JPS5932901B2 - Integrated photodetector circuit device - Google Patents

Integrated photodetector circuit device

Info

Publication number
JPS5932901B2
JPS5932901B2 JP55169678A JP16967880A JPS5932901B2 JP S5932901 B2 JPS5932901 B2 JP S5932901B2 JP 55169678 A JP55169678 A JP 55169678A JP 16967880 A JP16967880 A JP 16967880A JP S5932901 B2 JPS5932901 B2 JP S5932901B2
Authority
JP
Japan
Prior art keywords
type semiconductor
region
semiconductor region
layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55169678A
Other languages
Japanese (ja)
Other versions
JPS5793567A (en
Inventor
春夫 森
太二 臼井
誠 萩原
邦康 河原田
敏夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Oki Electric Industry Co Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Oki Electric Industry Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP55169678A priority Critical patent/JPS5932901B2/en
Publication of JPS5793567A publication Critical patent/JPS5793567A/en
Publication of JPS5932901B2 publication Critical patent/JPS5932901B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 この発明は、PN接合を有する受光素子と受光電流増幅
器とを同一半導体基板上に形成した集積化受光回路装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an integrated light receiving circuit device in which a light receiving element having a PN junction and a light receiving current amplifier are formed on the same semiconductor substrate.

この種の装置の従来例を第1図に示す。A conventional example of this type of device is shown in FIG.

第2図は第1図に示した装置の等価回路である。第1図
の装置は、P型半導体基板1上にN型エピタキシャル層
2を形成し、このエピタキシャル層2を拡散P型半導体
層3で複数の領域に分離し、領域21にはP型半導体領
域4を拡散形成して受光ダイオード5を形成し、領域2
2にはP型半導体領域6とN型半導体領域Tを順次拡散
形成してNPNトランジスタ8を形成し、領域23には
P型半導体領域9を形成して抵抗10を形成したもので
ある。このような装置において、光が、N型半導体領域
21とその外側のP型領域(基板1とP型半導体層3か
らなる)で形成されるPN接合を介して入射されると、
このPN接合部で光のエネルギが消費されるので、P型
半導体領域4からN型半導体領域21に流れる光電流と
して有効に利用されない。したがつて、有効に光電流に
変換される光は、P型半導体領域4の真上(第1図符号
11参照)から入射される光に限定される欠点があつた
。また、N型半導体領域21はP型領域に包囲されてい
るため、充分な深さを持つことができない。したがつて
、N型半導体領域21は充分な時間、光エネルギを吸収
できないため、入射光を効率よく光電流に変換できない
欠点を有していた。第3図は従来の他の装置を示し、第
4図は第3図の装置の等価回路である。
FIG. 2 is an equivalent circuit of the device shown in FIG. In the device shown in FIG. 1, an N-type epitaxial layer 2 is formed on a P-type semiconductor substrate 1, and this epitaxial layer 2 is separated into a plurality of regions by a diffused P-type semiconductor layer 3. 4 is diffused to form a light receiving diode 5.
2, a P-type semiconductor region 6 and an N-type semiconductor region T are sequentially diffused to form an NPN transistor 8, and a P-type semiconductor region 9 is formed in region 23 to form a resistor 10. In such a device, when light is incident through the PN junction formed by the N-type semiconductor region 21 and the P-type region outside it (consisting of the substrate 1 and the P-type semiconductor layer 3),
Since the energy of the light is consumed at this PN junction, it is not effectively used as a photocurrent flowing from the P-type semiconductor region 4 to the N-type semiconductor region 21. Therefore, there is a drawback that the light that is effectively converted into photocurrent is limited to the light that is incident from directly above the P-type semiconductor region 4 (see reference numeral 11 in FIG. 1). Furthermore, since the N-type semiconductor region 21 is surrounded by the P-type region, it cannot have a sufficient depth. Therefore, since the N-type semiconductor region 21 cannot absorb optical energy for a sufficient period of time, it has the disadvantage that it cannot efficiently convert incident light into photocurrent. FIG. 3 shows another conventional device, and FIG. 4 is an equivalent circuit of the device shown in FIG.

第3図の装置は、P型半導体基板21を用い、これに、
N型半導体領域22を、たとえば拡散などの力法で形成
することによりPN接合型受光ダイオード23を形成し
たものである。また、第3図の装置では、P型半導体基
板21に形成したn型半導体領域24で抵抗25が形成
されており、さらにP型半導体基板21に形成したN型
半導体領域26内にr型半導体領域27j6よびv型半
導体領域28を順次形成することによりトランジスタ2
9が形成されている。なお、30は受光ダイオード23
のカソード取出しのためにN型半導体領域22内に形成
されたN+型半導体領域、31はNPNトランジスタ2
9のコレクタ取出しのためにN型半導体領域26内に形
成されたN+型半導体領域である。しかし、第3図の装
置は、r型半導体領域27の拡散形成時に、N型半導体
領域22,24,26が深く追拡散されるため、受光ダ
イオード23の接合容量が増大する製造上の欠点を有し
ていた。N型半導体領域22,24,26が深く追拡散
される理由は、そのN型半導体領域22,24,26を
形成するためのN型不純物の拡散係数が大きいためであ
る。また、P型半導体基板は表面にN型反転層が発生し
やすいので、第3図の装置は、PN接合部の耐電圧特姓
の劣化を招く欠点も有していた。
The device shown in FIG. 3 uses a P-type semiconductor substrate 21, in which:
A PN junction type light receiving diode 23 is formed by forming an N type semiconductor region 22 by a force method such as diffusion. Further, in the device shown in FIG. 3, a resistor 25 is formed in an n-type semiconductor region 24 formed on a P-type semiconductor substrate 21, and an r-type semiconductor is further formed in an N-type semiconductor region 26 formed on the P-type semiconductor substrate 21. By sequentially forming the region 27j6 and the v-type semiconductor region 28, the transistor 2
9 is formed. In addition, 30 is a light receiving diode 23
An N+ type semiconductor region 31 is formed in the N type semiconductor region 22 for taking out the cathode of the NPN transistor 2.
This is an N+ type semiconductor region formed within the N type semiconductor region 26 for taking out the collector of No. 9. However, the device shown in FIG. 3 has a manufacturing disadvantage in that the junction capacitance of the light receiving diode 23 increases because the N-type semiconductor regions 22, 24, and 26 are deeply additionally diffused when the R-type semiconductor region 27 is diffused. had. The reason why the N-type semiconductor regions 22, 24, and 26 are additionally diffused deeply is because the diffusion coefficient of the N-type impurity for forming the N-type semiconductor regions 22, 24, and 26 is large. Furthermore, since an N-type inversion layer is likely to occur on the surface of a P-type semiconductor substrate, the device shown in FIG. 3 also has the drawback of deteriorating the withstand voltage characteristics of the PN junction.

この発明は上記の点に鑑みなされたもので、光電変換効
率を向士させることができるとともに、光の入射方向の
制限を解くことができ、さらには受光ダイオードの接合
容量の増大、PN接合部の耐電圧特性の劣化を防止でき
る集積化受光回路装置を提供することを目的とする。以
下この発明の実施例を図面を参照して説明する。
This invention was made in view of the above points, and it is possible to improve the photoelectric conversion efficiency, remove the restriction on the incident direction of light, and further increase the junction capacitance of the photodetector diode, and reduce the PN junction. An object of the present invention is to provide an integrated light-receiving circuit device that can prevent deterioration of withstand voltage characteristics. Embodiments of the present invention will be described below with reference to the drawings.

第5図AないしDはこの発明の実施例の装置を製造工程
順に示す断面図である。したがつて、実施例は、製造工
程に従つて説明することにする。第5図Aにおいて、4
1はシリコンN型半導体基板であり、まず、このN型半
導体基板41の所望の表面領域にP型半導体領域42を
形成する。このP型半導体領域42は、イオン注入法で
シート抵抗2KΩ/口程度に形成する。しかる後、この
P型半導体領域42の所望の表面領域内にN+フローテ
イング層43,,432を所定距離離間して形成する。
このN+フローテイング層431,432は、P型半導
体領域42内にSbなどを拡散することにより形成する
。また、vフローテイング層431,432はシート抵
抗20Ω/口程度に形成する。次に、N型半導体基板4
1の全体の上にN型半導体層44をエピタキシヤル成長
法により形成する(第5図B参照)。
FIGS. 5A to 5D are cross-sectional views showing the apparatus according to the embodiment of the present invention in the order of manufacturing steps. Therefore, the examples will be described according to the manufacturing process. In Figure 5A, 4
1 is a silicon N-type semiconductor substrate, and first, a P-type semiconductor region 42 is formed in a desired surface area of this N-type semiconductor substrate 41. This P-type semiconductor region 42 is formed by ion implantation to have a sheet resistance of about 2 KΩ/hole. Thereafter, N+ floating layers 43, 432 are formed in a desired surface area of this P-type semiconductor region 42 at a predetermined distance apart.
The N+ floating layers 431 and 432 are formed by diffusing Sb or the like into the P-type semiconductor region 42. Further, the v-floating layers 431 and 432 are formed to have a sheet resistance of about 20Ω/hole. Next, the N-type semiconductor substrate 4
An N-type semiconductor layer 44 is formed on the entire substrate 1 by epitaxial growth (see FIG. 5B).

続いて、拡散によりP型アイソレーシヨン領域45を形
成する。
Subsequently, a P-type isolation region 45 is formed by diffusion.

このP型アイソレーシヨン領域45は、N型半導体層4
4の表面部分からP型半導体領域42に到達するように
、かつフローテイング層431,432の各々を包囲す
るごとくN型半導体層44に形成する(第5図C参照)
。次に、第1の分離領域441、すなわち、P型アイソ
レーシヨン領域45とP型半導体領域42で分離された
N+フローテイング層431(第1のXフローテイング
層)上のN型半導体層領域に、ベース領域としてのP型
半導体領域46を形成する。このP型半導体領域46は
、シート抵抗200Ω/口程度のボロン拡散により形成
する。この時、同時に、第2の分離領域442、すなわ
ち、上記と同様にして分離されたvフローテイング層4
32(第2のフローテイング層)上のN型半導体層領域
に、抵抗47としてP型半導体領域48を形成する。ま
た、受光ダイオード49を形成するためのP型半導体領
域50を、分離されていないN型半導体層領域443に
形成する(第5図D参胸。しかる後に、第5図Dの同図
に示すように、P型半導体領域46にN型半導体領域5
1を形成する。このN型半導体領域51はエミツタ領域
としてであり、リン拡散により形成する。したがつて、
第1の分離領域441には、この領域441をコレクタ
領域として、P型半導体領域46およびN型半導体領域
51とによりNPNトランジスタ52が形成される。エ
ミツタ領域としてのN型半導体領域51を形成する際、
同時に、第1の分離領域441にN+型半導体領域53
を形成する。
This P-type isolation region 45 corresponds to the N-type semiconductor layer 4.
The N-type semiconductor layer 44 is formed so as to reach the P-type semiconductor region 42 from the surface portion of 4 and to surround each of the floating layers 431 and 432 (see FIG. 5C).
. Next, the first isolation region 441, that is, the N-type semiconductor layer region on the N+ floating layer 431 (first X floating layer) separated by the P-type isolation region 45 and the P-type semiconductor region 42. Then, a P-type semiconductor region 46 as a base region is formed. This P-type semiconductor region 46 is formed by boron diffusion with a sheet resistance of about 200 Ω/hole. At this time, at the same time, the second separation region 442, that is, the v floating layer 4 separated in the same manner as above.
A P-type semiconductor region 48 is formed as a resistor 47 in the N-type semiconductor layer region on 32 (second floating layer). Further, a P-type semiconductor region 50 for forming a light-receiving diode 49 is formed in the unseparated N-type semiconductor layer region 443 (see FIG. 5D). As shown in FIG.
form 1. This N-type semiconductor region 51 serves as an emitter region and is formed by phosphorus diffusion. Therefore,
An NPN transistor 52 is formed in the first isolation region 441 by the P-type semiconductor region 46 and the N-type semiconductor region 51, with this region 441 serving as a collector region. When forming the N-type semiconductor region 51 as an emitter region,
At the same time, an N+ type semiconductor region 53 is formed in the first isolation region 441.
form.

このy型半導体領域53は、コレクタを取出すための領
域である。続いて、受光ダイオード49、NPNトラン
ジスタ52および抵抗47を結線するためのAt配線5
4を表面に形成し、以上で集積化受光回路装置の製造を
終了する。なお、55は表面に形成された絶縁膜である
。以上のようにして製造された装置においては、第5図
Dの矢印56で示す方向から、N型半導体層44上の表
面に向つて光を入射させる方法が、効率の面から考えて
最もよい。
This y-type semiconductor region 53 is a region for taking out the collector. Subsequently, an At wiring 5 for connecting the light receiving diode 49, the NPN transistor 52, and the resistor 47 is connected.
4 is formed on the surface, and the manufacturing of the integrated light receiving circuit device is thus completed. Note that 55 is an insulating film formed on the surface. In the device manufactured as described above, the best method in terms of efficiency is to make the light enter the surface of the N-type semiconductor layer 44 from the direction shown by the arrow 56 in FIG. 5D. .

また、光結合力法との関係でN型半導体基板41の裏面
から光の入射を行わせる必要がある場合には、第6図A
およびBの他の実施例に示すようにすることにより、裏
面からの光の入射を行わすことができる。
In addition, if it is necessary to make light incident from the back surface of the N-type semiconductor substrate 41 in relation to the optical coupling force method, FIG.
By doing as shown in the other embodiments B and B, light can be incident from the back surface.

すなわち、この実施例では、P型半導体領域50に対応
するN型半導体基板41の裏面部57をエツチングなど
の方法により薄くし、ウエル58として形成するもので
ある。第6図Bにおいて、59は光の入射ビームを示す
。なお、N型半導体基板41として(100)方向の結
晶軸をもつものを用い、ウエル58形成用としてKOH
系エツチヤントを用いることで、上記所望のN型半導体
基板裏面光入射構造を容易に形成することができた。第
7図は、以上のような、この発明の実施例の装置の等価
回路図を示す。
That is, in this embodiment, the back surface portion 57 of the N-type semiconductor substrate 41 corresponding to the P-type semiconductor region 50 is thinned by a method such as etching to form a well 58. In FIG. 6B, 59 indicates an incident beam of light. Note that the N-type semiconductor substrate 41 has a crystal axis in the (100) direction, and KOH is used for forming the well 58.
By using the etchant, it was possible to easily form the desired backside light incident structure of the N-type semiconductor substrate. FIG. 7 shows an equivalent circuit diagram of the device according to the embodiment of the present invention as described above.

以上実施例で詳述したように、この発明の集積化受光回
路装置では、N型半導体基板上にN型半導体層をエピタ
キシヤル成長により形成して、このN型半導体層にPN
接合分離により分離してトランジスタと抵抗を形成する
とともに、分離領域以外のN型半導体層領域にP型半導
体領域を形成して受光素子を形成するものである。
As described in detail in the embodiments above, in the integrated light receiving circuit device of the present invention, an N-type semiconductor layer is formed on an N-type semiconductor substrate by epitaxial growth, and a PN layer is formed on this N-type semiconductor layer.
A transistor and a resistor are formed by separating by junction isolation, and a P-type semiconductor region is formed in an N-type semiconductor layer region other than the isolation region to form a light-receiving element.

したがつて入射光によりPN接合で発生するキヤリアの
拡散長が長いN型半導体領域を、分離領域以外のN型半
導体層領域およびN型半導体基板で充分大きくとること
が可能になり、光電変換効率を向上させることができる
とともに、受光素子のPN接合部を包囲するPN接合領
域がなく、たとえ斜方向からの入射光であつても、その
入射光が途中で吸収されることがないので、その場合も
光電変換効率を向上させることができる。実際、従来の
装置と比較実験を行つたところ、この発明の装置では、
従来に比較して約1.5倍、光電変換効率を向上させる
ことができた。また、受光素子のPN接合部を包囲する
PN接合領域がないので、光の入射方向は、表面側に限
らず裏面側からも行うことができるようになり、光の入
射方向の制限を解くことができる。さらに、この装置に
おいては、エピタキシヤル成長のN型半導体層に、拡散
係数の小さいP型不純物を用いてP型半導体領域を形成
することにより受光素子を形成しているので、そのP型
半導体領域の形成後に他の拡散形成工程があつても、そ
の半導体領域が追拡散されることはなく、受光素子の接
合容量が増大することはない。さらに、この装置におい
ては、N型半導体基板上にN型半導体層をエピタキシヤ
ル成長して基板部を構成しているので、この基板部の表
面に反転層が形成されてPN接合部の耐電圧特性が劣化
することは防止される。
Therefore, the N-type semiconductor region where the diffusion length of carriers generated at the PN junction by incident light is long can be made sufficiently large in the N-type semiconductor layer region other than the separation region and the N-type semiconductor substrate, and the photoelectric conversion efficiency can be increased. In addition, there is no PN junction area surrounding the PN junction of the light receiving element, and even if the incident light is incident from an oblique direction, the incident light will not be absorbed on the way. In this case, the photoelectric conversion efficiency can also be improved. In fact, when we conducted a comparative experiment with a conventional device, we found that the device of this invention:
The photoelectric conversion efficiency was improved by approximately 1.5 times compared to conventional methods. In addition, since there is no PN junction region surrounding the PN junction of the light receiving element, the direction of light incidence can be done not only from the front side but also from the back side, eliminating restrictions on the direction of light incidence. Can be done. Furthermore, in this device, the light-receiving element is formed by forming a P-type semiconductor region in the epitaxially grown N-type semiconductor layer using a P-type impurity with a small diffusion coefficient. Even if another diffusion formation step is performed after the formation of the semiconductor region, the semiconductor region will not be further diffused, and the junction capacitance of the light receiving element will not increase. Furthermore, in this device, since the substrate portion is formed by epitaxially growing an N-type semiconductor layer on the N-type semiconductor substrate, an inversion layer is formed on the surface of the substrate portion, which increases the withstand voltage of the PN junction. Deterioration of characteristics is prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の集積化受光回路装置を示す断面図、第2
図は第1図装置の等価回路図、第3図は従来の装置の他
の例を示す断面図、第4図は第3図装置の等価回路図、
第5図AないしDはこの発明の集積化受光回路装置の実
施例を製造工程順に示す断面図、第6図AおよびBはこ
の発明の他の実施例を示す断面図、第7図はこの発明の
実施例の装置の等価回路図である。 41・・・・・・シリコンN型半導体基板、42・・・
・・・P型半導体領域、431,432・・・・・・N
+フローテイング層、44・・・・・・N型半導体層、
441・・・・・・第1の分離領域、442・・・・・
・第2の分離領域、443・・・・・・分離領域以外の
N型半導体層領域、45・・・・・・P型アイソレーシ
ヨン領域、47・・・・・・抵抗、49・・・・・・受
光ダイオード、50・・・・・・P型半導体領域、52
・・・・・・NPNトランジスタ。
Figure 1 is a sectional view showing a conventional integrated light receiving circuit device;
The figure is an equivalent circuit diagram of the device shown in FIG. 1, FIG. 3 is a sectional view showing another example of the conventional device, and FIG. 4 is an equivalent circuit diagram of the device shown in FIG.
5A to 5D are cross-sectional views showing an embodiment of the integrated light-receiving circuit device of the present invention in the order of manufacturing steps; FIGS. 6A and B are sectional views showing other embodiments of the present invention; and FIG. FIG. 2 is an equivalent circuit diagram of a device according to an embodiment of the invention. 41...Silicon N-type semiconductor substrate, 42...
...P-type semiconductor region, 431,432...N
+ floating layer, 44...N-type semiconductor layer,
441...First separation area, 442...
- Second isolation region, 443... N-type semiconductor layer region other than the isolation region, 45... P-type isolation region, 47... Resistor, 49... . . . Photodetector diode, 50 . . . P-type semiconductor region, 52
...NPN transistor.

Claims (1)

【特許請求の範囲】[Claims] 1 シリコンN型半導体基板と、このN型半導体基板の
所望の表面領域に形成されたP型半導体領域と、このP
型半導体領域の所望の表面領域内に所定距離離間して形
成された第1および第2のN^+フローティング層と、
上記N型半導体基板全体の上にエピタキシャル成長によ
り形成されたN型半導体層と、上記P型半導体領域に到
達し、かつ上記第1および第2のN^+フローティング
層を各々包囲するごとく上記N型半導体層に形成された
P型アイソレーシヨン領域と、このP型アイソレーシヨ
ン領域と上記P型半導体領域により分離された上記第1
のN^+フローティング層上のN型半導体層領域に形成
されたトランジスタと、同様にして分離された上記第2
のN^+フローティング層上のN型半導体層領域に形成
された抵抗と、上記分離領域以外のN型半導体層領域に
形成され、受光素子を構成するためのP型半導体領域と
を具備してなる集積化受光回路装置。
1 A silicon N-type semiconductor substrate, a P-type semiconductor region formed in a desired surface region of this N-type semiconductor substrate, and a P-type semiconductor region formed in a desired surface region of this N-type semiconductor substrate;
first and second N^+ floating layers formed at a predetermined distance apart within a desired surface region of the type semiconductor region;
The N-type semiconductor layer is formed by epitaxial growth on the entire N-type semiconductor substrate, and the N-type semiconductor layer reaches the P-type semiconductor region and surrounds the first and second N^+ floating layers. a P-type isolation region formed in the semiconductor layer; and the first P-type isolation region separated by the P-type semiconductor region.
The transistor formed in the N-type semiconductor layer region on the N^+ floating layer and the second transistor separated in the same way.
a resistor formed in an N-type semiconductor layer region on the N^+ floating layer, and a P-type semiconductor region formed in an N-type semiconductor layer region other than the separation region to constitute a light receiving element. An integrated light receiving circuit device.
JP55169678A 1980-12-03 1980-12-03 Integrated photodetector circuit device Expired JPS5932901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55169678A JPS5932901B2 (en) 1980-12-03 1980-12-03 Integrated photodetector circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55169678A JPS5932901B2 (en) 1980-12-03 1980-12-03 Integrated photodetector circuit device

Publications (2)

Publication Number Publication Date
JPS5793567A JPS5793567A (en) 1982-06-10
JPS5932901B2 true JPS5932901B2 (en) 1984-08-11

Family

ID=15890871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55169678A Expired JPS5932901B2 (en) 1980-12-03 1980-12-03 Integrated photodetector circuit device

Country Status (1)

Country Link
JP (1) JPS5932901B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043857A (en) * 1983-08-20 1985-03-08 Mitsubishi Electric Corp Solid-state image pickup device and manufacture thereof
JPH0620158B2 (en) * 1984-03-08 1994-03-16 新技術事業団 Semiconductor radiation distribution detector
JPH01123480A (en) * 1987-11-07 1989-05-16 Fuji Electric Co Ltd Photo detector

Also Published As

Publication number Publication date
JPS5793567A (en) 1982-06-10

Similar Documents

Publication Publication Date Title
JP2793085B2 (en) Optical semiconductor device and its manufacturing method
US4847210A (en) Integrated pin photo-detector method
JP2557745B2 (en) Optical semiconductor device
US4926231A (en) Integrated pin photo-detector
KR100977199B1 (en) Light-sensitive component having increased blue sensitivity and production method thereof
KR100470892B1 (en) Photodetector with built-in circuit and method for producing the same
JPS5932901B2 (en) Integrated photodetector circuit device
JPH04271172A (en) Optical semiconductor device
JP2940818B2 (en) Optical semiconductor device and its manufacturing method
JP2657120B2 (en) Optical semiconductor device
JPS5996781A (en) Photo diode
JP2620655B2 (en) Optical semiconductor device
JPS6214478A (en) Photo-sensor
JP2501556B2 (en) Optical sensor and manufacturing method thereof
JP2001352093A (en) Semiconductor light-receiving device
JP2657119B2 (en) Optical semiconductor device
JPH04151874A (en) Semiconductor device
JP2557744B2 (en) Optical semiconductor device
JP2557743B2 (en) Method for manufacturing optical semiconductor device
JP2584353B2 (en) Optical semiconductor device
JPH04242980A (en) Light-receiving element
JPH06291352A (en) Light receiving device and circuit-built-in light receiving device
JP2839413B2 (en) Photodetector with built-in circuit
JPH02142181A (en) Photodetector incorporated in circuit
JP3149913B2 (en) Method for manufacturing transistor