JPS58221649A - Centrifugal casting method of abrasion-resistant casting - Google Patents

Centrifugal casting method of abrasion-resistant casting

Info

Publication number
JPS58221649A
JPS58221649A JP10579782A JP10579782A JPS58221649A JP S58221649 A JPS58221649 A JP S58221649A JP 10579782 A JP10579782 A JP 10579782A JP 10579782 A JP10579782 A JP 10579782A JP S58221649 A JPS58221649 A JP S58221649A
Authority
JP
Japan
Prior art keywords
molten metal
layer
casting
flux
hard particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10579782A
Other languages
Japanese (ja)
Other versions
JPH0338020B2 (en
Inventor
Toshiaki Morichika
森近 俊明
Yoshio Sasaki
佐々木 慶夫
Atsushi Funakoshi
淳 船越
Kazuyuki Takubo
和之 田久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP10579782A priority Critical patent/JPS58221649A/en
Publication of JPS58221649A publication Critical patent/JPS58221649A/en
Publication of JPH0338020B2 publication Critical patent/JPH0338020B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/10Accessories for centrifugal casting apparatus, e.g. moulds, linings therefor, means for feeding molten metal, cleansing moulds, removing castings
    • B22D13/107Means for feeding molten metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

PURPOSE:To cast centrifugally an abrasion-resistant casting having a layer mingled with hard particles of a uniform layer thickness, by forming a fused flux layer on the top surface of the molten metal in a rotary casting mold, and dispersing and charging the hard particles uniformly on said flux layer along the axial direction of the casting mold. CONSTITUTION:A fused flux layer F is formed on the surface of the molten metal layer M' of a centrifugal casting mold 1 so as to cover the entire surface of the molten metal. Hard particles P are then charged through the layer F to the molten metal M'. Then, the particles P dispersed and charged from above the layer F are once adsorbed in the layer F then contact the metal M' and are adsorbed in the molten metal, whereafter the particles settle in the molten metal toward the outside circumference. Since the layer F covers the entire surface of the molten metal, they do not largely move on the surface of the molten metal in the axial direction thereof. Thus, the particles P are prevented from moving to both end parts of the mold 1 and if the particles are dispersed and charged uniformly along the axial direction, the layer mingled with the particles of a uniform layer thickness is formed over the entire length and circumference of the casting.

Description

【発明の詳細な説明】 本発明は、耐摩耗鋳物の遠心鋳造法、特に金属と硬質粒
子とが混在しヤなる表層を有する鋳物の鋳造において、
該表層を均一な層厚に形成し得るようにした耐摩耗鋳物
の遠心鋳造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a centrifugal casting method for wear-resistant castings, particularly for casting castings having a mixed surface layer of metal and hard particles.
The present invention relates to a centrifugal casting method for wear-resistant castings that allows the surface layer to be formed to have a uniform thickness.

金属中に硬質粒子、例えばタングステン炭化物(WC,
W2C)粒子などを混在させることにより金属のみでは
得られない高度の耐摩耗性を付与することができる。こ
の知見にもとづいて本発明者等は、先に、遠心力鋳造を
利用し、第3図に示すような、金属(M)と硬質粒子(
P)とが混在してなる外周領域(以下、「外層」まだは
「混在層」という)(A)と、実質的に金属(M)のみ
からなる内側領域(以下、「内層」または「金属層」と
いう)(B)の二層構造を有する鋳物の製造法を提案し
た(特願昭56−213860号、同56−21386
1号等)。このように、耐摩耗性が要求される表層部の
みに混在層を形成すれば、高価な硬質粒子の使用量が少
くてすみ経済的であるのみならず、混在層による高耐摩
耗性とともに、金属層による基材金属本来の材料特性、
例えば靭性などを兼備させることができる。
Hard particles such as tungsten carbide (WC,
By mixing W2C) particles, etc., a high degree of wear resistance that cannot be obtained with metal alone can be imparted. Based on this knowledge, the present inventors first used centrifugal force casting to create metal (M) and hard particles (
P) (hereinafter referred to as "outer layer" or "mixed layer") (A), and an inner region (hereinafter referred to as "inner layer" or "metal layer") consisting essentially only of metal (M) (Japanese Patent Application No. 56-213860, No. 56-21386)
No. 1, etc.). In this way, if a mixed layer is formed only on the surface layer where wear resistance is required, it is not only economical as it reduces the amount of expensive hard particles used, but also provides high wear resistance due to the mixed layer. The inherent material properties of the base metal due to the metal layer,
For example, it can be made to have toughness.

上記鋳物の鋳造は、例えば第6図に示すように、軸心を
中心に回転する鋳型(1)内に、その端部の端板(2)
の注湯孔(3)から、ホッパー(4)の鋳込み樋(5)
にて金属溶湯(M)を鋳造し、溶湯の鋳込み終了後、端
板(2′)の孔(3′)から挿入された硬質粒子添加治
具(6)にて、溶湯より比重の大きい硬質粒子(P)を
溶湯面上に散布することにより行なわれる。溶湯面に投
与された硬質粒子(P)は、遠心力の作用下、溶湯との
比重差により溶湯層内を鋳型(1)の内壁面に向って沈
降し、その外周領域に集中濃化することにより混在層を
形成するので、そのまま鋳型の回転を続行して溶湯を凝
固させれば、前記のごとき鋳物が得られるわけである。
For example, as shown in FIG. 6, the above-mentioned casting is carried out by inserting an end plate (2) into a mold (1) that rotates around its axis.
from the pouring hole (3) to the pouring gutter (5) of the hopper (4).
After casting the molten metal, a hard particle addition jig (6) inserted through the hole (3') of the end plate (2') is used to add hard particles with a higher specific gravity than the molten metal. This is carried out by scattering particles (P) onto the surface of the molten metal. Under the action of centrifugal force, the hard particles (P) applied to the molten metal surface settle in the molten metal layer toward the inner wall surface of the mold (1) due to the difference in specific gravity with the molten metal, and are concentrated in the outer peripheral area. As a result, a mixed layer is formed, so if the mold is continued to rotate and the molten metal is solidified, the above-mentioned casting can be obtained.

上記の遠心鋳造において、鋳物の全長・全周にわたって
均一な層厚を有する混在層を形成するには、鋳型内の溶
湯層(鴎に対して硬質粒子(P)を均等に分散投与する
ことが必要である。
In the above-mentioned centrifugal casting, in order to form a mixed layer with a uniform layer thickness over the entire length and circumference of the casting, it is necessary to uniformly disperse and administer hard particles (P) to the molten metal layer in the mold. is necessary.

しかしながら、実際の鋳1造においては、硬質粒子を鋳
型の軸方向にそって均等に分散投与するにもかかわらず
、得られる混在層(A)の厚さは、第5図に示すように
軸方向の中央領域で薄く、両端部付近で厚くなる傾向が
みられる。とりわけ、層厚の厚い混在層(特に、約5鰭
をこえる層厚)を形成する場合、鋳造時の遠心力を高く
すると、上記の傾向が顕著に現われる。この層厚の不均
一化の原因は次のように考えられる。すなわち、炭化物
等の硬質粒子は、溶湯に対する吸着性に乏しく溶湯にな
じみにくいため、溶湯面上に散布しても、直ちに溶湯層
中に吸着されず、湯面上を浮遊する。
However, in actual casting, even though the hard particles are evenly distributed along the axial direction of the mold, the thickness of the resulting mixed layer (A) is It tends to be thinner in the central region of the direction and thicker near both ends. In particular, when forming a thick mixed layer (particularly a layer thickness exceeding about 5 fins), the above-mentioned tendency becomes noticeable when the centrifugal force during casting is increased. The cause of this non-uniform layer thickness is considered as follows. That is, hard particles such as carbide have poor adsorption properties to the molten metal and are difficult to adapt to the molten metal, so even if they are sprinkled on the molten metal surface, they are not immediately adsorbed into the molten metal layer and float on the molten metal surface.

しかも、鋳型内には、溶湯とともに混入した少量の溶融
スラグが湯面上に浮遊しており、該スラグは硬質粒子と
の濡れ性が良いので、投与された硬質粒子を容易に吸着
・捕獲する。このスラグは、遠心力の作用下に、湯面上
を移動し鋳型の両端部に集中し易い。このだめ、硬質粒
子は長手方向に均等に投与しても、スラグによって両端
部に運ばれ、その場所で溶湯に吸着されて沈降する。そ
の結果、得られる混在層は前記のように両端部の層厚が
厚い不均一なも・のとなってしまう。
Moreover, inside the mold, a small amount of molten slag mixed in with the molten metal is floating on the surface of the molten metal, and this slag has good wettability with hard particles, so it easily adsorbs and captures the hard particles applied. . This slag moves on the molten metal surface under the action of centrifugal force and tends to concentrate at both ends of the mold. For this reason, even if the hard particles are evenly distributed in the longitudinal direction, they are carried by the slag to both ends, where they are adsorbed by the molten metal and settle. As a result, the resulting mixed layer becomes non-uniform, with thick layer thickness at both ends as described above.

本発明は、上述の硬質粒子の局所的な集中偏在化を防止
し、軸方向の全長にわたって均一な層厚を有する混在層
を形成し得るようにした鋳造方法を提供するものであり
、その特徴とするところは溶湯および硬質粒子に対する
濡れ性を有する溶融フラックスにて、鋳型内の溶湯面の
全体を被覆し、該フラックス層の上から、硬質粒子を軸
方向にほぼ均等に分散投与するようにしだ点に存する。
The present invention provides a casting method that prevents the above-described local concentration and uneven distribution of hard particles and forms a mixed layer having a uniform layer thickness over the entire length in the axial direction. This is done by covering the entire surface of the molten metal in the mold with a molten flux that has wettability for the molten metal and hard particles, and then distributing the hard particles almost evenly in the axial direction from above the flux layer. There is a point.

以下、本発明について詳しく説明する。The present invention will be explained in detail below.

本発明方法によれば、鋳型内に鋳込まれた溶湯に硬質粒
子を投与するに先立って、第1図に示すように、溶湯層
(耐)の湯面上に溶融フラックス層(F)を形成する。
According to the method of the present invention, before applying hard particles to the molten metal poured into the mold, a molten flux layer (F) is formed on the surface of the molten metal layer (proof) as shown in FIG. Form.

溶融フラックス層(F)は溶湯上面の全体を被覆するこ
とが必要である。溶湯(i)に対する硬質粒子(P)の
投与は溶融フラックス層(F)を介して行なわれる。
The molten flux layer (F) needs to cover the entire upper surface of the molten metal. The hard particles (P) are administered to the molten metal (i) via the molten flux layer (F).

すなわち、溶融フラックス層(F)の上方から分散投与
された硬質粒子(P)は一旦フラックス層(短に吸着さ
れ、ついで溶湯(i)に接触して溶湯に吸着されたのち
、外周に向って溶湯中を沈降する。
That is, the hard particles (P) dispersed and administered from above the molten flux layer (F) are once adsorbed in the flux layer (shortly), then come into contact with the molten metal (i), are adsorbed by the molten metal, and then move toward the outer periphery. Sediments in the molten metal.

この場合、溶融フラックス(F)は溶湯面の全体を被覆
しているので、溶湯面上で軸方向に大きく移動すること
はなく、はぼ定位置で揺動するだけである。従って、こ
れに吸着された硬質粒子は、前記のように鋳型の端部に
運ばれることはなく、はぼ投与された落下位置で溶湯に
吸着される。溶湯に汲置されたのちは、溶湯の動きに多
少左右されるものの、はぼその位置で溶湯中を沈降する
。かくして、硬質粒子は、鋳型の両端部への移動・偏在
が実質的に完全に防止され、軸方向にそって均等に分散
投与すれば、鋳物の全長・全周にわたシ均一な層厚を有
する混在層が形成される。
In this case, since the molten flux (F) covers the entire surface of the molten metal, it does not move greatly in the axial direction on the surface of the molten metal, but only oscillates in a fixed position. Therefore, the hard particles adsorbed thereon are not carried to the end of the mold as described above, but are adsorbed to the molten metal at the falling position where the particles are dispensed. After being pumped into the molten metal, it settles in the molten metal at a certain position, although this depends somewhat on the movement of the molten metal. In this way, the hard particles are virtually completely prevented from migrating and being unevenly distributed at both ends of the mold, and by distributing them evenly along the axial direction, a uniform layer thickness can be achieved over the entire length and circumference of the casting. A mixed layer is formed.

溶湯面を被覆するフラックス(F)としては、例えば金
属溶湯の精錬の際に形成される溶融スラグ、あるいは遠
心鋳造において溶湯の酸化防止のために使用されるフラ
ックスなどが挙げられるが、要するに金属溶湯と硬質粒
子のいづれに対しても濡れ性を有するならば、酸化物、
塩化物、弗化物など、あるいはこれらの2種以上の混合
物(固溶体または混合体)等、任意の成分系のものを使
用してよい。むろん、金属溶湯と接触して溶湯の化学成
分組成の変動をきだすものであってはならず、また低い
融点をもち、溶湯の凝固点付近の低温域においても十分
な流動性を呈するものが好ましい。
Examples of the flux (F) that coats the molten metal surface include molten slag formed during refining of molten metal, or flux used to prevent oxidation of molten metal in centrifugal casting, but in short, molten metal If it has wettability for both oxide and hard particles,
Any component system such as chloride, fluoride, or a mixture (solid solution or mixture) of two or more of these may be used. Of course, it must not come into contact with the molten metal and cause changes in the chemical composition of the molten metal, and it is preferable that it has a low melting point and exhibits sufficient fluidity even in the low temperature range near the freezing point of the molten metal. .

なお、溶湯面上のフラックス量が少ないと、硬質粒子の
吸着・捕獲効果力、;不足するので、少くとも0.5朋
の層厚が形成される量であることが望ましい0 上記溶融フラックス層の形成は、所望の成分組成に調合
されたフラックス粉末を鋳型内に投与して溶湯の熱で溶
融させる方法によってもよく、あるいは高温状態の溶融
フラックスとして投与してもよい。鋳型内の溶湯の降温
、粘稠化を抑制するには、後者の方法が有利なことは言
うまでもない。
Note that if the amount of flux on the molten metal surface is small, the adsorption/capturing effect of hard particles will be insufficient, so it is desirable that the amount is such that a layer thickness of at least 0.5 mm is formed. may be formed by a method in which a flux powder prepared to have a desired component composition is poured into a mold and melted by the heat of molten metal, or it may be dosed as a molten flux in a high temperature state. Needless to say, the latter method is advantageous in suppressing the temperature drop and viscosity of the molten metal in the mold.

溶湯の粘稠化が著しくなると、その後に添加される硬質
粒子の遠心分離による溶湯層内の沈降が困難となるので
、細径あるいは薄肉鋳物などのように溶湯の鋳造量の少
い鋳物の鋳造では溶融フラックスとして投与するのが望
ましい。
When the molten metal becomes extremely viscous, it becomes difficult for the hard particles added afterwards to settle in the molten metal layer by centrifugation, so casting of small-diameter or thin-walled castings with a small amount of molten metal is not recommended. Therefore, it is preferable to administer it as a molten flux.

硬質粒子としては、タングステン炭化物、タングステン
チタン炭化物などの金属炭化物が好ましく用いられる。
As the hard particles, metal carbides such as tungsten carbide and tungsten titanium carbide are preferably used.

ここに;硬質粒子と言うのは、金属中に混在して硬度を
高め耐摩耗性を向上させる効果をもつ粒子という意味で
あるから、そのような効果をもたらすものであれば、上
記以外の炭化物、あるいは窒化物、珪化物など種々の化
合物の粒子を使用してよい。もつとも、金属溶湯中で溶
融しない高融点を有するものでなければならず、まだ、
混在層を鋳物の外周領域に形成するためには、溶湯より
比重の大きい粒子を選択すべきことは言うまでもない。
Here: Hard particles mean particles that are mixed in metal and have the effect of increasing hardness and improving wear resistance, so if it has such an effect, carbides other than the above may be used. Alternatively, particles of various compounds such as nitrides and silicides may be used. However, it must have a high melting point that will not melt in molten metal, and yet,
Needless to say, in order to form a mixed layer in the outer peripheral region of the casting, particles with a higher specific gravity than the molten metal should be selected.

なお、該粒子径は、約50〜300μm程度であればよ
い。
Note that the particle size may be about 50 to 300 μm.

硬質粒子を鋳型内に投与すると、溶融フラックスおよび
溶湯は粒子に熱を奪われるので、フラックス量や溶湯量
に対し多量の硬質粒子を投与する場合には、これらの降
温・粘稠化を抑制するだめに、硬質粒子を予め加熱して
投与するとよい。その温度は約300°C以上、好まし
くは約500°C以上である。この場合、硬質粒子が炭
化物などであると、加熱の際に酸化し易いが、例えば粒
子表面に無電解ニッケルめっきを施しておけば、上記酸
化を防止することができる。
When hard particles are injected into the mold, heat is taken away from the molten flux and molten metal by the particles, so when administering a large amount of hard particles relative to the amount of flux or molten metal, it is necessary to suppress the temperature drop and viscosity of these particles. If this is not possible, the hard particles may be heated before administration. The temperature is about 300°C or higher, preferably about 500°C or higher. In this case, if the hard particles are a carbide or the like, they are likely to oxidize during heating, but if the particle surfaces are electrolessly plated with nickel, for example, the above oxidation can be prevented.

基材金属の種類は、目的とする鋳物の用途・使用条件な
どに応じて選らばれるが、例えば耐熱性や強度等が要求
される場合には、クロム系鋳鉄まだは鋳鋼、クロム−ニ
ッケル系鋳鉄または鋳鋼などの鉄系金属が好凍しく用い
られる。
The type of base metal is selected depending on the intended use and usage conditions of the casting. For example, if heat resistance and strength are required, chromium cast iron, cast steel, chromium-nickel cast iron, etc. Alternatively, ferrous metals such as cast steel are used as they freeze well.

本発明鋳造法における鋳型内へのフラックスの投与およ
び硬質粒子の分散投与は、金属溶湯の鋳造終了後に行な
うことができる。つまり、所定量の溶湯を全量鋳造した
のち、フラックスを投与し、これに硬質粒子を分散投与
すればよい。この場合、硬質粒子を遠心分離によりスム
ースに混在層へ集中させるためには、溶湯温度が高く流
動性の良い間に迅速に投与すべきである。ただし、多量
の粒子を短時間に一度に投与すると、溶湯面が急冷され
部分的に凝固する結果、粒子の遠心分離が妨げられたり
、混在層の層厚が円周方向に不均一化するなどの不具合
を生じる。従って、硬質粒子の投与は、溶湯の縦画が始
まるまでの間に、長時間をかけて徐々に投与することが
望ましい。
In the casting method of the present invention, the administration of flux and the dispersion of hard particles into the mold can be carried out after the completion of casting of the molten metal. That is, after casting a predetermined amount of molten metal, flux may be administered, and hard particles may be dispersed therein. In this case, in order to smoothly concentrate the hard particles into the mixed layer by centrifugation, it is necessary to administer the hard particles quickly while the melt temperature is high and the fluidity is good. However, if a large amount of particles are administered at once in a short period of time, the surface of the molten metal will be rapidly cooled and partially solidified, which may impede centrifugal separation of the particles and cause the thickness of the mixed layer to become uneven in the circumferential direction. This will cause problems. Therefore, it is desirable to gradually administer the hard particles over a long period of time until the vertical drawing of the molten metal begins.

別法として、溶湯の鋳造開始直前、もしくは開始と同時
に、または開始後の適当な時期・に、フラックスを投与
して溶湯面を溶融フラックス層で被覆し1.溶湯の鋳造
と併行して硬質粒子の分散投与を行うこともできる。硬
質粒子の投与開始時期は、投与に要する時間と溶湯の゛
鋳造所要時間とを勘案して適宜法めればよい。むろん、
硬質粒子の投与量が多い程、投与の開始を早めればよい
。ただし、鋳型内の溶湯量が少い鋳造初期に、硬質粒子
が投与されると溶湯が凝固し良好な混在状態の形成が困
難となるので、鋳型内溶湯の層厚が約10朋に達した時
点あるいは所定鋳造量の約半分が鋳込まれた時点以降に
、硬質粒子の投与を開始することが望ましい。なお、硬
質粒子の投与完了は溶湯の鋳造終了前、または終了と同
時であるのが好ましいが、鋳造終了後であってもよい。
Alternatively, the surface of the molten metal may be coated with a layer of molten flux by applying flux immediately before, simultaneously with, or at an appropriate time after the start of casting the molten metal.1. It is also possible to disperse and administer the hard particles in parallel with the casting of the molten metal. The time to start administering the hard particles may be determined as appropriate, taking into consideration the time required for dosing and the time required for casting the molten metal. Of course,
The higher the dose of hard particles, the earlier the initiation of administration. However, if hard particles are applied at the beginning of casting when the amount of molten metal in the mold is small, the molten metal will solidify and it will be difficult to form a good mixed state, so the layer thickness of the molten metal in the mold will reach approximately 10 mm. It is desirable to begin dosing the hard particles at a point or after about half of the predetermined casting quantity has been cast. It is preferable that the administration of the hard particles is completed before or at the same time as the casting of the molten metal, but it may be after the casting is finished.

このように、溶湯の鋳造を終える前から硬質粒子を投与
すれば、投与量が多い場合でも、溶湯が凝固をはじめる
までの間に所定量の硬質粒子を全量無理なく投与するこ
とができる。
In this way, if the hard particles are administered before the casting of the molten metal is finished, even if the dosage is large, the entire predetermined amount of the hard particles can be easily administered before the molten metal starts solidifying.

本発明の遠心鋳造におけるその他の鋳造条件に特別の制
限はなく、鋳型の回転速度は、例えば鋳型内壁面での遠
心力が50〜100G程度になるように制御され、溶湯
の鋳造温度は通常のそれと異ならず、要すれば硬質粒子
に奪われる熱量を補償するために、若干社目の温度に調
節すればよい。
There are no particular restrictions on other casting conditions in the centrifugal casting of the present invention, and the rotational speed of the mold is controlled such that, for example, the centrifugal force on the inner wall surface of the mold is approximately 50 to 100 G, and the casting temperature of the molten metal is controlled to a normal level. The temperature is not different from that, and if necessary, the temperature may be adjusted to a slightly higher temperature in order to compensate for the amount of heat taken away by the hard particles.

硬質粒子の投与量は、もちろん所望の混゛在層の厚さに
応じて適当に決められる。
The dosage of hard particles is, of course, appropriately determined depending on the desired thickness of the intermixed layer.

かくして得られる鋳物の混在層は、各硬質粒子が緻密に
分散し、粒子間隙が基材金属で充填されてなる混在状態
を呈する。この混在層における硬質粒子の占める割合(
体積率)は好ましくは約70チである。
The mixed layer of the casting thus obtained exhibits a mixed state in which each hard particle is densely dispersed and the interparticle gaps are filled with the base metal. The proportion of hard particles in this mixed layer (
The volume fraction) is preferably about 70 inches.

次に本発明方法を実施例により具体的に説明する。Next, the method of the present invention will be specifically explained using examples.

実施例1 第1図に示すごとき遠心鋳造装置において、金属溶湯(
M)を取鍋(図示せず)からホッパー(4)を介して鋳
型(1)内に鋳造するとともに、鋳型自溶湯面を全周・
全長にわたり溶融フラックス層(F)にて被覆し、これ
に硬質粒子(P)を全長にわたってほぼ均等に分散投与
し、鋳型の回転下にそのまま凝固させた。なお、フラッ
クスは、その粉末を取鍋内の金属溶湯に添加して溶湯の
熱で溶解させ、これを溶湯の鋳造と同時にホッパーを介
して鋳型内に鋳造した。硬質粒子(P)は、添加治具(
6)の樋状体(7)(はぼ鋳型内の全長にわたる長さを
有する)内に装填し、樋状体を支持する回転軸体(8)
により樋状体(7)を矢印(a)のように反転させて溶
融フラックス面上に落下させることにより投与した。鋳
造条件は次のとおりである。
Example 1 In a centrifugal casting apparatus as shown in Fig. 1, molten metal (
M) Cast the self-molten metal from the ladle (not shown) into the mold (1) via the hopper (4), and pour the self-molten metal around the entire surface of the mold.
The entire length was covered with a molten flux layer (F), and the hard particles (P) were dispersed and administered almost evenly over the entire length, and solidified as it was while the mold was rotating. The flux was added to the molten metal in the ladle and melted by the heat of the molten metal, and the flux was cast into the mold via a hopper at the same time as the molten metal was cast. The hard particles (P) are added using an addition jig (
A rotary shaft body (8) that is loaded into the gutter-like body (7) (having a length spanning the entire length inside the dowel mold) of 6) and supports the gutter-like body.
The trough-shaped body (7) was inverted as shown by the arrow (a) and was dropped onto the molten flux surface for administration. The casting conditions are as follows.

〔1〕鋳型 (1)内径:250削、長さ=100朋。[1] Mold (1) Inner diameter: 250 mm, length = 100 mm.

(2)回転速度: 650 rpm (鋳型内壁面での
遠心力60G) 〔■〕金属溶湯 (1)成分:03.36%、Si0.77%、地0.6
3%、Ni4.38%、Orl、51%、M。
(2) Rotation speed: 650 rpm (Centrifugal force 60G on the inner wall surface of the mold) [■] Molten metal (1) Ingredients: 03.36%, Si 0.77%, Base 0.6
3%, Ni4.38%, Orl, 51%, M.

0348チ、残部Feおよび不純物。0348, balance Fe and impurities.

(2)鋳造温度:1600°C1 (3)鋳造量:鋳型内溶湯層厚約35朋。(2) Casting temperature: 1600°C1 (3) Casting amount: Molten metal layer thickness in mold approximately 35 mm.

l〕溶融フラックス (1)成分:5iO219%、A12086%、0a0
38チ、Na2O16%、B20a8%、螢石9.00
係、その他4%、 (2)投与量:鋳型内溶湯面上での層厚1 ytrm。
l] Melt flux (1) components: 5iO2 19%, A12086%, 0a0
38chi, Na2O16%, B20a8%, Fluorite 9.00
(2) Dose: 1 ytrm layer thickness on the surface of the molten metal in the mold.

印硬質粒子 (1)タングステン炭化物(W2C)。粒子表面に無電
解Ni −P めつきを施しだものを予熱して投与。投
与時の温度500°C (2)粒径:150〜250μm。
Hard particles (1) Tungsten carbide (W2C). Particles with electroless Ni-P plating on their surfaces are preheated and administered. Temperature during administration: 500°C (2) Particle size: 150-250 μm.

(3)投与量: 9. l kg。(3) Dose: 9. l kg.

(4)投与時期:溶湯鋳造終了1秒後に開始し、2.5
秒を要して全量投与。
(4) Administration timing: Starts 1 second after the end of molten metal casting, 2.5
The entire dose is administered in seconds.

上記鋳造により、外径250IIX長さ10(Iff×
肉厚35闘の中空円筒状鋳物を得た。また、比較として
、鋳型自溶湯面を溶融フラックスで被覆しない点以外は
、上記と同一の鋳造条件にて同じサイズの中空円筒状鋳
物を鋳造した。
By the above casting, outer diameter 250IIX length 10 (Iff×
A hollow cylindrical casting with a wall thickness of 35 cm was obtained. For comparison, a hollow cylindrical casting of the same size was cast under the same casting conditions as above, except that the self-molten metal surface of the mold was not coated with molten flux.

各方法で得られた鋳物の軸方向断面を調査した結果、比
較法の鋳物の混在層の層厚は前記第5図に示すごとくで
、中央部位では約5++rar、両端付近では約15朋
と不均一である。これに対し、本発明方法で得られた鋳
物では、第4図に示すように硬質粒子の偏在はほとんど
認められず、混在層(4)の層厚は全長・全周にわたり
約9〜12gagとほぼ均一である。また、その混在層
における各粒子の・表面は金属(M)で被覆され、粒子
間隙が金属で充填された緻密で良好な混在状態を呈して
いる。なお、混在層中の粒子の占める割合(体積率)は
め70チである。
As a result of examining the axial cross section of the castings obtained by each method, the thickness of the mixed layer of the castings obtained by the comparative method was as shown in Figure 5 above, and was about 5++rar at the center and about 15rar near both ends. Uniform. In contrast, in the castings obtained by the method of the present invention, as shown in Figure 4, there is hardly any uneven distribution of hard particles, and the thickness of the mixed layer (4) is about 9 to 12 g over the entire length and circumference. Almost uniform. Further, the surface of each particle in the mixed layer is coated with metal (M), and the gaps between the particles are filled with metal, creating a dense and good mixed state. Note that the ratio (volume ratio) of particles in the mixed layer is approximately 70 cm.

実施例2 前記実施例1と同様に第1図に示すごとき装置にて遠心
鋳造を行った。ただし、溶湯の鋳造開始直後にフラック
ス粉末を鋳型内に投与して溶融フラックス層を形成し、
溶湯層厚が約10闘に埠した時点で硬質粒子7.5 k
gを溶湯の鋳造と併行して散布投与した。投与所要時間
は約8秒である。その他の鋳造条件はすべて実施例1と
四°じである。
Example 2 Centrifugal casting was carried out in the same manner as in Example 1 using the apparatus shown in FIG. However, immediately after the start of casting the molten metal, flux powder is injected into the mold to form a molten flux layer.
When the molten metal layer thickness reaches approximately 10 mm, the hard particles become 7.5 k.
g was sprayed and administered simultaneously with the casting of the molten metal. The administration time is approximately 8 seconds. All other casting conditions were the same as in Example 1.

また1、比較として、フラックスを使用しない点を除い
て上記と同様の鋳造を行った。
1. For comparison, casting was carried out in the same manner as above except that no flux was used.

得られた各鋳造体(外径250+11111X長さ10
0朋X肉厚35酊)の軸方向断面を調査した結果、比較
法で得られた鋳物の混在層厚は前記第5図に゛示すごと
くで、中央部位では約4闘、両端部位で約15闘と極め
て不均一であるが、本発明方法で得られた鋳物は前記第
4図に示すものと同様に硬質粒子の偏在はほとんどなく
、混在層厚は全長全周にわたって約9〜111gと均一
である。その混在層における硬質粒子の占める割合(体
積率)は約70チであり、粒子と金属との混在状態も前
記実施例と同じく良好である。
Each of the obtained cast bodies (outer diameter 250 + 11111 x length 10
As a result of investigating the axial cross section of 0 mm x wall thickness 35 mm), the mixed layer thickness of the casting obtained by the comparative method was as shown in Figure 5 above, and was about 4 mm at the center and about 4 mm at both ends. Although the casting obtained by the method of the present invention has almost no uneven distribution of hard particles, the thickness of the mixed layer is about 9 to 111 g over the entire length and circumference, although the casting obtained by the method of the present invention has almost no uneven distribution of hard particles. Uniform. The ratio (volume ratio) of hard particles in the mixed layer is about 70 cm, and the mixed state of particles and metal is also good as in the previous example.

以上のように、本発明によれば、表層領域に硬質粒子と
金属からなる混在層が全長・全周にわたって均一な所望
の層厚に形成された鋳物を得ることができ、その混在層
によって確実かつ安定した高耐摩耗性が保証される。ま
た混在層の内側の金属層によって高靭性をも具備する。
As described above, according to the present invention, it is possible to obtain a casting in which a mixed layer consisting of hard particles and metal is formed in the surface region to a desired layer thickness that is uniform over the entire length and circumference, and the mixed layer ensures And stable high wear resistance is guaranteed. It also has high toughness due to the metal layer inside the mixed layer.

従って、各種輸送用パイプ類、あるいは圧延用・搬送用
ロール類などの用途において、摩耗、衝撃によく耐え、
従来材では得られない耐久性を発揮する。その他、要す
るに耐摩耗性が要求される各種装置・機器用部材として
同様の効果が得られる。
Therefore, it can withstand wear and impact well in applications such as various transportation pipes, rolling and conveyance rolls, etc.
Demonstrates durability that cannot be obtained with conventional materials. In other words, similar effects can be obtained as members for various devices and devices requiring wear resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による鋳造法の具体例を示す軸方向断面
説明図、第2図はV−V断面説明図、第3図(1)は中
空円筒状鋳物の正面断面説明図、同図〔田〕はその部分
拡大説明図、第4図および第5図はそれぞれ中空円筒状
鋳物の軸方同音μ分断面説明図、第6図は従来の鋳造法
の例を示す軸方1句断面説明図である。 1:遠心鋳造鋳型、4:溶湯鋳込みホツノクー、6:硬
質粒子添加治具、M:金属、P:硬質粒子、゛A:混在
層、B:金属層。− 代理人 弁理士 宮崎 新A良B 111  WA           第2WJ第3図 ビ 第4図     第5図 A      B                 
  At5116図 258−
Fig. 1 is an explanatory axial cross-sectional view showing a specific example of the casting method according to the present invention, Fig. 2 is an explanatory view of a V-V cross-section, and Fig. 3 (1) is an explanatory front cross-sectional view of a hollow cylindrical casting. 〔〕 is a partially enlarged explanatory diagram, Figures 4 and 5 are explanatory diagrams of an axially homophonous μ cross-section of a hollow cylindrical casting, respectively, and Figure 6 is an axial single-section cross-section showing an example of a conventional casting method. It is an explanatory diagram. 1: Centrifugal casting mold, 4: Molten metal casting hotspot, 6: Hard particle addition jig, M: Metal, P: Hard particles, A: Mixed layer, B: Metal layer. - Agent Patent Attorney Miyazaki Shin A Ryo B 111 WA 2 WJ Figure 3 B Figure 4 Figure 5 A B
At5116Figure 258-

Claims (9)

【特許請求の範囲】[Claims] (1)  遠心鋳造用鋳型内に金属溶湯を鋳造するとと
もに、該溶湯上り比重の大きい硬質粒子を溶湯に投与し
て、遠心力の作用下、溶湯と硬質粒子との比重差によシ
、該粒子を溶湯層中に沈降させ溶湯の外周領域に集中濃
化させることによって金属と硬質粒子の混在する外層と
実質的に金属のみからなる内層との二層構造を有する鋳
物を鋳造する方法において、鋳型内の金属溶湯の上面に
、該溶湯および硬質粒子に対する濡れ性を有する溶融フ
ラックスの層を形成し、該フラックス層に、硬質粒子を
鋳型の軸方向にそって均等に分散投与することを特徴と
する耐摩耗鋳物の遠心鋳造法。
(1) While casting a molten metal in a centrifugal casting mold, hard particles with a high specific gravity are added to the molten metal, and under the action of centrifugal force, the difference in specific gravity between the molten metal and the hard particles causes In a method of casting a casting having a two-layer structure of an outer layer containing a mixture of metal and hard particles and an inner layer consisting essentially only of metal, by precipitating particles in a molten metal layer and concentrating them in the outer peripheral area of the molten metal, A layer of molten flux having wettability for the molten metal and hard particles is formed on the upper surface of the molten metal in the mold, and the hard particles are evenly distributed and administered into the flux layer along the axial direction of the mold. Centrifugal casting method for wear-resistant castings.
(2)金属溶湯の鋳造開始と同時にもしくはその後にフ
ラックス粉末または溶融フラックスを鋳型内に投与して
溶湯面上に溶融フラックス層を形成することを特徴とす
る上記第(1)項に記載の耐摩耗鋳物の遠心鋳造法。
(2) The resistance according to item (1) above, characterized in that flux powder or molten flux is administered into the mold at the same time as or after the start of casting of the molten metal to form a molten flux layer on the surface of the molten metal. Centrifugal casting method for worn castings.
(3)金属溶湯が全鋳造量の1/2以上鋳込まれたのち
、または溶湯層厚が10wIM以上に達したのに、また
は終了後に、上記粒子の投与を完了することを特徴とす
る上記第(2)項に記載の耐摩耗鋳物の遠心鋳造法。
(3) The above method characterized in that the administration of the particles is completed after 1/2 or more of the total casting amount of the molten metal has been cast, or after the molten metal layer thickness has reached 10 wIM or more, or after the end of the casting process. Centrifugal casting method for wear-resistant castings according to item (2).
(4)金属溶湯の全量を鋳造したのち、フラックス粉末
または溶融フラックスを鋳型内に投与して溶湯面上に溶
融フラックス層を形成することを特徴とする上記第(1
)項に記載の耐摩耗鋳物の遠心鋳造法。
(4) After casting the entire amount of molten metal, flux powder or molten flux is administered into the mold to form a molten flux layer on the surface of the molten metal.
Centrifugal casting method for wear-resistant castings described in section ).
(5)溶融フラックス層厚が05朋以上であることを特
徴とする上記第(1)項ないしは第(4)項のいづれか
1つに記載の耐摩耗鋳物の遠心鋳造法。
(5) The centrifugal casting method for wear-resistant castings according to any one of items (1) to (4) above, characterized in that the thickness of the molten flux layer is 0.5 mm or more.
(6)硬質粒子が温度300°C以上に加熱された状態
で投与されることを特徴とする上記第(1)項ないしは
第(5)項のいづれか1つに記載の耐摩耗鋳物の遠心鋳
造法。
(6) Centrifugal casting of wear-resistant castings according to any one of paragraphs (1) to (5) above, characterized in that the hard particles are administered while being heated to a temperature of 300°C or higher. Law.
(7)  フラックスが酸化物、塩化物もしくは弗化物
の単独またはこれらの2種以上の混合物であることを特
徴とする上記第(1)項ないしは第(6)項のいづれか
1つに記載の耐摩耗鋳物の遠心鋳造法。
(7) The flux according to any one of items (1) to (6) above, characterized in that the flux is an oxide, chloride, or fluoride alone or a mixture of two or more thereof. Centrifugal casting method for worn castings.
(8)硬質粒子がタングステン炭化物またはタングステ
ンチタン炭化物であることを特徴とする上記第(1)項
ないしは第(7)項のいづれか1つに記載の耐摩耗鋳物
の遠心鋳造法。
(8) The centrifugal casting method for wear-resistant castings according to any one of items (1) to (7) above, wherein the hard particles are tungsten carbide or tungsten titanium carbide.
(9)金属が鉄系金属であることを特徴とする上記第(
8)項に記載の耐摩耗鋳物の遠心鋳造法。
(9) The metal is an iron-based metal,
Centrifugal casting method for wear-resistant castings according to item 8).
JP10579782A 1982-06-18 1982-06-18 Centrifugal casting method of abrasion-resistant casting Granted JPS58221649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10579782A JPS58221649A (en) 1982-06-18 1982-06-18 Centrifugal casting method of abrasion-resistant casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10579782A JPS58221649A (en) 1982-06-18 1982-06-18 Centrifugal casting method of abrasion-resistant casting

Publications (2)

Publication Number Publication Date
JPS58221649A true JPS58221649A (en) 1983-12-23
JPH0338020B2 JPH0338020B2 (en) 1991-06-07

Family

ID=14417108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10579782A Granted JPS58221649A (en) 1982-06-18 1982-06-18 Centrifugal casting method of abrasion-resistant casting

Country Status (1)

Country Link
JP (1) JPS58221649A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102861892A (en) * 2012-10-24 2013-01-09 中钢集团邢台机械轧辊有限公司 End cover box for horizontal centrifugal casting of roll
CN107350456A (en) * 2017-06-29 2017-11-17 太仓市钧胜轧辊有限公司 A kind of preparation technology of high abrasion roll

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420945A (en) * 1987-06-26 1989-01-24 Ejisu Sa Crossed sliding device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420945A (en) * 1987-06-26 1989-01-24 Ejisu Sa Crossed sliding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102861892A (en) * 2012-10-24 2013-01-09 中钢集团邢台机械轧辊有限公司 End cover box for horizontal centrifugal casting of roll
CN107350456A (en) * 2017-06-29 2017-11-17 太仓市钧胜轧辊有限公司 A kind of preparation technology of high abrasion roll

Also Published As

Publication number Publication date
JPH0338020B2 (en) 1991-06-07

Similar Documents

Publication Publication Date Title
JPS58144442A (en) Manufacture of aluminum alloy/granular matter composite formed body and device therefor
JP2000239770A (en) Production of cast alloy and complex cylinder
CA1046732A (en) Process and device for centrifugally casting spheroidal graphite cast iron pipes
JPS6362305B2 (en)
DE2504813C3 (en) Method and device for granulating melts
JPS58221649A (en) Centrifugal casting method of abrasion-resistant casting
JPH03216552A (en) Method and apparatus uniformly introducing constant quantity of substance into metallic sample
RU2701698C1 (en) Method of billet alloying by means of melting electrode with coating in process of electroslag remelting
JPH0347949B2 (en)
JPH0338021B2 (en)
US2124445A (en) Metallurgical process
JPS635184B2 (en)
JPS58119455A (en) Centrifugal casting method for abrasion resistant casting
JPH0127818B2 (en)
JPS58119453A (en) Centrifugal casting method for abrasion resistant casting
JPS5933064A (en) Production of composite casting
JPS58119454A (en) Centrifugal casting method for abrasion resistant casting
JPS60124458A (en) Production of wear resistant composite casting
JPS5982153A (en) Production of composite casting
JPS6127165A (en) Production of wear-resistant composite casting
JPS586769A (en) Cylindrical or columnar abrasion resistant casting and its production
RU1773300C (en) Method of producing and repairing walls and banks of melting furnace
JPH0127819B2 (en)
DE2254705C3 (en) Centrifugal process
JPH0152110B2 (en)