳込むようにしてもよい。?」二記鋳造では、金属溶湯
と炭化物粒子とを混合物として鋳型内に鋳造しだが、別
法として、溶湯と粉体とを、それぞれ個別に鋳造するこ
ともできる。第5図はその例を示すもので、鋳型(1)
の上部に溶湯を鋳込むだめのホツパー(7)と炭化物粉
体を鋳込むだめのホッパー01とを、それぞれの鋳込み
口(7])、(111.)が鋳型(1)の上部開口端に
のぞむように配設されるほかは、前記第1図の装置と同
様に構成されており、鋳型(】)の回転下に、各ホツパ
ーから溶湯a)と炭化物粉体(P)とがそれぞれ・各別
に鋳型内に鋳造される。炭化物粉体の鋳造に・使用され
るホッパ−01)は、?前記の粉体投与治具(8)と同
様のものであってよい。
In addition, in the above casting, the casting holes and holes are not necessarily limited to J groups, but a plurality of appropriate hoppers are used, and each casting hole is arranged along the circumferential direction of the upper opening end of the mold (1), and each A mixture of molten metal and carbide powder may be cast from a hopper. ? In the second casting, a mixture of molten metal and carbide particles is cast into a mold, but as an alternative method, the molten metal and powder can be cast separately. Figure 5 shows an example of this.Mold (1)
A hopper (7) for casting the molten metal into the upper part of the mold and a hopper 01 for casting the carbide powder into the upper part of the mold (1) are connected to the upper opening end of the mold (1). The device is constructed in the same way as the device shown in Fig. 1 above, except that they are arranged as desired, and molten metal a) and carbide powder (P) are pumped from each hopper as the mold ( ]) rotates. Each is cast separately into a mold. What is the hopper 01) used for casting carbide powder? It may be similar to the powder administration jig (8) described above.

との鋳造法においては、前記の炭化物?粉体と溶湯とを
混合物として鋳造するのと異なり、炭化物粉休け、鋳型
内の溶湯面上に投与されることになる。こめ場谷、炭化
物粒子が溶湯との濡i性が良ムものであれば、溶湯面上
に落下後、直ちに溶湯に吸着され、落下地点から溶湯中
への沈降を開始するので、炭化物粒子の円周方向の均一
な分巌状態が妨げられることばない。しかし、炭化物粒
字の溶湯に対する濡れ性が乏しいと、直ち麩吸一されず
、溶湯面上を周方向に浮遊するだめ、均等に分散投与干
るにもかかわらず、溶湯中の炭化物粒子の分布に偏シを
生じ易い。かかる不具合を解消する方法として、鋳型内
の溶湯面を、炭化物粒子との濡れ性を有す為)ラツ身ス
の溶融層で被覆し、レラツクス主に炭化物粉体:帖投与
するとよい。こうすれば、炭化物粒子i直ちにフラッ夛
スに吸瘤さパるから、上記のように円周方向に浮擁する
ととがなく、?落下地点そララツクス層から溶湯層へ吸
着移行し、ついぞ溶湯中を沈降することにより、炭化物
粒字の均一な分布状態が確保される。??上記ブラック
スは、使阻される炭化物粒子とめ:濡れ性がa”’<’
L’かつ鋳造金属の凝固点付近にわいても充分’i”z
m性を有?する:もあであれば、酸化物系、塩化1勿系
、弗化物系のもの、あるいはそλ′1,らの21’ij
i以上からなるものなどを適宜使Y目すればよい。また
、鋳型内溶潟面」二に溶融フラツクス層を形成する方法
としては、フラソク.ス粉を溶湯面」二に投力して溶湯
熱で鼾融.さサるか、もしくは予め溶融して溶湯面上に
投1−1するか、あるいは金属溶湯とともに鋳込みホッ
パー(7)から鋳型内に鋳込む方法によることができる
。更に別法として、炭化物粉体との複合体として投与す
ることもできる。
In the casting method with the carbide mentioned above? Unlike casting a mixture of powder and molten metal, the carbide powder is suspended and dispensed onto the surface of the molten metal in the mold. Komebatani: If carbide particles have good wettability with the molten metal, they will be adsorbed by the molten metal immediately after falling onto the molten metal surface, and will start settling into the molten metal from the point of fall. Uniform distribution in the circumferential direction is not hindered. However, if the carbide particles have poor wettability with the molten metal, they will not be absorbed immediately and will float in the circumferential direction on the molten metal surface, resulting in the carbide particles in the molten metal remaining evenly dispersed. The distribution tends to be uneven. As a method for solving this problem, it is preferable to coat the molten metal surface in the mold with a molten layer of lattice powder (because it has wettability with carbide particles), and then apply relax mainly to carbide powder. If you do this, the carbide particles will immediately bulge in the flash, so if they float in the circumferential direction as described above, there will be no problem. A uniform distribution of carbide particles is ensured by adsorption and transfer from the molten metal layer at the falling point to the molten metal layer, and finally settling in the molten metal. ? ? The above blacks stop the carbide particles from being used: the wettability is a"'<'
L' and sufficient 'i'z even if it is near the freezing point of the cast metal.
Do you have m-sexuality? If it is, it is an oxide type, chloride type, fluoride type, or λ'1, etc.
It is only necessary to use a number consisting of i or more as appropriate. In addition, as a method of forming a molten flux layer on the molten lagoon surface in the mold, flasock method is used. Pour the powder onto the molten metal surface and melt it with the heat of the molten metal. The metal may be sacrificed or melted beforehand and thrown onto the surface of the molten metal (1-1), or it may be poured into the mold together with the molten metal from a casting hopper (7). Still alternatively, it can be administered as a complex with carbide powder.

少合体としては、炭化物粉体とフランクス粉とを機械的
に混合した混合物、またはがせ化物粉体の各粒子がフラ
ツクスで被核されてなる被覆体(ζのものは、炭化物粉
体を溶融フラツクス中に浸漬して引上げることにより得
られる)が挙げられる。
Examples of small coalescence include a mechanically mixed mixture of carbide powder and Franks powder, or a coating in which each grain of flake powder is nucleated with flux (ζ is made by melting carbide powder). (obtained by dipping it in flux and pulling it up).

特に、被覆体は鋳型内溶湯に投与へれたときの吸着性が
よい点で好ましく用いられる。
In particular, the coating is preferably used because it has good adsorption properties when applied to the molten metal in the mold.

この鋳造にセける金属溶湯鋳込みホツパーおよび粉体鋳
込みホツパーは各]基に限らず、それぞれ適当な複数基
を配置し、各奎ツパーから同時に溶湯および声体を鋳造
することもできる。その他の鋳造要碩は前記のそれと異
なる点はなく、鋳造体の凝同完了後、そのー」二部の金
属相部分(炭化物粒子が比重分離された部分)を切断除
去すれば、目的とする複合組織からなる中空円筒状鋳物
がイ4子られる。
The hopper for casting molten metal and the hopper for casting powder used in this casting are not limited to each type, but a plurality of suitable hoppers can be arranged, and the molten metal and the body can be simultaneously cast from each hopper. Other casting requirements are the same as those described above, and after the completion of condensation of the cast body, the two metal phase parts (the part where the carbide particles have been separated by specific gravity) are cut and removed to produce the desired composite material. A hollow cylindrical casting made of the structure is made.

上記第1図および第2図に示す鋳造例では、いづれも鋳
型(1)を回転さぜることにより、鋳造される炭化物粉
体の分散均一化を図ったが、鋳型の回転に代え、1だは
鋳型の回転とともに、鋳込みホッパ一の鋳込みI]を鋳
型の上部開口端にそって回転させる方法に』;ることも
できる。要するに、炭化物粉体の鋳型内流下点を、1個
所に固定させず鋳型に対しその円周方向に相対的に移動
させることによって炭化物粒子を鋳型内に均等に分散さ
せればよい。もつとも、炭化物粉体と溶湯とを個別のホ
ツパーから鋳造する第5図の例において、鋳型(1)を
固定して鋳造を行う場合、溶湯ホツパー(7)は回転さ
ぜす、粉体鋳込みホツパー(11)のみを回転させるだ
けでも目的を達することができるが、その場合には鋳型
内に鋳込まれた溶.湯の円周方向に温度差が4Lじるの
で、その温度差による鋳造品質への影響を防ぐだめに、
粉体ホツ..z<−(I1)とともに溶湯ボツパー(1
0)を回転させることが好ましい,本発〒における鋳型
(1)内へ?金属溶湯の鋳造量は、■的とする複合鋳物
の形成に要する龍.(鋳型の製品形成物(1・1)を充
填するに足る量)をくえる計であることを要する。雪の
余剰の金属は、前.記第4図顛示すように、炭化物粒子
が比重分離された金属相部(B)を形成する。このよう
に多量の金属済湯を鋳造する目的の1?は、言うまでも
なく金属Aηf+’p(.13)?押湯として機能させ
るにあるが、更に他の目的り、溶湯中におりる炭化物粒
子の沈降一集の促進により健全ク複合組織を得ようとす
るものである。というのは、鋳型内.に鋳造された溶湯
憾、.鋳型への伝熱、溶湯面から.の放熱、炭化物粒子
の溶湯からの吸熱などを伴うので、溶盪の粋造量が相対
的に少いと(従ってその.全保有熱量が相対的に.少い
)、降温(よ:る粘稠化が早くすすみ、炭.化.物棹子
の沈降..が阻害され、鋳.型内製品形成部(1・1)
へ十分に凝隼LM,L前に凝固.を開始することになる
。特に、炭化物粉体の鋳造量に対する溶湯鋳造量の比率
が低いと上記不具合が顕著に現れる。かかる不具合を同
避するだめに、」二記のように比較的多量の溶湯を鋳造
することが望ましい。
In the casting examples shown in FIGS. 1 and 2 above, the casting mold (1) was rotated to ensure uniform dispersion of the cast carbide powder. It is also possible to rotate the casting I in the casting hopper along the upper open end of the casting mold as the casting mold rotates. In short, the carbide particles may be uniformly dispersed within the mold by moving the downstream point of the carbide powder in the mold in a circumferential direction relative to the mold instead of fixing it at one location. However, in the example of Fig. 5 in which carbide powder and molten metal are cast from separate hoppers, when casting is carried out with the mold (1) fixed, the molten metal hopper (7) is rotated and the powder casting hopper is The purpose can be achieved by rotating only (11), but in that case, the molten metal poured into the mold. There is a temperature difference of 4L in the circumferential direction of the hot water, so in order to prevent the temperature difference from affecting the casting quality,
Powder hot. .. Along with z<-(I1), the molten metal bottom par (1
0) into the mold (1) in the present invention? The amount of molten metal cast is the amount required to form the target composite casting. (Amount sufficient to fill the mold with the product (1.1)). Excess metal from the snow is removed from the front. As shown in FIG. 4, carbide particles form a metal phase (B) separated by specific gravity. What is the purpose of casting such a large amount of finished metal? Needless to say, is the metal Aηf+'p(.13)? In addition to functioning as a riser, another purpose is to obtain a healthy composite structure by accelerating the settling of carbide particles in the molten metal. That is, inside the mold. The molten metal was cast in . Heat transfer to the mold, from the molten metal surface. This is accompanied by heat dissipation from the carbide particles and heat absorption from the molten metal, so if the amount produced by melting is relatively small (therefore, the total amount of heat retained is relatively small), the temperature decreases (it becomes more viscous). The carbonization progresses quickly, and the sedimentation of the carbonized material is inhibited, and the product forming part (1.1) inside the mold is prevented.
Fully solidified before LM and L. will be started. In particular, when the ratio of the amount of molten metal cast to the amount of carbide powder cast is low, the above-mentioned problems become noticeable. In order to avoid such problems, it is desirable to cast a relatively large amount of molten metal as described in Section 2.

むろん、その鋳造量や炭化物粉休の鋳造量に対する比率
は、目的とする複合鋳物のザイ〆やその他の鋳造条件に
応じて決められるが、例えば炭化物粉体鋳造量の約2〜
5倍(重量比)とすることにより好結果が得られる。ま
た、溶湯降温を補償し凝固開始を遅延させる他の方法と
して、溶湯の鋳造温度を高めに設定し、あるいは後記の
ように炭イ1物粉体や鋳型を予熱して使用するのも有効
な方.法である。
Of course, the casting amount and the ratio of carbide powder to the casting amount are determined depending on the size of the target composite casting and other casting conditions, but for example, the ratio of the carbide powder casting amount to about 2 to
Good results can be obtained by increasing the amount by 5 times (weight ratio). In addition, as other methods to compensate for the temperature drop of the molten metal and delay the start of solidification, it is also effective to set the molten metal casting temperature to a high level, or to preheat the charcoal powder or mold as described below. direction. It is the law.

一方、炭化物粉体の鋳造量は、鋳型の製品形成部(1・
1)内に溶湯とともに所定の複合組織.を形成するに足
る量であればよいことは言う寸でもない。
On the other hand, the casting amount of carbide powder is
1) Predetermined composite structure with molten metal inside. It is not enough to say that it is sufficient as long as the amount is sufficient to form.

本発明により形成される複合組織における炭化物粒子と
金属の占める容積比は経験により約1;1〜3:1(粒
子:金属)である。従って炭化物粉体の必要な鋳造量は
目的とする複合鋳物の大きさと」一能比率と−/J:ら
容易に求められる。々お、炭化物粉体の鋳造の開始・?
終了蒔IJ’lは特に制限は外く、溶湯の鋳造終了後に
及んでもよいが、溶湯の鋳造開始とほほ同時もしく日、
その後に開始し、溶湯全紡造量の約/I/5が鋳込まれ
庭時点で終了するように調節することが、比重分離に」
:る沈降凝集を促進させるうえそ好4しい。
Experience has shown that the volume ratio of carbide particles to metal in the composite structure formed by the present invention is about 1:1 to 3:1 (particles:metal). Therefore, the required casting amount of carbide powder can be easily determined from the size of the intended composite casting and the "potency ratio" -/J:. Start of casting carbide powder?
There are no particular restrictions on the termination of IJ'l, and it may occur after the molten metal casting is completed, but it may occur at approximately the same time as the molten metal casting starts, or on the same day.
Starting after that and adjusting so that about 1/5 of the total spinning amount of the molten metal is poured and finishing at the point where it is finished, specific gravity separation can be achieved.
: It is also preferable because it promotes sedimentation and flocculation.

?本発+plにおける鋳型一υ,j込みホツバーめ相対
的な回転駆動速度や溶湯;?炭化物粉休の鋳造速度は適
宜定められるが、例えば鋳型内溶湯層の温度が低いよう
な:ときにd、回転駆動速度を高く設索すれば、溶湯面
に対する熱源と口での溶湯の供給ピッチが早められるの
で、鋳型内溶湯温度の回復、凝固遅延効果が得られる。
? The relative rotational drive speed and molten metal of the mold υ and j in the main production + PL;? The casting speed for carbide powder casting is determined as appropriate, but for example, when the temperature of the molten metal layer in the mold is low, if the rotational drive speed is set high, the supply pitch of the molten metal between the heat source and the mouth to the molten metal surface will be lower. Since the process is accelerated, the temperature of the molten metal in the mold can be recovered and solidification can be delayed.

??? 本発明に使用される炭化物粉体は、1]′的?とする複
合鋳物の耐摩耗性を高d』だめに、そパ自身高硬度を有
するものが好捷しい。寸だ、複合組織における炭化物粒
子と金属との強固な結合を得るためには金属との結合性
の良いことが必要セある?。
? ? ? The carbide powder used in the present invention is 1]'? If the wear resistance of the composite casting is to be high, it is preferable that the material itself has high hardness. In order to obtain a strong bond between carbide particles and metal in a composite structure, it is necessary to have good bonding properties with the metal. .

更に、鋳型内において溜湯中の沈降・製品形成部への凝
集を容易外らしめるために・、溶湯j)り比重が大きい
ことを要し、好ましくは溶湯と?の比重差が3以上のも
のが用いられるハ本ち為ん、溶湯中で容易に溶融消失等
ることめない高融点を有す名ものでなければならない。
Furthermore, in order to easily prevent sedimentation in the pooled metal and agglomeration in the product forming area in the mold, the molten metal must have a high specific gravity, and preferably the molten metal and the molten metal must have a high specific gravity. If a material with a specific gravity difference of 3 or more is used, it must be a material with a high melting point that does not easily melt and disappear in the molten metal.

かかる炭化物の好ましい例として、タングステンカーバ
イト(’me<Wp)タングステンチタンカーバイト?
々と75擲*ら土る。
Preferred examples of such carbides include tungsten carbide ('me<Wp) tungsten titanium carbide?
And 75 tsu*ra earth.

タングステンチタンカーバ不}・にはLtm49?〜]
72のものかあ区ので後記金鵬との組合せにおいては、
比重10′以上のもの例好ましく用いられる。これら炭
化物粉休は単抽寸たは複谷して使用してよい。″′: 一上記炭化物粉体の粒度は、?溶湯中での沈降促進罫よ
び得らパる?複合−.j物の利質の点あ;ら、7・5〜
30’0’jryy7”のものが好ま罷い。1粒子の形
状は瞳に制限な≧、破砕したままの凹西に富むもでも支
帥なく使用できる。′:″:”? ?金属としては、コノミルト(CO)、ニツケ隙(Nl
)J”’・鉄(Fる),??あZいはCo系谷金、Nj
.系含金、1e系合釜人どカミ挙げら庇、目的とする複
合鋳物の用途・使用条件に応じて適宜選択される。どれ
ら金属は、いづれも前記炭化物粒子とのなじみが良く、
強固な結合状態を形成する点ヤも好ましいものである。
Ltm49 for tungsten titanium cover? ~]
72 Monokaa Ward, so in combination with Kinho, which will be described later,
Those having a specific gravity of 10' or more are preferably used. These carbide powders may be used in single extraction or in multiple extraction. ``': The particle size of the carbide powder mentioned above has the advantages of sedimentation promotion rules in molten metal and the advantages of composite materials; et al. 7.5~
30'0'jryy7" is preferable.The shape of one particle is limited to the pupil or more, and it can be used without any problem even if it is crushed and has many concave edges.':":"??As a metal , conomilt (CO), Nikke gap (Nl
) J"'・Iron (Fru), ??A Z is Co type valley gold, Nj
.. The type of metal-containing material, 1e type compound casting, etc., are selected as appropriate depending on the intended use and usage conditions of the composite casting. All metals have good compatibility with the carbide particles,
Points that form a strong bond are also preferred.

??′:・・? 本発明の鋳造翼使用される鋳型ば、前記例示の焼成モー
ルドのほか、?種々の・砂型や金型等の使用も可能であ
る。′?1 上記鋳型、炭?化物粉体は、・鋳型内め溶湯の凝?固を
遅延させ、炭化物粒子を十分に沈降凝集させるたν)に
予熱して使用するのが好ましい。その場合のp.S型と
して、保温モールト”が好ましく用いられ、前記のよう
な焼成モールド(1)では、・これをバツクザンド(2
)ととも?にケース(3)にセットし、炉中で加熱した
のち、直ちに鋳造に供するとよい。その予熱温度は、例
えば約500゜C以上である。・炭化物粉体は例えば約
300゜C以−1二に予熱して使用される。炭化物粉体
を大気中で加熱する場合は酸化を生じ易いので、これを
防ぐだめに、例えばニッケルめっきなどを施したも功が
好ましく用いられる。
? ? ':...? In addition to the above-mentioned firing mold, what molds are used for the casting blade of the present invention? It is also possible to use various sand molds, metal molds, etc. ′? 1 The above mold, charcoal? Is the compound powder caused by condensation of the molten metal in the mold? In order to delay solidification and sufficiently sediment and agglomerate carbide particles, it is preferable to preheat to v) before use. In that case p. As the S type, a "thermal mold" is preferably used, and in the above-mentioned firing mold (1),
) with? It is best to set it in the case (3), heat it in a furnace, and then immediately use it for casting. The preheating temperature is, for example, about 500°C or higher. - Carbide powder is used after being preheated to, for example, about 300°C or higher. When carbide powder is heated in the atmosphere, oxidation tends to occur, so in order to prevent this, it is preferable to use a carbide powder coated with, for example, nickel plating.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例1′ ″′?鏑1図に示す鋳造装置において、金属溶湯として
ニハニド鋳鉄を取鍋01か呟′腕化物物体として予熱シ
たタングステンカーバイ}fV2b)粉末(粒子表面に
無電%Ni−Bめつきを施したもの)を粉体投与治具(
8)か呟それぞれ14込み系レバー(6)に注入し、両
者を混合状態となして鋳壓(1)内k鋳造?した。なお
、炭化物粉体の鋳造は、溶湯の鋳造・開始と同時に始め
、溶湯め苓鋳捨量の4/5がi造された時点で終了した
。その所要時間は25秒である。
Example 1'''? In the casting apparatus shown in Fig. 1, nihanide cast iron was used as the molten metal in the ladle 01, or tungsten carbide (fV2b) powder (electroless%Ni- B-plated) with a powder dosing jig (
8) Inject each into the 14-piece lever (6), mix the two, and cast in the casting pot (1). did. The casting of the carbide powder started at the same time as the casting of the molten metal started, and ended when 4/5 of the amount of molten metal was cast. The required time is 25 seconds.

鋳造条件の詳細は次のと:I−.−りである。Details of the casting conditions are as follows: I-. - It is.

〔I〕鋳型(焼成モールド)′ 焼成モールド(1)を六ツクザンド(2)とともにケー
艮(3)内にセットし、95?0゜Cめ炉中で?加熱後
、?炉外に取・出し、直ちに鋳躯を行らた。鋳造時の製
品形成部(1・】)の温鹸は850゜Cであった。
[I] Casting mold (firing mold)' Set the firing mold (1) together with the Roktsu sando (2) in the cage (3), and place it in a furnace at 95°C to 0°C. After heating? It was taken out of the furnace and immediately cast. The temperature of the product forming part (1.) during casting was 850°C.

(I)形状(第6図参照)=1端外?径■]−),2’
26鮎、底部外径@)200−、内径(ロ))?om転
演品形成部高さQ{l.)1”Q闘、m’@m高”a”
’(E−12)20(Jmmo(11)鋳型回転速度:
100rpm 〔旧金属(ニハード鋳鉄) (1)化学成分(wt%):C3.35%、Si0.7
8弼、Mn0.66%、Ni4.42%、Or1.54
%、Mo0.37%。
(I) Shape (see Figure 6) = 1 outside edge? Diameter ■】-), 2'
26 sweetfish, bottom outer diameter @)200-, inner diameter (b))? om transfer product forming part height Q{l. )1” Q fight, m'@m high “a”
'(E-12) 20 (Jmmo (11) Mold rotation speed:
100 rpm [Old metal (nihard cast iron) (1) Chemical composition (wt%): C3.35%, Si0.7
8, Mn 0.66%, Ni 4.42%, Or 1.54
%, Mo0.37%.

(11)鋳造量:27.4k’;/foO11)鋳込温
度:]650゜C0 〔■〕炭化物粉体(W2C) 1)粒度:150〜250iimo (i:)Ni−Eめつき層:1.Opm。
(11) Casting amount: 27.4k'; /foO11) Casting temperature: ]650°C0 [■] Carbide powder (W2C) 1) Particle size: 150-250iimo (i:) Ni-E plated layer: 1 .. Opm.

(llD予熱温度=500゜Co 6V)鋳造量:16.5kqfo 上記鋳造により第4図に示されるような形状の中空円筒
状鋳造体を得、上部の金属相部分(T3)を切断除去し
て目的とする複合鋳物製品を採取した。
(llD preheating temperature = 500°Co 6V) Casting amount: 16.5 kqfo A hollow cylindrical cast body having the shape shown in Fig. 4 was obtained by the above casting, and the upper metal phase portion (T3) was cut and removed. The desired composite casting product was collected.

その複合組織の金属:炭化物粒子の容積比は30:70
であり、顕微鏡観察により、炭化物粒子が緻密かつ均一
に分布し、各粒子表面が完全に金属で被覆されるととも
に粒子間隙は金属で充填され、強固に結合していること
が確認された。なお、その硬度はHR.A84であり、
金属単相の硬度(”R.A約79程度)に比し高硬度で
ある。
The volume ratio of metal to carbide particles in the composite structure is 30:70.
Microscopic observation confirmed that the carbide particles were densely and uniformly distributed, the surface of each particle was completely coated with metal, and the interstices between the particles were filled with metal and strongly bonded. In addition, its hardness is HR. It is A84,
It has higher hardness than that of a single phase metal (R.A approximately 79).

実施例2 第5図に示す鋳造装置において、金属溶湯としてニハー
ド鋳鉄溶湯を鋳込みホッパ−(7)から、炭化物紛体と
して予熱されたタングステンカーバイト(W2C)粉体
(粒子表面に無電解Nj−−Bめつきを施したもの)を
鋳込みホッパ一〇])から、それぞれ個別に、回転する
鋳型(1)内に鋳造した。
Example 2 In the casting apparatus shown in FIG. 5, molten nihard cast iron was poured into the molten metal, and preheated tungsten carbide (W2C) powder was poured into the hopper (7) as the carbide powder (electroless Nj on the particle surface). B-plated) were individually cast into rotating molds (1) from casting hopper 10]).

なお、鋳型内の溶湯面上に溶湯フラックス層を形成する
ために、フラツクスを取鍋00内の溶湯に添加混合し、
溶湯とともに鋳込んだ。炭化物粉体の鋳造は、溶湯の鋳
造開始直後にはじめ、全溶湯鋳造量の約4/5が鋳込ま
れた時点で終了した。
In addition, in order to form a molten metal flux layer on the molten metal surface in the mold, flux is added and mixed to the molten metal in the ladle 00,
It was cast together with molten metal. Casting of the carbide powder started immediately after the start of casting the molten metal, and ended when about 4/5 of the total amount of the molten metal was cast.

その所要時間は約40秒である。The required time is approximately 40 seconds.

鋳造条件の詳細は次のとおりである。Details of the casting conditions are as follows.

CI)鋳型(焼成モールド) 焼成モールド(1)をバツクザンド(2)とともにケー
ス(3)内にセットし、950゜Cの炉中で加熱後、炉
外に取出し、直ちに鋳造に供した。鋳造時の製品形成部
(1・1)の温度は850’Cであった。
CI) Casting Mold (Fired Mold) The fired mold (1) was set in the case (3) together with the Bakusand (2), heated in a furnace at 950°C, taken out of the furnace, and immediately used for casting. The temperature of the product forming part (1.1) during casting was 850'C.

(1)形状(第6図参照):上端外径■1)250yy
m、底部外径(ロ))220問、内径@)160朋、製
品形成部高さσJ1)].20闘、押湯部高さσTg)
250MM0 (11)鋳型回転速度:120rpm0〔■〕金属(ニ
ハード鋳鉄) (1)化学成分(wt係):C!3.33チ、SiO.
76チ、Mn0.68%、Ni4.44%、Cr1.5
2%、MO0.30%。
(1) Shape (see Figure 6): Top outer diameter ■1) 250yy
m, bottom outer diameter (b)) 220 questions, inner diameter @) 160 mm, product forming part height σJ1)]. 20 fights, riser height σTg)
250MM0 (11) Mold rotation speed: 120 rpm0 [■] Metal (nihard cast iron) (1) Chemical composition (wt): C! 3.33chi, SiO.
76chi, Mn0.68%, Ni4.44%, Cr1.5
2%, MO 0.30%.

(11)鋳造量”.46.6kLjf (110鋳造温度:1660゜C 印〕フラツクス (1)化学成分(wt%):Si0217%、AI20
35%、Ca035%、Na2016%、E2038%
、Ca(:!j?25%、ホタル石9チ、その他5%。
(11) Casting amount".46.6kLjf (110 casting temperature: 1660°C mark) Flux (1) Chemical composition (wt%): Si0217%, AI20
35%, Ca035%, Na2016%, E2038%
, Ca(:!j?25%, fluorite 9ch, other 5%.

(11)鋳型内溶湯面上での溶融層厚=0.5〜1間印
炭化物粉体(W2C) (1)粒度:150〜250μm (if)Ni−Bめつき層厚:1.0ttm(IΦ予熱
温度:500゜C GV)鋳造量:25.9kgf 上記鋳造により第4図に示されるような形状の鋳造体を
得、上部の金属相部0′3)を切断除去し、複合組織を
もつ中空円筒状鋳物を採取した。その複合組織の顕微鏡
観察によれば、鋳物全体にわたり炭化物粒子が緻密かつ
均一に分布し、各粒子表面は金属で被覆されるとともに
粒子間隙が完全に金属で充填されており、強固な結合状
態を呈している。その金属と炭化物粒子の体積割合i約
30:70である。硬度はH?A84である。
(11) Molten layer thickness on the molten metal surface in the mold = 0.5 to 1 Imprinted carbide powder (W2C) (1) Particle size: 150 to 250 μm (if) Ni-B plating layer thickness: 1.0 ttm ( IΦ Preheating temperature: 500°C GV) Casting amount: 25.9 kgf A cast body having the shape shown in Fig. 4 was obtained by the above casting, and the upper metal phase part 0'3) was cut and removed to form a composite structure. A hollow cylindrical casting was collected. Microscopic observation of the composite structure reveals that carbide particles are densely and uniformly distributed throughout the casting, the surface of each particle is coated with metal, and the interstices between particles are completely filled with metal, creating a strong bond. It is showing. The volume ratio i of the metal to carbide particles is approximately 30:70. Is the hardness H? It is A84.

以上のように、本発明によれば鋳物全体が緻密で均一な
複合組織を有する中空円筒状鋳物を得ることができる。
As described above, according to the present invention, it is possible to obtain a hollow cylindrical casting whose entire casting has a dense and uniform composite structure.

また、鋳造法によるので、製造工程が簡素であり、鋳型
形状により大物から小物まで自由にかつ寸法精度のよい
鋳物製品が得られ、その後の機械加工での仕上代も少く
てすみ、生産性にすぐれるとともに製造コストも安価で
ある。
In addition, since the casting method is used, the manufacturing process is simple, and the shape of the mold allows for the production of cast products from large to small items with good dimensional accuracy.The finishing allowance for subsequent machining is also reduced, which improves productivity. In addition to being excellent, the manufacturing cost is also low.

本発明により得られる複合鋳物は、例えば圧延−+ml
,戚+.−1−一小島小高窺鮭妊判L1イhl2岳真る
曙4たy剛=粍用途に限らず、金属や炭化物粉体の選択
により、耐摩耗性のほか、耐熱性、機械的、化学的諸特
性を付与して種々の用途に供し、金属材別では得られぬ
耐久性、安定性を発揮
The composite casting obtained by the present invention is, for example, rolled-+ml
, relative+. -1-Ichikojima Odakaki Salmon Pregnancy Test L1 Ihl2 Takemaru Akebono4Ty Tsuyoshi = Not limited to applications, by selecting metals and carbide powders, you can improve not only wear resistance but also heat resistance, mechanical, chemical It has various characteristics and is used for various purposes, and exhibits durability and stability that cannot be obtained from other metal materials.

【図面の簡単な説明】[Brief explanation of the drawing]

させることができる。 第1図〔1〕は本発明に.4る鋳.造要領の具体例を示
す縦断面説明図、〔■〕:はi型:部を示す平面図、?
第2図は鋳型内鋳造層の断.浦説明図、第3?図〔1.
〕および〔■〕は鋳型内の金属溶湯中の炭化物粒子分布
状況を示す断面説明図J:第4図は鋳造体の組織を模式
的に示す断面図、第5図〔1〕は本発明による鋳造要領
の他の具体例を示す一面説明図・〔■〕は鋳型部を示す
平面図、第6図は実施例関係の鋳型の形状を示す断面説
明図、第7図は鋳造体内の炭化物粒子の偏在例を示す斜
視説明図である。 1:鋳型、1・1:製品形成部、1・2.:押湯形成部
、4:水平回転テーブル、6,7,?11:鋳込ホツパ
ー、8:粉体投与治具、M:金属、P:炭化物粒子。 手続補正書 昭和57年12月ワ1] 特許庁長官若杉和夫殿 ”゜”1゜*7J<’口] nEa571;,g−ゆ?L48”’I−2?29.2
.発明の名称?中空円筒状複合鋳物の製造法3.補正を
する者? 事件との関係l持許出願人 ? 賃,t+7/.%i大阪府大阪市浪速区敷津束1丁目2
番47月花9″゛羊1(ZFp)(イゾ者)三野重和”
゜“゛“″?”F.50”*lfij?4、=6、,。 T、.T”fl’13438@住所 氏名弁理士(8423)宮崎新八郎 ? 6補正により増加する発明の1なし 7.補正の対象??′2〆一−\.?.?月細書の「発
明(さ巨(北)」の欄 8。補正の内容 (1)第20頁6行、「紛体」とあるをF扮体」に訂正
。 (以」一)
can be done. Figure 1 [1] shows the present invention. 4 castings. A vertical cross-sectional explanatory diagram showing a specific example of the manufacturing method, [■]: A plan view showing an i-type: part, ?
Figure 2 is a cross section of the cast layer in the mold. Ura explanatory map, 3rd? Figure [1.
] and [■] are cross-sectional explanatory diagrams J showing the distribution of carbide particles in the molten metal in the mold; FIG. 4 is a cross-sectional diagram schematically showing the structure of the cast body; FIG. One-page explanatory drawing showing another specific example of the casting procedure - [■] is a plan view showing the mold part, Fig. 6 is a cross-sectional explanatory drawing showing the shape of the mold related to the example, Fig. 7 is carbide particles in the cast body It is a perspective explanatory view showing an example of uneven distribution of. 1: Mold, 1.1: Product forming section, 1.2. : Feeder forming part, 4: Horizontal rotary table, 6, 7, ? 11: Casting hopper, 8: Powder dosing jig, M: Metal, P: Carbide particles. Procedural Amendment December 1980 W1] Commissioner of the Patent Office Kazuo Wakasugi "゜"1゜*7J<'口] nEa571;, g-yu? L48"'I-2?29.2
.. The name of the invention? Manufacturing method of hollow cylindrical composite casting 3. Someone who makes corrections? Is the applicant related to the incident? Rent, t+7/. %i 1-2 Shikitsuzuka, Naniwa-ku, Osaka-shi, Osaka Prefecture
No. 47 Monthly Flower 9 "Sheep 1 (ZFp) (Izo person) Shigekazu Mino"
゜“゛“″?”F. 50"*lfij?4,=6,,. T,.T"fl'13438@Address Name Patent Attorney (8423) Shinpachiro Miyazaki? 6. No 1 of the invention increased by amendment 7. Subject to correction? ? '2〆1-\. ? .. ? Column 8 of “Inventions (Sagyo (Kita))” in the Monthly Specification. Details of the amendment (1) On page 20, line 6, “Powder body” is corrected to “F disguise body”.

Claims (1)

【特許請求の範囲】 (1)金属と炭化物粒子の混在してなる複合組織を有す
る中空円筒状鋳物の製造法であ.つて、?・.直立設置
された中空円筒形状を有する鋳型の上部開口端に鋳込み
ホツパ←の鋳込口をの・ぞませ、該鋳型をその軸心を中
心に回転させるか、または鋳込みホッパ一?の鋳込み口
を鋳型の上部開口端にそって移動させながら、鋳込みホ
ツバーから金属溶湯と、:..該溶湯より比重の大きい
炭化.物粒・子を混合状態どして鋳型内に鋳込木、炭化
物粒子を溶湯との比重差により鋳型内の下部に沈降凝集
させて上部に金属.相、下部に金属溶湯と炭化物粒子の
複合相を形成せし・め、凝固後、金属相部・を切断除去
し・、複金相部分を鋳物製品として得ることを特徴とす
る中空円筒状複合鋳物の製造法。、.一・(4)金属が
ニッケル、・コバルトもしぐは鉄またぱニツ欠ル合金、
コバ?ル斗合金もしくは鉄合金であることを特徴とする
上記第(1)項に記載の中空11′1′筒状複合鋳物の
製造法。?・′: (3)炭化物粒子う《、タングステンカーバイトJ}だ
はタンダステジチタンカーバイトであることを特徴とす
る上配第(1)項壕たは第(2)項に記載の中空円筒状
複合鋳物の製造・法。′? (4)′金属と炭化物粒子の?混在してなる複合組織を
有・する中空円筒状鋳?物の?製造法?であって、:?
直立設置された中空円筒形状を有する鋳型の上部開:白
端に・、金属溶湯鋳造用鋳込みホツパーと炭化物粉体鋳
造用鋳込み永ツパーめ・それぞれの鋳ス:各日をめぞj
せ、該鋳型をその軸応をΦ心に回転させるか、または少
ぐとも炭化物粉体鋳造用?鋳込みホツパーを鋳型の王部
開白端ビそって移動させなか?ちミ各鋳込みホッパ・一
から金属溶湯および炭?化物粉体仝?鋳?込み、炭化物
粒子を溶湯との比重差?により鋳?型・内の下部に沈降
′凝集さ暑て上部に金属相、下蔀に金属・溶湯と炭イピ
物粒子の複合?相を形成せしめ、?凝:固後、釡属相部
を切断除去して複合相部分を鋳物製品とじて得る?こと
を?特徴とする・中空?円筒状複合鋳物の製造.法。 (5)鋳造中の鋳層内の溶湯而を炭化物粒子との濡れ性
を有?する溶湯ン:ラ:ツクス層で被覆十るごどとを特
徴とする上記第(4)4に記瞥の中空円筒状複合鋳物の
製造法。 (6)金Mが=ツケル、コバルト敏しくは鉄まだはニッ
ケル合金、占バルト合金もしくは鉄合金であることを特
徴とする上記第(4)項または第(5)項に記載の中空
角筒状複合鋳物の製造法。 (7)炭化物藉子が、?タング豆?テンカーバイトまた
はタングステンチタンカーバイ1であることを特徴とす
る上記第(4)項ないしは第(6)項のいづれか1つに
記載の中空円筒.状複合:鋳物の製造法。
[Scope of Claims] (1) A method for producing a hollow cylindrical casting having a composite structure consisting of a mixture of metal and carbide particles. What?・.. A casting hopper (←) is inserted into the upper open end of a hollow cylindrical mold that is placed upright, and the casting mold is rotated around its axis, or the casting hopper is rotated around its axis. While moving the casting spout along the upper open end of the mold, pour the molten metal from the casting hopper:. .. Carbonization has a higher specific gravity than the molten metal. The wood and carbide particles are mixed and cast into the mold.Due to the difference in specific gravity with the molten metal, the wood and carbide particles settle and agglomerate in the lower part of the mold, and the metal particles are added to the upper part. A hollow cylindrical composite characterized in that a composite phase of molten metal and carbide particles is formed at the bottom of the phase, and after solidification, the metal phase is cut and removed to obtain the composite metal phase as a cast product. Casting manufacturing method. ,.. 1.(4) The metal is nickel, cobalt or iron or nickel alloy,
Koba? The method for producing a hollow 11'1' cylindrical composite casting according to item (1) above, characterized in that it is made of Luto alloy or iron alloy. ?・': (3) The hollow cylinder described in item (1) or item (2) above, characterized in that the carbide particles are tungsten carbide or titanium carbide. Manufacture and method of shaped composite castings. ′? (4) 'Metal and carbide particles? Hollow cylindrical casting with a mixed composite structure? Of things? Manufacturing method? And:?
The upper part of the mold, which has a hollow cylindrical shape and is installed upright, is open at the white end.The casting hopper for casting molten metal and the casting hopper for casting carbide powder are installed.Each casting station: Aim for each day.
Or at least for carbide powder casting? Did you move the casting hopper along the open white end of the mold? Chimi each casting hopper, molten metal and charcoal from scratch? Chemical powder? Cast? What is the difference in specific gravity between carbide particles and molten metal? Cast by? A metal phase is deposited and coagulated in the lower part of the mold, and the upper part is a metal phase, and the lower part is a composite of metal/molten metal and charcoal particles. Form a phase? Solidification: After solidification, cut and remove the metal phase to obtain the composite phase as a cast product? What? Features: Hollow? Manufacture of cylindrical composite castings. Law. (5) Does the molten metal in the casting layer have wettability with carbide particles during casting? The method for producing a hollow cylindrical composite casting as described in item (4) above, characterized in that the mold is coated with a molten metal layer. (6) The hollow rectangular tube according to item (4) or item (5) above, wherein the gold M is iron, cobalt, particularly iron, nickel alloy, balt alloy, or iron alloy. Manufacturing method for shaped composite castings. (7) Carbide Aiko? Tongue beans? The hollow cylinder according to any one of items (4) to (6) above, which is made of ten carbide or tungsten titanium carbide 1. Shape composite: A method of manufacturing castings.
JP14312282A 1982-08-17 1982-08-17 Production of hollow cylindrical composite casting Granted JPS5933065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14312282A JPS5933065A (en) 1982-08-17 1982-08-17 Production of hollow cylindrical composite casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14312282A JPS5933065A (en) 1982-08-17 1982-08-17 Production of hollow cylindrical composite casting

Publications (2)

Publication Number Publication Date
JPS5933065A true JPS5933065A (en) 1984-02-22
JPS635184B2 JPS635184B2 (en) 1988-02-02

Family

ID=15331424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14312282A Granted JPS5933065A (en) 1982-08-17 1982-08-17 Production of hollow cylindrical composite casting

Country Status (1)

Country Link
JP (1) JPS5933065A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261477A (en) * 1990-10-11 1993-11-16 Technogenia S.A. Societe Anonyme Process for producing parts with an abrasion-proof surface
US5549151A (en) * 1991-04-29 1996-08-27 Lanxide Technology Company, Lp Method for making graded composite bodies and bodies produced thereby
WO2012048919A1 (en) * 2010-10-13 2012-04-19 Federal-Mogul Burscheid Gmbh Method for producing a piston ring having embedded particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103990778A (en) * 2013-02-19 2014-08-20 永克达工业股份有限公司 Brake thread head forming mode and device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261477A (en) * 1990-10-11 1993-11-16 Technogenia S.A. Societe Anonyme Process for producing parts with an abrasion-proof surface
US5549151A (en) * 1991-04-29 1996-08-27 Lanxide Technology Company, Lp Method for making graded composite bodies and bodies produced thereby
WO2012048919A1 (en) * 2010-10-13 2012-04-19 Federal-Mogul Burscheid Gmbh Method for producing a piston ring having embedded particles
CN103153500A (en) * 2010-10-13 2013-06-12 联邦摩高布尔沙伊德公司 Method for producing a piston ring having embedded particles
JP2013540969A (en) * 2010-10-13 2013-11-07 フェデラル−モーグル ブルシェイド ゲーエムベーハー Manufacturing method of particle-embedded piston ring
US9174276B2 (en) 2010-10-13 2015-11-03 Federal-Mogul Burscheid Gmbh Method of producing a piston ring having embedded particles
CN103153500B (en) * 2010-10-13 2015-11-25 联邦摩高布尔沙伊德公司 Produce the method with the piston ring embedding particle

Also Published As

Publication number Publication date
JPS635184B2 (en) 1988-02-02

Similar Documents

Publication Publication Date Title
EP0593732B1 (en) A high density projectile
US5877437A (en) High density projectile
JPS58144442A (en) Manufacture of aluminum alloy/granular matter composite formed body and device therefor
JP4521714B2 (en) Method for producing materials reinforced with nanoparticles
JPS5933065A (en) Production of hollow cylindrical composite casting
JPS58157944A (en) Compound cylinder and casted alloy therefor
JPS6362305B2 (en)
JPS5933064A (en) Production of composite casting
JPS59127962A (en) Production of hollow composite casting
JPS6046858A (en) Production of composite casting
JPS6046859A (en) Production of wear-resistant composite casting
JPS5933066A (en) Production device of hollow cylindrical composite casting
JPS6046857A (en) Production of composite casting
JPS603901B2 (en) Centrifugal casting method for wear-resistant castings
JPS6127165A (en) Production of wear-resistant composite casting
DE678757C (en) Process and mold for the production of centrifugal castings
JP2000129307A (en) Method for molding amorphous alloy powder
JPS5982153A (en) Production of composite casting
JPH075937B2 (en) Method for producing rapidly solidified metal-based composite powder
JPS58221649A (en) Centrifugal casting method of abrasion-resistant casting
JPS59127963A (en) Production of composite casting
US740733A (en) Method of making castings.
JPS58221650A (en) Centrifugal casting method of abrasion-resistant casting
DE630582C (en) Method and device for manufacturing hollow centrifugal bodies
DE875393C (en) Process for casting metal