JPS5930721A - Method for recovering arsenious acid and gypsum - Google Patents

Method for recovering arsenious acid and gypsum

Info

Publication number
JPS5930721A
JPS5930721A JP14181082A JP14181082A JPS5930721A JP S5930721 A JPS5930721 A JP S5930721A JP 14181082 A JP14181082 A JP 14181082A JP 14181082 A JP14181082 A JP 14181082A JP S5930721 A JPS5930721 A JP S5930721A
Authority
JP
Japan
Prior art keywords
arsenic
iron
arsenite
gypsum
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14181082A
Other languages
Japanese (ja)
Inventor
Hideyuki Michiki
道木 英之
Hiroshi Saito
斎藤 啓士
Kenichi Yaginuma
柳沼 賢一
Takeshi Ishizuka
武 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP14181082A priority Critical patent/JPS5930721A/en
Publication of JPS5930721A publication Critical patent/JPS5930721A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To recover arsenious acid and gypsum without requiring concn. nor cooling in a state contg. sulfuric acid by adding ammonia to an acidic soln. of sulfuric acid contg. metallic sulfates and arsenic compounds, separating the resulting precipitate, calcining it, and adding a Ca compound to the remaining soln. CONSTITUTION:Waste gas contg. dust, SOx, arsenic compounds, etc. is scrubbed with an acidic soln. of sulfuric acid, an NH4OH is added to the resulting acidic soln. of sulfuric acid contg. metallic sulfates and arsenic compounds to coprecipitate the hydroxides of iron and other metals with the arsenic compounds. An iron compound may be added before adding the NH4OH. The precipitate is separated from the soln., dried, and calcined to volatilize and recover arsenious acid. A Ca compound is added to the remaining soln. contg. (NH4)2SO4 to cause double decomposition of the (NH4)2SO4, forming gypsum and NH4OH. The sypsum is separated, and the NH4OH is reused in the stage for coprecipitating the hydroxides of iron and other metals with arsenic oxide. The arsenic compounds are efficiently recovered as arsenious acid, and the sulfates can be recovered as gypsum having a low arsenic content.

Description

【発明の詳細な説明】 この発明はヒ素化合物および金属硫酸塩を含有する硫酸
酸性溶液から、ヒ素化合物を亜ヒ酸として、また硫酸根
を石こうとして分離回収する改良方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for separating and recovering arsenic compounds as arsenite and sulfate radicals as gypsum from an acidic sulfuric acid solution containing arsenic compounds and metal sulfates.

硫化鉄鉱を焙焼した際に得られるパイライトシンダー、
あるいは他の非鉄金属精錬に使用される各種原料にはヒ
素の化合物を含むものが多い。そのため、これらを処理
する過程で発生するヒ素化合物を含有する排ガスからヒ
素化合物を回収する方法に関しては古くから種々検討さ
れ、それらの一部は実施されているが、操業上あるいは
安全の面から問題がないとはいえない。
Pyrite cinder obtained when roasting iron sulfide ore,
Additionally, many of the various raw materials used for refining other non-ferrous metals contain arsenic compounds. Therefore, various methods for recovering arsenic compounds from the exhaust gas containing arsenic compounds generated during the processing of these compounds have been studied for a long time, and some of them have been implemented, but there are problems in terms of operation and safety. It cannot be said that there is no such thing.

最近では資源の枯渇の面から、ヒ素化合物を多量に含む
鉱石を原料として使用する必要も多くなってきておシ、
このため原料鉱石の脱ヒ素が必要となシ、従って脱ヒ素
排ガスから効率よくヒ素化合物を回収する方法の開発が
望まれている。
Recently, due to the depletion of resources, it has become increasingly necessary to use ores containing large amounts of arsenic compounds as raw materials.
For this reason, it is not necessary to remove arsenic from the raw material ore, and it is therefore desired to develop a method for efficiently recovering arsenic compounds from arsenic-free exhaust gas.

通常、ヒ素を含有する鉱石、例えばパイライトシンダー
の脱ヒ素に際して発生する排ガスはヒ素酸化物および硫
黄酸化物を含有するとともに鉄、銅、鉛、亜鉛等の金属
酸化物を粉じんとして伴っている。普通パイライトシン
ダー中のヒ素は鉄との化合物として、すなわちヒ酸鉄(
FeAs04)として存在しているが、ヒ酸鉄は熱的に
安定であシ、このままの状態で脱ヒ素するには、一般に
高温を必要とする。しかし、石炭あるいはコークス等の
還元剤を加える等によシ還元雰囲気中で、加熱すれば、
比較的低い温度、例えば7θθ〜2θθ℃の温度で分解
・揮発させることができる。
Normally, the exhaust gas generated when removing arsenic from arsenic-containing ores, such as pyrite cinder, contains arsenic oxides and sulfur oxides, and is accompanied by metal oxides such as iron, copper, lead, and zinc as dust. Arsenic in ordinary pyrite cinder is present as a compound with iron, i.e. iron arsenate (
Although it exists as FeAs04), iron arsenate is not thermally stable, and generally requires high temperatures to remove arsenication in this state. However, if heated in a reducing atmosphere by adding a reducing agent such as coal or coke,
It can be decomposed and volatilized at a relatively low temperature, for example, at a temperature of 7θθ to 2θθ°C.

この場合揮発したヒ素の化合物は排ガス中ではAs4°
06の形態で存在する。一方鉱石中に硫酸カルシウムあ
るいは硫化鉄として存在する硫黄化合物は上記の条件下
で亜硫酸ガスおよび無水硫酸となる0 従って一般にヒ素を含有する鉱石を脱ヒ素処理する場合
には、上述の如く、ヒ素酸化物、硫黄酸化物並びにシン
ダーダストを同伴する排ガスが出てくるのでこの排ガス
よシヒ素酸化物および硫黄酸化物を捕集および回収する
ことが必要になってくる。
In this case, the volatilized arsenic compound is As4° in the exhaust gas.
It exists in the form of 06. On the other hand, sulfur compounds that exist in ores as calcium sulfate or iron sulfide turn into sulfur dioxide gas and sulfuric anhydride under the above conditions. Since exhaust gas containing arsenic oxides, sulfur oxides, and cinder dust is emitted, it is necessary to collect and recover arsenic oxides and sulfur oxides from this exhaust gas.

このような排ガスからヒ素酸化物を回収する方法として
排ガスを一定温度以下に冷却したのち集塵機等で除塵す
ると、冷却によシ亜ヒ酸は固化し、結晶となるため、ダ
ストを多量に含む粗亜ヒ酸が固型物として得られるので
、これを別の焼成炉に移し、必要ならば石炭、コークス
等の還元剤を加えて加熱、焼成しで亜ヒ酸を回収する方
法がある。
As a method of recovering arsenic oxide from such exhaust gas, the exhaust gas is cooled to a certain temperature or below and then dust removed using a dust collector, etc. As a result of cooling, arsenite solidifies and becomes crystals, so it is difficult to collect arsenic oxides that contain a large amount of dust. Since arsenite is obtained as a solid substance, there is a method of recovering arsenite by transferring it to another firing furnace, adding a reducing agent such as coal or coke if necessary, and heating and firing it.

しかし、排ガス中に多量の無水硫酸を含む場合には、こ
の排ガスを冷却すると、硫酸および硫酸塩が生成しこれ
が上記固型物の中に含有されることになる。この硫酸お
よび硫酸塩を含有する亜ヒ酸並びにダストから成る固型
物を加熱、焼成すると硫酸および硫酸塩も分解して無水
硫酸を同時に発生するので、揮発した亜ヒ酸との分離が
困難であシ、高純度の亜ヒ酸を容易に得られないばかシ
か、亜ヒ酸を捕集、回収するために一般的に使用される
バッグフィルターの目詰りを起す原因となシ連続運転が
不可能となるという欠点がある。従来、このような亜ヒ
酸、無水硫酸を含む排ガスから亜ヒ酸を回収する方法と
してこのガスを水で洗浄して得られる洗浄液に硫化水素
を添加しヒ素を硫化ヒ素として回収し、この硫化ヒ素を
焙焼して亜ヒ酸を回収する方法があるが、これは硫化水
素を必要とすること、硫化ヒ素の焙焼に際して生成する
硫黄化合物を含む排ガスを処理する必要があること等、
プロセス全体が複雑である点にも問題がある。
However, when the exhaust gas contains a large amount of sulfuric anhydride, when the exhaust gas is cooled, sulfuric acid and sulfates are generated and are contained in the solid material. When this solid material consisting of arsenite and dust containing sulfuric acid and sulfate is heated and fired, the sulfuric acid and sulfate also decompose and sulfuric anhydride is generated at the same time, making it difficult to separate it from the volatilized arsenite. However, it is not easy to obtain high-purity arsenite, and continuous operation is the cause of clogging of bag filters commonly used to collect and recover arsenite. The disadvantage is that it is impossible. Conventionally, as a method for recovering arsenite from exhaust gas containing arsenite and sulfuric anhydride, hydrogen sulfide is added to the cleaning solution obtained by washing this gas with water to recover arsenic as arsenic sulfide. There is a method to recover arsenite by roasting arsenic, but this requires hydrogen sulfide, and it is necessary to treat the exhaust gas containing sulfur compounds generated when roasting arsenic sulfide.
Another problem is that the entire process is complex.

また、他の方法としてヒ素酸化物の溶解度が硫酸の濃度
によシ異なることを利用するがヒ素化合物の硫酸に対す
る溶解度が温度によって異なることを利用して亜ヒ酸の
晶析を行って亜ヒ酸の結晶を沈殿として得る方法、更に
は亜ヒ酸が溶解している硫酸溶液をそのまま冷凍し、こ
れを再溶解するときに、亜ヒ酸の結晶を得る方法などが
、提案されているが、これらの方法はいずれも多大のエ
ネルギーを消費し、かつ亜ヒ叡の結晶の装置への付着等
によp連続運転が困難であるという欠点がある0 発明者らは、先に排ガス中のヒ素および硫黄化合物を湿
式捕集し、捕集液からヒ素および硫黄化合物を亜ヒ酸お
よび石こうとして分離、回収する方法につき特公昭昭3
2−39/7号において、ヒ素および硫黄を希硫酸中に
無水亜ヒ酸は亜ヒ酸として無水硫酸は硫酸として洗浄液
中に捕集し、この液に炭酸カルシウムを添加してpH値
を調整し、硫酸の大部分を石こうとして沈殿、分離した
のちヒ素を含む残存液は、消石灰を加えてpH値を中性
付近とし、得られたスラリー状の溶液を濃縮し、亜ヒ酸
を結晶として得る方法を提案し、これを実施している。
Another method is to crystallize arsenite by taking advantage of the fact that the solubility of arsenic oxide varies depending on the concentration of sulfuric acid, but the solubility of arsenic compounds in sulfuric acid varies depending on temperature. Methods have been proposed to obtain acid crystals as precipitates, and further methods to obtain arsenite crystals by freezing a sulfuric acid solution in which arsenite is dissolved and redissolving it. However, all of these methods consume a large amount of energy and have the drawback that continuous operation is difficult due to adhesion of sulfur crystals to the equipment. A method for wet collection of arsenic and sulfur compounds, and separation and recovery of arsenic and sulfur compounds as arsenite and gypsum from the collection liquid.
In No. 2-39/7, arsenic anhydride is collected in a cleaning solution as sulfuric acid, and calcium carbonate is added to this solution to adjust the pH value. After most of the sulfuric acid is precipitated and separated as gypsum, the remaining liquid containing arsenic is made to have a pH value near neutral by adding slaked lime, and the resulting slurry solution is concentrated to convert arsenite into crystals. We have proposed a method to obtain this information and are implementing it.

しかしながら、この方法の利用については、いろいろな
制限条件があシ、とくに排ガス中に越千鉄を主成分とす
るダストが多量に存在するときにはそれに応じた対策を
とる必要がある。ダストの量を減少させるには、サイク
ロン、電気集じん機を増強することによシ可能ではある
が、運転の不安定などによシ完全になくすことはできな
い。
However, there are various limitations on the use of this method, and in particular, when a large amount of dust containing iron as a main component is present in the exhaust gas, it is necessary to take appropriate measures. Although it is possible to reduce the amount of dust by increasing the number of cyclones and electrostatic precipitators, it is not possible to completely eliminate dust due to unstable operation.

多量のダストが混入した場合、これが洗浄液中の硫酸と
反応し、硫酸塩になり、この液に炭酸カルシウム又は消
石灰を加えたときに、主として水酸化鉄の沈殿を生成す
る。水酸化鉄が多くなると亜ヒ酸の大部分は鉄と共沈し
、次の工程に送られる亜ヒ酸の量が極端に減少する。
When a large amount of dust is mixed in, it reacts with sulfuric acid in the cleaning solution to form sulfate, and when calcium carbonate or slaked lime is added to this solution, a precipitate of mainly iron hydroxide is produced. When iron hydroxide increases, most of the arsenite co-precipitates with iron, and the amount of arsenite sent to the next process is extremely reduced.

又、石こうおよび水酸化鉄kW過したのちの溶液は濃縮
され、亜ヒ酸の結晶が取シ出される溶液の量が多くなっ
てくると、溶解布こうが濃縮されて亜ヒ酸の結晶中に混
入してくる。石こうの量が多くなると亜ヒ酸の結晶を揮
発させるときにその揮発を阻害する。
In addition, the solution after passing through gypsum and iron hydroxide kW becomes concentrated, and as the amount of the solution from which arsenite crystals are removed increases, the dissolved slag becomes concentrated and the arsenite crystals become concentrated. It gets mixed in. If the amount of gypsum increases, it will inhibit the volatilization of arsenite crystals.

この発明の目的は金属硫酸塩およびヒ素化合物を含有す
る硫酸酸性溶液からヒ素化合物を亜ヒ酸として効率よく
回収するとともに、硫酸塩をヒ素含有量の少ない石こう
として回収することができる方法を提供することにある
The purpose of this invention is to provide a method for efficiently recovering arsenic compounds as arsenous acid from an acidic sulfuric acid solution containing metal sulfates and arsenic compounds, and also recovering sulfates as gypsum with a low arsenic content. There is a particular thing.

この発明の目的は次の方法によって達成される。The object of the invention is achieved by the following method.

金属硫酸塩およびヒ素化合物を含有する硫酸酸性溶液に
、所望によシ鉄化合物を添加し、この溶液にアンモニア
を添加して鉄その他の金属の水酸化物とヒ素酸化物とを
共沈させ、生成した沈殿物を溶液から分離してのち、乾
燥および焼成して亜ヒ酸を揮発回収し、一方、沈殿物が
分離された硫酸アンモニウム含有溶液にカルシウム化合
物を添加してこの硫酸アンモニウムを複分解し、この際
生成した石こうを分離し、かつ同時に生成したアンモニ
アを鉄その他の金属の水酸化物とヒ素酸化物との共沈工
程に循環して再使用することを特徴とする亜ヒ酸および
石こうの回収方法。
Adding a desired iron compound to a sulfuric acid acidic solution containing a metal sulfate and an arsenic compound, adding ammonia to this solution to co-precipitate iron and other metal hydroxides and arsenic oxide, After separating the generated precipitate from the solution, it is dried and calcined to volatilize and recover the arsenite.Meanwhile, a calcium compound is added to the ammonium sulfate-containing solution from which the precipitate has been separated to metathesize this ammonium sulfate, and the ammonium sulfate is metathesized. Recovery of arsenite and gypsum, which is characterized by separating the gypsum produced during the process and recycling the ammonia produced at the same time in the co-precipitation process of iron and other metal hydroxides and arsenic oxide. Method.

微量のヒ素を含む溶液に鉄塩全加えて、得られる水酸化
鉄との共沈殿現象については、既に公知であシ、ヒ素を
含む排水の処理などに応用されているが、ヒ素を多量に
含む場合のメカニズムについて−は殆ど検討されていな
い。
The coprecipitation phenomenon with iron hydroxide obtained by adding all iron salts to a solution containing a trace amount of arsenic is already well known and has been applied to the treatment of wastewater containing arsenic. There has been little consideration of the mechanisms involved.

発明者らは、ヒ素として約j−グθgr/lの高濃度の
亜ヒ酸溶液では水酸化鉄が極めて効率よく亜ヒ酸とヒ素
と鉄との原子比が約2:/の共沈殿物を形成することを
見い出した。本発明においては、この知見が利用されて
いる。
The inventors have discovered that in a highly concentrated arsenite solution with arsenic concentration of approximately jg θgr/l, iron hydroxide is extremely efficiently co-precipitated with arsenite, arsenic, and iron in an atomic ratio of approximately 2:/. was found to form. This knowledge is utilized in the present invention.

この発明において処理の対象である金属硫酸塩およびヒ
素化合物を含有する硫酸酸性溶液の例としては金属酸化
物、硫黄酸化物およびヒ素酸化物を含有する排ガス、例
えば含ヒ素硫化鉄鉱を焙焼して得られる含ヒ素パイライ
トシンダーに石炭あ性液などで洗滌して金属酸化物、硫
黄酸化物およびヒ素酸化物を捕集して得られる溶液など
をあげることができるがこれにのみ限定されない。
Examples of acidic sulfuric acid solutions containing metal sulfates and arsenic compounds to be treated in this invention include exhaust gases containing metal oxides, sulfur oxides, and arsenic oxides, such as roasting of arsenic-containing pyrite. Examples include, but are not limited to, solutions obtained by washing the resulting arsenic-containing pyrite cinder with a coal aqueous solution to collect metal oxides, sulfur oxides, and arsenic oxides.

このような溶液にアンモニアを添加することによってp
Hを好ましくは3〜gに調整すると、上述したように鉄
その他の金属の水酸化物が亜ヒ酸とともに共沈する。こ
の際、この溶液中の硫酸鉄の量はヒ素化合物に対してヒ
素と鉄との原子比で2以下であるのが好ましい。もしも
溶液中の硫酸鉄の量が低い場合は、鉄化合物を添加する
のが望ましい。
By adding ammonia to such a solution, p
When H is preferably adjusted to 3 to 3 g, hydroxides of iron and other metals co-precipitate with arsenite as described above. At this time, the amount of iron sulfate in this solution is preferably 2 or less in terms of the atomic ratio of arsenic to iron relative to the arsenic compound. If the amount of iron sulfate in the solution is low, it may be desirable to add an iron compound.

鉄その他の金属の水酸化物と亜ヒ酸とを共沈させる工程
は以下に述べるように2段階で行うのが好ましい。すな
わち、第1段階において金属硫酸塩およびヒ素化合物を
含有する硫酸酸性溶液に、所望によシ水酸化鉄もしくは
硫酸鉄などの酸可溶性の鉄化合物を添加して溶液中のヒ
素と鉄との原子比を好ましくは2θ:/θ付近、特にム
2:/:θ〜〜/:、5:/:θとし、ついでアンモニ
アを添加してpHを3〜乙に調整して水酸化鉄の沈殿を
生成させ、大部分の史ヒvを水酸化鉄との共沈殿物とし
て分離する。ついで、第2段1階においてこの共沈殿物
を分離した溶液中に若干残った亜ヒ酸を除くために、こ
の溶液にさらに酸可溶性鉄塩、例えば硫酸鉄を添加して
溶液中のヒ素と鉄との原子比がθj以下となるようにな
し、アンモニアを添加してpHを3〜9に調整すること
によって残存するヒ素化合物を水酸化鉄との共沈殿物と
して分離する。この共沈殿物は第1段階において添加さ
れる鉄化合物として循環されるのが好ましい。
The step of co-precipitating the hydroxide of iron or other metals with arsenous acid is preferably carried out in two steps as described below. That is, in the first step, an acid-soluble iron compound such as iron hydroxide or iron sulfate is optionally added to an acidic sulfuric acid solution containing a metal sulfate and an arsenic compound to separate atoms of arsenic and iron in the solution. The ratio is preferably around 2θ:/θ, especially 2:/:θ~/:, 5:/:θ, and then ammonia is added to adjust the pH to 3 to 2 to prevent precipitation of iron hydroxide. Most of the iron hydroxide is separated as a coprecipitate with iron hydroxide. Next, in order to remove some residual arsenite from the solution from which the coprecipitate was separated in the first stage of the second stage, an acid-soluble iron salt such as iron sulfate is further added to this solution to remove the arsenic in the solution. The remaining arsenic compound is separated as a co-precipitate with iron hydroxide by adjusting the pH to 3 to 9 by adding ammonia and adjusting the atomic ratio with iron to θj or less. Preferably, this coprecipitate is recycled as the iron compound added in the first stage.

このように、溶液からのヒ素化合物の分離をλ段階で行
うことによシ、第1段階においては亜ヒ酸濃度の高いと
ころで大部分の亜ヒ酸が効率よく分離され、高濃度でヒ
素を含む水酸化鉄と亜ヒ酸との共沈殿物が亜ヒ酸回収工
程に送られ、一方液中に残存する残シの亜ヒ酸は第2段
階においてヒ素含量の比較的低い水酸化鉄と亜ヒ酸の共
沈殿物として分離され得る。そして第2段階からの共沈
殿物は第1段階において溶液に添加される鉄化合物とし
て用いることができる。
In this way, by separating arsenic compounds from the solution in the λ stage, most of the arsenite can be efficiently separated in the first stage where the arsenite concentration is high, and arsenic can be removed at high concentrations. The co-precipitate of iron hydroxide and arsenite containing iron hydroxide and arsenite is sent to the arsenite recovery process, while the residual arsenite remaining in the liquid is converted into iron hydroxide with a relatively low arsenic content in the second stage. It can be isolated as a coprecipitate of arsenite. The coprecipitate from the second stage can then be used as the iron compound added to the solution in the first stage.

得られた水酸化鉄−亜ヒ酸の共沈殿物中のヒ素は大部分
■価であるから、石炭もしくはコークスなどの還元剤を
加え、また窒素雰囲気中で、好ましくは700〜200
℃の温度に加熱することにより、容易に亜ヒ酸が揮発し
、このガスを冷却すれば大部分のヒ素は亜ヒ酸として回
収される。この際の残渣は、前述した鉱石などの脱ヒ素
工程に返還して再使用をすることができる。
Since most of the arsenic in the obtained co-precipitate of iron hydroxide and arsenite has a valence of 700 to 200, a reducing agent such as coal or coke is added, and in a nitrogen atmosphere,
By heating the gas to a temperature of °C, arsenite easily evaporates, and by cooling this gas, most of the arsenic can be recovered as arsenite. The residue at this time can be returned to the arsenic removal process for ores, etc., and reused.

水酸化鉄−亜ヒ酸共沈殿物を分離した溶液は硫酸アンモ
ニアを主体とする溶液でヒ素の含有量はθθθ3gr/
L以下でおる。この溶液に消石灰、生石灰などの力°ル
シウム化合物を添加して溶解している硫酸根を石こうと
して沈降させ、アンモニウムイオンをアンモニアとして
再生する。僅かに溶解していた亜ヒ酸は亜ヒ酸カルシウ
ムとして石こう中に混入する。生成した石こうは適当な
手段で分離する。この石こうはセメントなどに使用でき
る良質なものである。
The solution obtained by separating the iron hydroxide-arsenite co-precipitate is a solution mainly composed of ammonia sulfate, and the arsenic content is θθθ3gr/
Stay below L. A lucium compound such as slaked lime or quicklime is added to this solution to precipitate the dissolved sulfate radicals as gypsum and regenerate ammonium ions as ammonia. The slightly dissolved arsenite is mixed into the plaster as calcium arsenite. The generated gypsum is separated by appropriate means. This gypsum is of high quality and can be used for cement, etc.

石こうを分離したのちの溶液はアンモニア水溶液であり
、適当な廃熱を利用するなどして濃縮して出発溶液の中
和工程へ循環される。
The solution after separating the gypsum is an ammonia aqueous solution, which is concentrated using appropriate waste heat and recycled to the neutralization process of the starting solution.

この発明の一実施態様を添付図面を参照して説明する。One embodiment of the present invention will be described with reference to the accompanying drawings.

多量の粉じん(金属敵化物他)および硫黄酸化物(SO
2+SO3” )並びに亜ヒ酸を含有する排ガスはガス
冷却器/を通シ、約35θ℃に冷却された後、必要に応
じて乾式集じん器3にて粉じんが除去され、微量の粉じ
んを含有するガスとな)スクラバー3に導入される。ス
クラバー内ではスクラバー液循環タンク/6よシ循環さ
れる硫酸酸性液で洗浄され、このガスは798℃以下に
その温度が降下し、亜ヒ酸は微量の粉じんおよび無水硫
酸並びに粉じんと硫酸の7部との反応によシ生じた金属
の硫酸塩とともに捕集除去され、亜ヒ酸および金属硫酸
塩の大部分は液中に溶解する。この懸濁液をシソクナー
グに導き、沈降および分離を行い、シックナー下放流は
濾過器Sで濾過し、沈殿物は原料脱ヒ素工程へ、涙液は
シックナー溢流液とともにその大部分は第1段中和槽7
に送られる。
Large amounts of dust (metal oxides, etc.) and sulfur oxides (SO
2+SO3'') and arsenite is passed through a gas cooler/cooled to approximately 35θ℃, and then, if necessary, dust is removed by a dry dust collector 3, containing a trace amount of dust. The gas is introduced into the scrubber 3.In the scrubber, it is cleaned with a sulfuric acid acidic liquid that is circulated through the scrubber liquid circulation tank/6, and the temperature of this gas drops to below 798℃, and the arsenite is removed. Trace amounts of dust and sulfuric acid are collected and removed together with anhydrous sulfuric acid and metal sulfates formed by the reaction of dust with 7 parts of sulfuric acid, and most of the arsenite and metal sulfates are dissolved in the liquid. The turbid liquid is led to the shisoknag, where it is sedimented and separated.The discharge under the thickener is filtered by a filter S, and the precipitate is sent to the raw material dearsenation process.The majority of the lachrymal fluid, together with the thickener overflow liquid, is neutralized in the first stage. Tank 7
sent to.

液の残部は鉄溶解検感に送られ、ここで硫酸鉄あるいは
後の工程で生成する水酸化鉄を加えて溶解して硫酸鉄塩
の溶液を調製する。第1段中和槽7ではアンモニア水溶
液またはアンモニアガスを加えてpH値を3〜乙の範囲
に調整し、鉄とヒ素との共沈殿物を生成させ(第1段中
和)、得られたスラリーは鉄酸化塔とへ送られて含有さ
れる第一鉄が第二鉄に酸化される。
The remainder of the liquid is sent to an iron dissolution test, where iron sulfate or iron hydroxide produced in a later step is added and dissolved to prepare a solution of iron sulfate. In the first stage neutralization tank 7, ammonia aqueous solution or ammonia gas is added to adjust the pH value to a range of 3 to O, and a coprecipitate of iron and arsenic is generated (first stage neutralization). The slurry is sent to an iron oxidation tower where the ferrous iron contained therein is oxidized to ferric iron.

この場合、ヒ素と鉄の含有量比率をコントロールするた
めに、もし必要ならば鉄溶解検感の液を加えてヒ素に対
する鉄の濃度を前述した範囲に調整する。
In this case, in order to control the content ratio of arsenic and iron, if necessary, an iron dissolution test solution is added to adjust the concentration of iron to arsenic within the above-mentioned range.

鉄酸化塔とで第一鉄を第二鉄に酸化して大部分の溶解鉄
を沈殿゛させたのち、スラリーを濾過器7に送シ鉄とヒ
素との共沈殿物を分離する。共沈殿物は乾燥器/7によ
シ脱水して焼成炉/とに送られ、還元状態に保持し約に
θθ℃の温度に加熱し、ヒ素を亜ヒ酸として揮発させ、
生成ガスを冷却器/9にて冷却して析出した亜ヒ酸を分
離後、排ガスはスタック2θから排出する。
After oxidizing ferrous iron to ferric iron in the iron oxidation tower and precipitating most of the dissolved iron, the slurry is sent to a filter 7 to separate the coprecipitate of iron and arsenic. The coprecipitate is dehydrated in a dryer/7 and sent to a firing furnace/7, where it is maintained in a reduced state and heated to a temperature of approximately θθ°C to volatilize arsenic as arsenous acid.
After cooling the generated gas in a cooler/9 and separating the precipitated arsenite, the exhaust gas is discharged from the stack 2θ.

一方、沖過器7で分離しだ沖過液は第2段中和槽/θに
送られ、ここで残存する亜ヒ酸を完全に除去するため、
鉄とヒ素との原子比でヒ素の含有量の2倍量以上の鉄、
たとえば硫酸鉄を硫酸鉄溶解槽//よシ加え、またアン
モニアを添加して再度水酸化鉄−亜と酸の共沈殿物を生
成させ濾過器/2で分離する。溶液はスクラバー循環液
タンク/乙に返還され、排ガスの吸収用に再利用される
On the other hand, the offshore filtrate separated in the offshore filter 7 is sent to the second stage neutralization tank/θ, where the remaining arsenite is completely removed.
Iron with an atomic ratio of iron to arsenic that is more than twice the arsenic content;
For example, iron sulfate is added to the iron sulfate dissolving tank //, and ammonia is added again to form a co-precipitate of iron hydroxide and subacid, which is separated by filter #2. The solution is returned to the scrubber circulating fluid tank/B and reused for exhaust gas absorption.

この溶液中の硫酸アンモニウムの濃度が70θ〜/jO
gr/lに達したら一部または全量を抜き出し、複分解
槽/3に送シ、ここで消石灰を添加して複分解を行い、
主成分でおる硫酸アンモニウムの硫酸根を石こうとして
沈殿′させアンモニウムをアンモニアとする。
The concentration of ammonium sulfate in this solution is 70θ~/jO
When it reaches gr/l, part or all of it is extracted and sent to double decomposition tank/3, where slaked lime is added to perform double decomposition.
The sulfate group of ammonium sulfate, which is the main component, is precipitated as gypsum and the ammonium is converted to ammonia.

このアンモニアを含有する水溶液はアンモニア濃縮器1
5に送シ、こ\で濃縮したアンモニアは第1段中和槽7
および第2段中和槽/θに送られる。残留液は必要なら
ば漣過器を通しスクラバー循環液タンク/乙に循環再使
用される。
This ammonia-containing aqueous solution is transferred to the ammonia concentrator 1.
The concentrated ammonia is sent to the first stage neutralization tank 7.
and sent to the second stage neutralization tank/θ. If necessary, the residual liquid is recycled to the scrubber circulating liquid tank/B through a strainer and reused.

濾過器/2で分離された、水酸化鉄−亜ヒ酸の共沈殿物
は、鉄溶解槽6へ循環し、第1段中和の際に鉄化合物と
して再使用する。
The iron hydroxide-arsenite coprecipitate separated by the filter/2 is circulated to the iron dissolving tank 6 and reused as an iron compound during the first stage neutralization.

この発明の方法では、亜ヒ酸は従来の方法のように硫酸
を含む状態での濃縮あるいは冷却を必要とせず、鉄と定
量的に又カルシウムを含有しない鉄との共沈殿物として
得られ、かつ石こうはヒ素含有の少ないものとして副生
される。
In the method of this invention, arsenite does not require concentration or cooling in a state containing sulfuric acid as in conventional methods, and is obtained quantitatively with iron as a co-precipitate with iron that does not contain calcium. Moreover, gypsum is produced as a by-product with low arsenic content.

水の系外への排出はなくクローズドシステムとなし得る
ためとくに安全の面からは極めて大きな利点がある。
Since no water is discharged outside the system and it can be a closed system, it has an extremely large advantage, especially from the standpoint of safety.

この発明により金属精錬ガスなどからヒ素の回収が容易
となシ、とくにヒ素含有量の多い鉱石を原料とした焙焼
精錬を行うのが容易となるばかりか従来法に比較して工
程が簡単になる0以下に実施例について述べるがこの発
明はこれらの実施例によシ制限されるものではない。
This invention not only makes it easier to recover arsenic from metal refining gas, etc., but it also makes it easier to perform roasting and refining using ores with a high arsenic content as raw materials, and the process is simpler than conventional methods. Examples will be described below, but the present invention is not limited to these examples.

実施例/ グ個のビーカーに各々亜ヒ酸を7θg’rづつ入れ水を
加えて加熱溶解し、これに硫酸第二鉄を鉄として/2!
;、2.、!i%ぶθおよび/θθgr加えてさらに?
g%HzSO4を23.θgr加えて液の全量をXθθ
θmtとし、液温を7θ℃に保持してから2とチアンモ
ニア水を加えて液のp)(を乙に調整して水酸化第二鉄
と亜ヒ酸の共沈殿物を生成させた0これを濾過して得ら
れたケーキを5θ℃で真空乾燥を行った乾燥品中のヒ素
およ″び鉄の濃度、および濾過液中の亜ヒ酸の濃度は次
表の通りであったQ又乾燥品を電気炉でN2雰囲気中に
99℃で3θ分間加熱した場合のヒ素の揮発率も併せて
示す。
Example: Put 7θg'r of arsenite in each beaker, add water, heat and dissolve, add ferric sulfate to it and add /2!
;, 2. ,! i%b θ and /θθgr plus further?
g%HzSO4 at 23. Add θgr to make the total amount of liquid Xθθ
θmt, the liquid temperature was maintained at 7θ℃, and then 2 and thiammonia water were added to adjust the p) of the liquid to B to produce a coprecipitate of ferric hydroxide and arsenite. The cake obtained by filtering this was vacuum-dried at 5θ°C. The concentrations of arsenic and iron in the dried product and the concentration of arsenite in the filtrate were as shown in the following table.Q Also shown is the volatilization rate of arsenic when the dried product is heated in an electric furnace at 99° C. for 3θ minutes in a N2 atmosphere.

実施例2 亜比酸ソθgrk水に溶解し、これに硫酸第二鉄を、!
;乙3gr(鉄として/θgr)および硫酸第一鉄/9
9./2grC鉄としてグθgr)を加え、さらに、2
g%H2SO4//!;gr加えて液の全量を4θθθ
mtとする。投込みヒーターを使用して液の温度を7θ
℃に昇温してからjg%アンモニア水で液のpHを約グ
に保持して水酸化鉄と亜ヒ酸の共沈殿物を生成させる0
得られたスラリーに空気を吹込み2価の鉄を3価に酸化
する。得られた沈殿物はやや白味を帯びた茶褐色で重量
はグ乙3ソgr、水分を約乙θチ含むが比較的濾過しや
すいものであった。
Example 2 Sophitic acid θgrk is dissolved in water, and ferric sulfate is added to it!
;Otsu3gr (as iron/θgr) and ferrous sulfate/9
9. /2grC as iron, add θgr), and further add 2gr
g%H2SO4//! ; Add gr to make the total amount of liquid 4θθθ
Let it be mt. Use an immersion heater to adjust the temperature of the liquid to 7θ
After raising the temperature to ℃, maintain the pH of the solution at about ℃ with 1g% ammonia water to generate a co-precipitate of iron hydroxide and arsenite.
Air is blown into the obtained slurry to oxidize divalent iron to trivalent iron. The obtained precipitate was a slightly whitish brownish color, weighed 3 g, and contained about 1 g of water, but was relatively easy to filter.

この共沈殿物の鉄とヒ素との分析結果はFe、2.、i
!、Fjwt%、As3θ6−2wt%(いずれも乾燥
物基準)であり、AsとFeとの原子比は約、 /、 
、0..2であった0このケーキにN20に加えてリパ
ルプよケーキに付着した硫安を取り除き、50℃で真空
乾燥したのち、得られた乾燥物をN2気流中で約に99
℃で焼成するとヒ素の揮発率約ど3%で、焼成残渣中の
ヒ素含量は/−2,/4wtチであった。
The analysis results of iron and arsenic in this co-precipitate are Fe, 2. ,i
! , Fjwt%, As3θ6-2wt% (all based on dry matter), and the atomic ratio of As and Fe is approximately /,
,0. .. 2 to 0 This cake was repulped with N20 to remove the ammonium sulfate adhering to the cake and vacuum dried at 50°C.
When fired at 0.degree. C., the arsenic volatilization rate was about 3%, and the arsenic content in the fired residue was /-2, /4wt.

濾過液は亜ヒ酸をθg!;gr/Lおよび硫酸根(SO
4)を+! i 9.2gr/L含有する。この濾過液
に消石灰をスラリーで添加してpH’i約/θに調整し
、室温で複分解を行い、液中に存在する硫酸根を石こう
として沈殿させて分離する。石こうを分離された液は生
成したNH40Hと溶解している硫酸カルシウムとなシ
、溶解ヒ素量はθSキを以下となった。
The filtrate contains θg of arsenite! ;gr/L and sulfate radical (SO
4) +! i Contains 9.2gr/L. Slaked lime is added to this filtrate in the form of a slurry to adjust the pH'i to about /θ, double decomposition is carried out at room temperature, and the sulfate groups present in the solution are precipitated as gypsum and separated. The liquid from which the gypsum was separated contained the generated NH40H and dissolved calcium sulfate, and the amount of dissolved arsenic was less than θS.

又、得られた石こうを主成分とするケーキは約791g
rでケーキ中の水分は約グア%であった。これを乾燥後
乾燥品のヒ素の含有量は3.グgwt%であった。
Also, the resulting cake whose main ingredient is gypsum is approximately 791g.
The moisture in the cake was about guar% at r. After drying this, the arsenic content of the dried product is 3. gwt%.

実施例3 亜ヒ酸2θgrを水に溶解し、これに硫酸第二鉄を、2
と/jgr(鉄として5gr)および硫酸第一鉄99、
S乙gr(鉄として一〇gr)e加え、さらに9どチH
2SO4/ / ! gr加えて液の全量t−ム0θo
mtとする。
Example 3 Arsenite 2θgr was dissolved in water, and ferric sulfate was added to it.
and/jgr (5gr as iron) and ferrous sulfate 99,
S O gr (10 gr as iron) e, plus 9 dochi H
2SO4//! gr plus the total amount of liquid t-m0θo
Let it be mt.

投込みヒーターを使用して液の温度を7θ℃に昇温して
からJ1アンモニア水で液のpH’iJjに保持して水
酸化鉄と亜ヒ酸の共沈殿物を生成させる。
The temperature of the liquid is raised to 7θ°C using an immersion heater, and then maintained at pH'iJj of the liquid with J1 ammonia water to generate a co-precipitate of iron hydroxide and arsenite.

得られたスラリーに空気′を吹込み2価の鉄を3価に酸
化する。得られた沈殿物はやや白味を帯びた茶褐色で重
量は3/乙7gr、水分を約5どチ含むが比較的濾過し
やすいものであった。
Air' is blown into the obtained slurry to oxidize divalent iron to trivalent iron. The resulting precipitate was a slightly whitish brown color, weighed 3/7g, and contained about 50% of water, but was relatively easy to filter.

この共沈殿物の鉄とヒ素との分析結果はFe、/7/w
t% As139./vrt%(いずれも乾燥物基準)
であ、Q、AaとFeとの原子比は約/7であった。
The analysis results for iron and arsenic in this coprecipitate are Fe, /7/w
t% As139. /vrt% (all based on dry matter)
The atomic ratio of Q, Aa and Fe was about /7.

濾過液中のヒ素濃度は亜ヒ酸として、2.’l?/lで
あシ、硫酸根(S04として)濃度は3.2 gr/!
であった0 このケーキにf(20e 7JOえてリパルプしケーキ
に付着した硫安を取シ除き、50℃で真空乾燥したのち
、得られた乾燥物をN2気流中で約ど0θ℃で焼成する
とヒ素の揮発率は約2θ〜9S%で、焼成残渣解後、2
g%アンモニア水を加えて、pHを約どに調整し、水酸
化鉄−亜ヒ酸の共沈殿物を生成させた0 この場合の沈殿物中の鉄とヒ素との原子比はユO5であ
シ、沈殿物分離後の溶液は亜ヒ酸をヒ素としてθθθに
gr/L含有し、生成した硫酸ア/モーlムの濃度は3
 /、7 gr/Lであった。
The arsenic concentration in the filtrate is expressed as arsenite.2. 'l? /l, the concentration of sulfate (as S04) is 3.2 gr/!
This cake was repulped with f(20e 7JO) to remove the ammonium sulfate adhering to the cake, vacuum dried at 50°C, and then calcined at about 0θ°C in a N2 stream to remove arsenic. The volatility rate of is about 2θ~9S%, and after dissolving the firing residue,
g% ammonia water was added to adjust the pH to approximately 0.05 g to produce a co-precipitate of iron hydroxide and arsenite. In this case, the atomic ratio of iron to arsenic in the precipitate was 05. The solution after separation of reeds and precipitates contains arsenite as arsenic in θθθ gr/L, and the concentration of the produced sulfuric acid am/mol is 3.
/, 7 gr/L.

この溶液に消石灰をスラリーの状態で加えてpHを約/
/に調整し、室温で複分解を行い液中に存在する硫酸根
を石こうとして沈殿させ、これを分離する。分離液は同
時に生成したNH40Hと溶解している硫酸カルシ、ラ
ムとなシ溶解ヒ素量はθ5TIv/を以下となった。
Add slaked lime in the form of a slurry to this solution to adjust the pH to approximately
/, double decomposition is carried out at room temperature, and the sulfate groups present in the solution are precipitated as gypsum, which is separated. The separated liquid contained NH40H produced at the same time and dissolved calci and rum, and the amount of dissolved arsenic was less than θ5TIv/.

又、得られた石こうを主成分とするケーキは約6乙2g
r でクーギ中の水分は約グざチであった。これを乾燥
後乾燥品のヒ素の含有量はθθ/7wt%であった。
In addition, the resulting cake whose main ingredient is gypsum weighs approximately 6 ots and 2 g.
At r, the water content in the kugi was approximately guzachi. After drying this, the arsenic content of the dried product was θθ/7wt%.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の一実施態様を説明するだめのフローン
ートである。
The drawing is a flow route for explaining one embodiment of the invention.

Claims (1)

【特許請求の範囲】[Claims] 金属硫酸塩およびヒ素化合物を含有する硫酸酸性溶液に
、所望によシ鉄化合物を添加し、この溶液にアンモニア
を添加して鉄その他の金属の水酸化物とヒ素酸化物とを
共沈させ、生成した沈殿物を溶液から分離してのち、乾
燥および焼成して亜ヒ酸を揮発回収し、一方、沈殿物が
分離された硫酸アンモニウム含有溶液にカルシウム化合
物を添加してこの硫酸アンモニウムを複分解し、この際
生成した石こうを分離し、かつ同時に生成したアンモニ
アを鉄その他の金属の水酸化物とヒ素酸化物との共沈工
程に循環して再使用することを特徴とする亜ヒ酸および
石こうの回収方法。
Adding a desired iron compound to a sulfuric acid acidic solution containing a metal sulfate and an arsenic compound, adding ammonia to this solution to co-precipitate iron and other metal hydroxides and arsenic oxide, After separating the generated precipitate from the solution, it is dried and calcined to volatilize and recover the arsenite.Meanwhile, a calcium compound is added to the ammonium sulfate-containing solution from which the precipitate has been separated to metathesize this ammonium sulfate, and the ammonium sulfate is metathesized. Recovery of arsenite and gypsum, which is characterized by separating the gypsum produced during the process and recycling the ammonia produced at the same time in the co-precipitation process of iron and other metal hydroxides and arsenic oxide. Method.
JP14181082A 1982-08-16 1982-08-16 Method for recovering arsenious acid and gypsum Pending JPS5930721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14181082A JPS5930721A (en) 1982-08-16 1982-08-16 Method for recovering arsenious acid and gypsum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14181082A JPS5930721A (en) 1982-08-16 1982-08-16 Method for recovering arsenious acid and gypsum

Publications (1)

Publication Number Publication Date
JPS5930721A true JPS5930721A (en) 1984-02-18

Family

ID=15300653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14181082A Pending JPS5930721A (en) 1982-08-16 1982-08-16 Method for recovering arsenious acid and gypsum

Country Status (1)

Country Link
JP (1) JPS5930721A (en)

Similar Documents

Publication Publication Date Title
JP4549579B2 (en) Waste treatment method with high chlorine and lead content
US4247525A (en) Method of and apparatus for removing sulfur oxides from exhaust gases formed by combustion
CA1079031A (en) Wet-cleaning gases containing sulfur dioxide, halogens and arsenic
US4619814A (en) Process for the recovery of non-ferrous metals from sulphide ores and concentrates
PL74724B1 (en)
JPH10503552A (en) Chemical value recovery method from industrial waste
US3311449A (en) Process of recovering valuable components from red mud
US20040007536A1 (en) Process for recovering arsenic from acidic aqueous solution
KR102460982B1 (en) metal recovery from pyrite
JP2764508B2 (en) Kiln dust processing system
CN101780374B (en) Synchronized dust removal and desulfuration for smoke of coal-fired boiler and comprehensive utilization of flyash of coal-fired boiler
JPS63197521A (en) Method of removing gaseous mercury from gas
RU2126059C1 (en) Process for leaching material containing zinc oxide, zinc silicate and/or zinc ferrite
RU2299254C1 (en) Method of vanadium extraction out of the highly concentrated lime slag
US3950492A (en) Process for removal of ammonia, hydrogen sulfide and hydrogen cyanide from gases containing these substances
JPS59145740A (en) Treatment of zinc leached slag
JPS5930721A (en) Method for recovering arsenious acid and gypsum
RO120131B1 (en) Composition comprising at least baking soda, process for obtaining the same and the use thereof
JPS5942059B2 (en) Method for recovering Zn from Zn-containing materials
AU2010217184A1 (en) Zinc oxide purification
JP3780359B2 (en) Treatment method for petroleum combustion ash
US2435340A (en) Process for the treatment of marmatitic zinc ores
SU619532A1 (en) Method of obtaining lead
JPS60195021A (en) Method of recovery of arsenious acid from exhaust gas of refining
US3826812A (en) Treatment of flue gases and the like