JPS5932540B2 - High manganese nonmagnetic steel with excellent high temperature strength - Google Patents

High manganese nonmagnetic steel with excellent high temperature strength

Info

Publication number
JPS5932540B2
JPS5932540B2 JP56001412A JP141281A JPS5932540B2 JP S5932540 B2 JPS5932540 B2 JP S5932540B2 JP 56001412 A JP56001412 A JP 56001412A JP 141281 A JP141281 A JP 141281A JP S5932540 B2 JPS5932540 B2 JP S5932540B2
Authority
JP
Japan
Prior art keywords
steel
less
temperature
strength
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56001412A
Other languages
Japanese (ja)
Other versions
JPS57114644A (en
Inventor
晃史 佐々木
清彦 野原
寛 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP56001412A priority Critical patent/JPS5932540B2/en
Publication of JPS57114644A publication Critical patent/JPS57114644A/en
Publication of JPS5932540B2 publication Critical patent/JPS5932540B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は高温強度にすぐれた高マンガン非磁性鋼に係り
、特に700℃附近の高温まで高強度、高耐力にして、
かつ高温耐酸化性にすぐれた高マンガン非磁性鋼に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high manganese nonmagnetic steel with excellent high temperature strength, and in particular to high strength and high yield strength up to high temperatures around 700°C.
The present invention also relates to a high-manganese nonmagnetic steel that has excellent high-temperature oxidation resistance.

近年、核融合施設、磁気浮上式鉄道を初め、その他のモ
ーター類や変圧器附属品等の分野で強磁場または弱磁場
環境下で磁場の影響を受けることの少ない安価な非磁性
鋼が強く要求されるようになつた。
In recent years, there has been a strong demand for inexpensive non-magnetic steel that is less affected by magnetic fields in strong or weak magnetic field environments in the fields of nuclear fusion facilities, magnetic levitation trains, and other motors and transformer accessories. It started to be done.

更に最近ではかかる非磁性鋼が室温もしくはそれ以下の
温度で使用されるだけではなく、例えば製鉄所において
溶鋼の電磁撹拌装置の周辺材料の如く高温環境下で磁場
を印加する設備・器機等にも要求されるようになり、少
くとも700℃附近の高温まで高強度、高耐力にして、
かつ高温耐酸化性のすぐれた非磁性鋼が要求されるよう
になつて来た。従来、非磁性鋼としては、主としてオー
ステナイト系ステンレス鋼が用いられているが、高価な
Niを多量含有することのほか、加工および熱処理に対
して磁性が不安定であり、更に強度材料として使用する
場合に耐力が低いという欠点があつた。
Furthermore, recently, such non-magnetic steels are not only used at room temperature or lower temperatures, but also in equipment and devices that apply magnetic fields in high-temperature environments, such as surrounding materials for electromagnetic stirring devices for molten steel in steel plants. As demand has increased, high strength and high yield strength have been developed, at least up to high temperatures around 700°C.
There has also been a demand for non-magnetic steel with excellent high-temperature oxidation resistance. Traditionally, austenitic stainless steel has been mainly used as non-magnetic steel, but in addition to containing a large amount of expensive Ni, its magnetic properties are unstable when processed and heat treated, making it difficult to use as a strength material. In some cases, the drawback was that the yield strength was low.

そのため加工や熱処理に対して安定な非磁性を保持し、
かつ機械的特性にもすぐれ、価格も比較的低廉な高マン
ガン非磁性鋼が注目されるようになつた。しかし従来の
高マンガン鋼、例えば標準13%Mn鋼は非磁性鋼とし
て一般に使用されているが、耐力および高温耐酸化性の
点で問題があり、700℃附近までの高温環境下での使
用は困難である。かくの如く、従来の高マンガン非磁性
鋼は一般に高温強度が低く、また高温耐酸化性が悪いた
めに高温用途には適せず、またその目的のための新規の
非磁性鋼が開発されず今日に及んでいる現状である。本
発明の目的は、最近の需要家の要求に応えるため従来の
高マンガン非磁性鋼の欠点を克服し、高温強度、高温耐
力、高温耐酸化性にすぐれ、し、一かもコストの安い高
マンガン非磁性鋼を提供するにある。
Therefore, it maintains stable non-magnetic properties against processing and heat treatment,
High-manganese nonmagnetic steel, which also has excellent mechanical properties and is relatively inexpensive, has attracted attention. However, conventional high manganese steels, such as standard 13% Mn steel, are commonly used as non-magnetic steels, but they have problems in terms of yield strength and high temperature oxidation resistance, and cannot be used in high temperature environments up to around 700℃. Have difficulty. As described above, conventional high-manganese non-magnetic steels generally have low high-temperature strength and poor high-temperature oxidation resistance, making them unsuitable for high-temperature applications, and no new non-magnetic steels have been developed for that purpose. This is the current situation that continues to this day. The purpose of the present invention is to overcome the drawbacks of conventional high-manganese non-magnetic steel in order to meet the demands of recent customers, and to develop a high-manganese steel that has excellent high-temperature strength, high-temperature yield strength, high-temperature oxidation resistance, and is also low in cost. To provide non-magnetic steel.

本発明のこの目的は次の要旨の2発明によつて達成され
る。
This object of the present invention is achieved by the following two inventions.

第1発明の要旨とするところは次の如くである。The gist of the first invention is as follows.

すなわち重量比にてC:0.4〜1.5%,Si:3%
以下、Mn:14〜35%,Cr:3〜18%,Ni:
0.15〜l%,V:0.1〜l%,N:0.02〜0
.170,B:0.001〜0.1%を含み残部はFe
および不可避的不純物より成ることを特徴とする高温強
度にすぐれた高マンガン非磁性鋼、である。次に第2発
明の要旨とするところは、上記第1発明の主要成分のほ
かに更に、770以下のAl,2%以下のTi,2%以
下のNb,2%以下のZr,O,l%以下のCaのうち
より選ばれた1種または2種以上を含有し残部はFeお
よび不可避的不純物より成ることを特徴とする高温強度
にすぐれた高マンガン非磁性鋼である。
That is, C: 0.4 to 1.5%, Si: 3% in weight ratio
Below, Mn: 14-35%, Cr: 3-18%, Ni:
0.15-1%, V: 0.1-1%, N: 0.02-0
.. 170,B: Contains 0.001 to 0.1%, the balance being Fe
This is a high-manganese nonmagnetic steel with excellent high-temperature strength and characterized by consisting of unavoidable impurities. Next, the gist of the second invention is that in addition to the main components of the first invention, Al of 770 or less, Ti of 2% or less, Nb of 2% or less, Zr, O, L of 2% or less This is a high-manganese non-magnetic steel with excellent high-temperature strength, which is characterized by containing one or more selected types of Ca in an amount of % or less, with the remainder consisting of Fe and unavoidable impurities.

すなわち、本発明者らは本発明の目的を達成する高マン
ガン非磁性鋼の研究実験を繰返した結果、Niならびに
Vの添加量を低減させることによりコストを低減し、C
を高強度が得られる適応量含有せしめ、更に微量のBお
よび適量のVの複合添加ならびに適量のN添加により、
その固溶ならびに析出効果によつて室温は勿論、高温に
おける耐力が著しく改善され、かつCr,Ni,Vの複
合添加を行うことによつて高温耐酸化性も良好となるこ
とを見出し、更にこれらの主要成分のほかに適量のAl
,Ti,Nb,Zr,Caのうちより選ばれた1種また
は2種以上を添加させることにより本発明鋼の効果が一
段と発揮されることを見出し本発明を得たものである。
本発明鋼の成分各元素の限定理由について説明する。
That is, as a result of repeated research experiments on high manganese nonmagnetic steel that achieves the object of the present invention, the present inventors have found that by reducing the amounts of Ni and V added, the cost can be reduced, and C
By containing an appropriate amount of B to obtain high strength, and further adding a small amount of B and an appropriate amount of V, and adding an appropriate amount of N,
We found that the solid solution and precipitation effects significantly improve the yield strength not only at room temperature but also at high temperatures, and that by adding Cr, Ni, and V in combination, high-temperature oxidation resistance also improves. In addition to the main components of
The present invention was achieved by discovering that the effects of the steel of the present invention can be further enhanced by adding one or more selected from among , Ti, Nb, Zr, and Ca.
The reason for limiting each element of the steel of the present invention will be explained.

C: Cの存在はオーステナイト相を安定にして非磁性とする
に有効であり、また強度上昇に対する効果も大きく、そ
のために少くとも0.4%を必要とする。
C: The presence of C is effective in stabilizing the austenite phase and making it non-magnetic, and also has a large effect on increasing strength, so at least 0.4% is required.

しかし、1.5%を越すと熱間加工性が悪くなり製造性
に問題を生じるので0,4〜1.570の範囲に限定し
た。Si: Siが3%より多くなると高マンガン鋼では冷間加時に
割れを発生するので3%以下とした。
However, if it exceeds 1.5%, hot workability deteriorates and problems arise in manufacturability, so it is limited to a range of 0.4 to 1.570. Si: If Si exceeds 3%, cracks will occur in high manganese steel during cold working, so it was set to 3% or less.

Mn:Mnはオーステナイト相を安定にして非磁性鋼と
するのに欠かせない元素であり、高温強度を保持するた
めに少くとも14%を必要とする。
Mn: Mn is an essential element for stabilizing the austenite phase to make non-magnetic steel, and requires at least 14% to maintain high temperature strength.

しかし35%を越えると加工性が悪化するので14〜3
5?の範囲に限定した。Cr: Crの添加はNiおよびVとの複合添加により高温耐酸
化性を著しく向上させることを見出したことによる。
However, if it exceeds 35%, workability deteriorates, so 14-3
5? limited to the range of Cr: It has been found that the addition of Cr in combination with Ni and V significantly improves high temperature oxidation resistance.

この効果を発揮させるために少くとも3%を必要とする
も、18%を越すとδ相の混入を来たし、透磁率の増大
を招くので3〜1870の範囲に限定した。Ni: 3〜18700)Crの添加によりV,Niを複合添加
することによつて高温耐酸化性を著しく向上させる作用
を見出したことによるも、Nl:0.15%未満ではそ
の効果が現れず、少くとも0,15%を必要とする。
Although at least 3% is required to exhibit this effect, if it exceeds 18%, the δ phase will be mixed in, leading to an increase in magnetic permeability, so it is limited to a range of 3 to 1870. Ni: 3 to 18,700) Although it was discovered that the addition of Cr and the combined addition of V and Ni significantly improved high-temperature oxidation resistance, the effect did not appear when Nl was less than 0.15%. , requires at least 0.15%.

しかしN1は高価であり、しかもl%を越えた添加では
その効果は飽和の傾向を示し多量の使用はコストの上昇
を来たすのでl%以下に限定し、0.15〜170の範
囲内とした。V:上記の如くVはCr,Niとの複合添
加により高温11酸化性を著しく改善する効果があり、
更にVはBとの複合添加によつて、その固溶ならびに析
出効果により室温及び高温での耐力を著しく改善せしめ
ることを見出した。
However, N1 is expensive, and if it is added in excess of 1%, its effect tends to be saturated, and its use in large quantities increases the cost, so it is limited to 1% or less, and within the range of 0.15 to 170. . V: As mentioned above, V has the effect of significantly improving high-temperature 11 oxidation property when combined with Cr and Ni.
Furthermore, it has been found that when V is added in combination with B, the yield strength at room temperature and high temperature is significantly improved due to its solid solution and precipitation effects.

そのためにV:0.1%以上の添加を必要とするも、l
%を越えての添加は、その効果が飽和傾向を示し、Vは
高価な元素であり、コスト上昇に見合う程の効果が得ら
れないので0.1−170の範囲に限定した。N: Nはオーステナイト相を安定化し非磁性とする効果が大
きく、更に固溶ならびに窒化物を生成して高温強度を高
める作用があるが、0.02?未満ではその効果が現わ
れず、一方0.1%を越えての添加は強度上昇のメリツ
1・よりも窒化物の増加による鋼の脆化の方のデメリツ
トの方が強くなるので、0.02〜0.170の範囲に
限定した。
Therefore, it is necessary to add V: 0.1% or more, but l
If added in excess of 5%, the effect tends to be saturated, and since V is an expensive element, the effect is not commensurate with the increase in cost. N: N has a great effect of stabilizing the austenite phase and making it non-magnetic, and also has the effect of increasing high-temperature strength by forming solid solutions and nitrides, but 0.02? If it is less than 0.1%, the effect will not be apparent, while if it is added more than 0.1%, the disadvantage of embrittlement of the steel due to the increase in nitrides will outweigh the advantage of increasing strength. -0.170.

B:Bは微量添加によつて結晶粒界に析出し、Vと複合
添加によつて共に固浴ならびに析出効果を生じて、室温
ならびに高温強度を著しく改善する作用があることを見
出した。
B: It has been found that when B is added in a small amount, it precipitates at the grain boundaries, and when added in combination with V, both produce a solid bath and precipitation effect, and have the effect of significantly improving room temperature and high temperature strength.

その効果は0.001%未満では発揮されず、0.00
170以上添加量の増加と共に効果も増すが、0.1%
を越すと浴接性の悪化を来たすので0.001〜0.1
%の範囲に限定した。上記各限定量成分をもつて基本組
成し、その他はFeおよび不可避的不純物より成る高マ
ンガン非磁性鋼によつて本発明の目的が達成されるが、
更に7%以下のAl,27O以下のTi,27O以下の
Nb,2%以下のZr,O.l%以下のCaのうちより
選ばれた1種または2種以上を添加し、残部はFeおよ
び不可避的不純物より成る高マンガン非磁性鋼はより効
果的に本発明の目的を達成し得ることが判明した。
The effect is not exhibited at less than 0.001%, and 0.00%
The effect increases as the amount added increases over 170, but 0.1%
If it exceeds 0.001 to 0.1, the bath adhesion will deteriorate.
% range. Although the object of the present invention is achieved by a high manganese nonmagnetic steel whose basic composition has each of the above-mentioned limited amounts of components and the rest consists of Fe and unavoidable impurities,
Further, 7% or less Al, 27O or less Ti, 27O or less Nb, 2% or less Zr, O. It is believed that a high manganese non-magnetic steel to which one or more selected types of Ca is added in an amount of 1% or less, and the remainder is Fe and unavoidable impurities, can more effectively achieve the object of the present invention. found.

これらの成分元素の限定理由は次の如くである。Al: Alは高マンガン非磁性鋼の高温における強度ならびに
耐酸化性の向上に効果があるが、多量の添加はコストの
上昇を来たすので770以下に限定した。
The reasons for limiting these component elements are as follows. Al: Al is effective in improving the strength and oxidation resistance of high-manganese nonmagnetic steel at high temperatures, but since adding a large amount increases cost, it is limited to 770 or less.

Ti,Nb,Zr: Tl,Nb,Zrはいずれも母相の結晶粒の成長を抑制
する効果があり、更に固溶ならびに析出効果により高温
強度を増大する。
Ti, Nb, Zr: Tl, Nb, and Zr all have the effect of suppressing the growth of crystal grains in the matrix, and further increase high-temperature strength due to solid solution and precipitation effects.

しかしそれぞれ2%を越えると酸化物の生成が顕著とな
り、高温耐酸化性を低下させるので2%以下に限定した
。Ca:Caは少量の添加によつて鋼の清浄度を改善し
、高温耐酸化性を改善する効果があるが、多量の添加は
鋼の製造性を害するので0.1%以下に限定した。
However, if each exceeds 2%, the formation of oxides becomes noticeable and the high-temperature oxidation resistance deteriorates, so the content is limited to 2% or less. Ca: Adding a small amount of Ca has the effect of improving the cleanliness of steel and improving high-temperature oxidation resistance, but adding a large amount impairs the manufacturability of the steel, so it was limited to 0.1% or less.

実施例第1発明および第2発明の高マンガン非磁性鋼2
1種類を溶製し、従来の高マンガン鋼およびステンレス
鋼SUS3O4および本発明鋼に類似するも本発明の限
定成分に合致しない比較鋼に対して室温ならびに700
℃における耐力、引張強さ、伸びおよび高温耐酸化性を
比較した。
Example High manganese nonmagnetic steel 2 of the first and second inventions
One type was melt-produced and heated at room temperature and at
The yield strength, tensile strength, elongation and high temperature oxidation resistance at °C were compared.

第1表はこれらの供試材の組成を示し、従来鋼Aは標準
13%Mn鋼、従来鋼BはCr5%を添加した24%M
n鋼、従来鋼Cは30%Mn鋼であり、従来鋼DはSU
S304である。本発明鋼7161〜17は18%Mn
鋼をベースとしたものであり、うち本発明鋼痛11は特
に820℃にて6時間時効処理を行つたものであり、本
発明鋼A6l8〜21は30%Mn鋼をベースにしたも
のである。比較鋼は成分が本発明の成分を逸脱したもの
である。これらの供試材はすべて1100℃で溶体化処
理後水靭処理を行い、本発明鋼腐11は前記時効処理を
行つた後、丸棒試験片によつて透磁率の測定をし、更に
JlSl4A号による丸棒試験片による引張試,験を行
つた。
Table 1 shows the composition of these test materials. Conventional steel A is a standard 13% Mn steel, and conventional steel B is a 24% Mn steel with 5% Cr added.
n steel, conventional steel C is 30% Mn steel, and conventional steel D is SU
This is S304. Inventive steels 7161-17 are 18% Mn
Steel-based steels, among which Invention Steel No. 11 was aged at 820°C for 6 hours, and Invention Steels A6l8 to 21 were based on 30% Mn steel. . The comparative steel has a composition different from that of the present invention. All of these test materials were subjected to water toughness treatment after solution treatment at 1100°C, and after the steel rot 11 of the present invention was subjected to the above-mentioned aging treatment, the magnetic permeability was measured using a round bar test piece, and further JlSl4A A tensile test was conducted using a round bar test piece according to No.

次に高温耐酸化性の良否の判定は1.5mmX15m1
L×50龍の板を用いて700℃の大気中での35時間
連続加熱試験によつて行つた。上記すべての試験結果は
第2表に示すとおりである。第2表より明らかな如く、
透磁率はいずれの鋼種とも1.01以下であつて良好な
非磁性鋼である。
Next, the judgment of high temperature oxidation resistance is 1.5mm x 15m1
A continuous heating test was conducted at 700° C. for 35 hours in the atmosphere using a L×50 dragon plate. The results of all the above tests are shown in Table 2. As is clear from Table 2,
All steel types have magnetic permeability of 1.01 or less and are good non-magnetic steels.

本発明鋼の機械的性質は室温では従来鋼より耐力が上昇
しており、700℃では耐力、引張強さとも従来鋼より
も大幅に改善されている。特に本発明鋼慮11は時効処
理を施すことにより室温ならびに高温での耐力が従来鋼
より大幅に改善されている。
Regarding the mechanical properties of the steel of the present invention, at room temperature, the yield strength is higher than that of the conventional steel, and at 700° C., both the yield strength and tensile strength are significantly improved compared to the conventional steel. In particular, by aging the steel material 11 of the present invention, the yield strength at room temperature and high temperature is significantly improved compared to conventional steel.

更に本発明鋼の高温耐酸化性も従来鋼よりもすぐれてい
る。次に比較鋼aはV,Bを含まず、比較鋼bはCr,
Nl,Bを含まず、比較鋼CはCr,Bを含まない高マ
ンガン鋼であるが、いずれも室温および700℃の高温
で耐力および引張強さとも本発明鋼に比してはるかに劣
つており、更に高温耐酸化性も本発明鋼に比して劣つて
いることを示している。
Furthermore, the high temperature oxidation resistance of the steel of the present invention is also superior to that of conventional steel. Next, comparative steel a does not contain V and B, and comparative steel b contains Cr,
Although Comparative Steel C is a high manganese steel that does not contain Nl and B, and does not contain Cr and B, both yield strength and tensile strength at room temperature and high temperature of 700°C are far inferior to the steel of the present invention. Furthermore, this shows that the high temperature oxidation resistance is also inferior to that of the steel of the present invention.

上記実施例より明らかな如く、本発明鋼はMn:14〜
35%の高マンガン鋼であるが、C,Si,Cr,Ni
,V,N,Bのその他の基本組成を適正に限定し、更に
必要により適正量のAl,Ti,Nb,Zr,Caのう
ちより選ばれた1種または2種以上を添加することによ
り、従来の高マンガン非磁性鋼の欠点を克服し、次の如
き効果を収めることができた。
As is clear from the above examples, the steel of the present invention has Mn: 14 to
Although it is a 35% high manganese steel, it contains C, Si, Cr, Ni
, V, N, and B, and if necessary, by adding an appropriate amount of one or more selected from among Al, Ti, Nb, Zr, and Ca, We were able to overcome the drawbacks of conventional high manganese nonmagnetic steel and achieve the following effects.

イ)従来の高温強度、高温耐力もしくは高温耐酸化性の
改善を意図した非磁性鋼に比較してNi,V等の高価合
金の含有量が少ないのでコストが女いo(ロ)室温なら
びに700℃の高温に爪、て耐力、引張強さとも、従来
鋼より格段にすぐれ、かつ高温耐酸化性もすぐれている
B) Compared to conventional non-magnetic steel intended to improve high-temperature strength, high-temperature yield strength, or high-temperature oxidation resistance, the content of expensive alloys such as Ni and V is lower, so the cost is lower. It has much better yield strength and tensile strength than conventional steel, and also has excellent high-temperature oxidation resistance.

←→ 伸びは従来鋼に比較して遜色がない。←→ Elongation is comparable to conventional steel.

目 透磁率は1.01以下を示しすぐれた非磁性鋼であ
る。
It is an excellent non-magnetic steel with a magnetic permeability of 1.01 or less.

上記本発明鋼独自の効果を有するので電磁力による浴鋼
攪拌装置材料その他非磁性にして高温強度、高温耐力も
しくは高温耐酸化性を要求する広い分野における用途に
適応できる。
Since the steel of the present invention has the above-mentioned unique effects, it can be used as a material for bath steel stirring equipment using electromagnetic force, and in a wide range of other fields requiring non-magnetic properties such as high-temperature strength, high-temperature yield strength, or high-temperature oxidation resistance.

Claims (1)

【特許請求の範囲】 1 重量比にてC:0.4〜1.5%、Si:3%以下
、Mn:14〜35%、Cr:3〜18%、Ni:0.
15〜1%、V:0.1〜1%、N:0.02〜0.1
%、B:0.001〜0.1%を含み残部はFeおよび
不可避的不純物より成ることを特徴とする高温強度にす
ぐれた高マンガン非磁性鋼。 2 重量比にてC:0.4〜1.5%、Si:3%以下
、Mn:14〜35%、Cr:3〜18%、Ni:0.
15〜1%、V:0.1〜1%、N:0.02〜0.1
%、B:0.001〜0.1%を含み、更に7%以下の
Al、2%以下のTi、2%以下のNb、2%以下のZ
r、0.1%以下のCaのうちより選ばれた1種または
2種以上を含有し残部はFeおよび不可避的不純物より
成ることを特徴とする高温強度にすぐれた高マンガン非
磁性鋼。
[Claims] 1. C: 0.4 to 1.5%, Si: 3% or less, Mn: 14 to 35%, Cr: 3 to 18%, Ni: 0.
15-1%, V: 0.1-1%, N: 0.02-0.1
%, B: 0.001 to 0.1%, with the remainder consisting of Fe and inevitable impurities. 2 In terms of weight ratio, C: 0.4 to 1.5%, Si: 3% or less, Mn: 14 to 35%, Cr: 3 to 18%, Ni: 0.
15-1%, V: 0.1-1%, N: 0.02-0.1
%, B: 0.001 to 0.1%, and further contains 7% or less Al, 2% or less Ti, 2% or less Nb, 2% or less Z
A high-manganese non-magnetic steel having excellent high-temperature strength, characterized in that it contains one or more selected from the group consisting of 0.1% or less of Ca, and the remainder consisting of Fe and unavoidable impurities.
JP56001412A 1981-01-08 1981-01-08 High manganese nonmagnetic steel with excellent high temperature strength Expired JPS5932540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56001412A JPS5932540B2 (en) 1981-01-08 1981-01-08 High manganese nonmagnetic steel with excellent high temperature strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56001412A JPS5932540B2 (en) 1981-01-08 1981-01-08 High manganese nonmagnetic steel with excellent high temperature strength

Publications (2)

Publication Number Publication Date
JPS57114644A JPS57114644A (en) 1982-07-16
JPS5932540B2 true JPS5932540B2 (en) 1984-08-09

Family

ID=11500764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56001412A Expired JPS5932540B2 (en) 1981-01-08 1981-01-08 High manganese nonmagnetic steel with excellent high temperature strength

Country Status (1)

Country Link
JP (1) JPS5932540B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211557A (en) * 1983-05-18 1984-11-30 Daido Steel Co Ltd Heat-resistant steel
JPS60255961A (en) * 1984-05-30 1985-12-17 Hitachi Zosen Corp Nonmagnetic roll material proof against high temperature for continuous casting equipment
FR2634221A1 (en) * 1988-07-13 1990-01-19 Nat Science Council Cast articles made of alloys based on Fe-Mn-Al-Cr-Si-C
KR970001324B1 (en) * 1994-03-25 1997-02-05 김만제 Hot rolling method of high mn steel
US20120160363A1 (en) * 2010-12-28 2012-06-28 Exxonmobil Research And Engineering Company High manganese containing steels for oil, gas and petrochemical applications
WO2023243533A1 (en) * 2022-06-17 2023-12-21 シチズン時計株式会社 Fe-Mn ALLOY, HAIRSPRING FOR WATCH, AND METHOD FOR PRODUCING Fe-Mn ALLOY
CN115449598B (en) * 2022-09-21 2024-01-05 联峰钢铁(张家港)有限公司 Preparation method of non-magnetic steel bar

Also Published As

Publication number Publication date
JPS57114644A (en) 1982-07-16

Similar Documents

Publication Publication Date Title
RU2201990C2 (en) Alloy iron-cobalt
JPH06505535A (en) Austenitic high manganese steel with excellent formability, strength and weldability, and its manufacturing method
US4933026A (en) Soft magnetic alloys
JPS5932540B2 (en) High manganese nonmagnetic steel with excellent high temperature strength
JP3463500B2 (en) Ferritic stainless steel excellent in ductility and method for producing the same
JPS5942068B2 (en) High manganese non-magnetic steel for cryogenic temperatures
JPH03158437A (en) Duplex stainless steel having excellent concentrated sulfuric acid resistance
JPH0382740A (en) Duplex stainless steel excellent in hot workability and corrosion resistance
JPH0542493B2 (en)
JPS649381B2 (en)
JPH0717946B2 (en) Method for producing duplex stainless steel with excellent resistance to concentrated sulfuric acid corrosion
US4082580A (en) Iron-nickel-molybdenum alloy having improved stability and high initial permeability
US4217136A (en) Corrosion resistant austenitic stainless steel
JPH0753886B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JPS6156236A (en) Manufacture of two phase stainless steel hot rolled steel strip for working
JPH02270938A (en) Iron-based shape memorizing alloy and preparation thereof
JPH0586463B2 (en)
JPH06212358A (en) Nonmagnetic pc steel wire and its production
JPS5928561A (en) Non-magnetic steel high in volume electric resistivity
JP2801833B2 (en) Fe-Cr alloy with excellent workability and pitting resistance
JPH04154938A (en) High mn non-magnetic steel low in stress corrosion cracking sensitivity
JPH0475305B2 (en)
US4196261A (en) Stable bimetal strip
US3761253A (en) Steel for electrical applications and novel article
JPS61174350A (en) Heat-resistant high-chromiun alloy