JPS5928640A - Lens meter and target plate used therefor - Google Patents

Lens meter and target plate used therefor

Info

Publication number
JPS5928640A
JPS5928640A JP13893982A JP13893982A JPS5928640A JP S5928640 A JPS5928640 A JP S5928640A JP 13893982 A JP13893982 A JP 13893982A JP 13893982 A JP13893982 A JP 13893982A JP S5928640 A JPS5928640 A JP S5928640A
Authority
JP
Japan
Prior art keywords
lens
straight line
plate
image
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13893982A
Other languages
Japanese (ja)
Other versions
JPH0353572B2 (en
Inventor
Toshikazu Yoshino
芳野 寿和
Masayuki Takasu
正行 高須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Optical Co Ltd
Original Assignee
Tokyo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Optical Co Ltd filed Critical Tokyo Optical Co Ltd
Priority to JP13893982A priority Critical patent/JPS5928640A/en
Publication of JPS5928640A publication Critical patent/JPS5928640A/en
Publication of JPH0353572B2 publication Critical patent/JPH0353572B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0221Testing optical properties by determining the optical axis or position of lenses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To measure the cylindric axis direction of a lens to be examined with good accuracy, by using a dotted straight line and a straight line as a target pattern of a target plate and specifying the diameter of the dot pattern, the width of the straight line and the space between the dotted straight line and the straight line. CONSTITUTION:The pattern 4 of the straight line group constituted of a dotted straight line 2 and a straight line 3 is formed on a target plate 1. The diameter of the dot pattern and the width of the straight line given by the equation is hT and the space between the dotted line and the straight line is 2hT, if the diameter of the focal lengths of the collimator lens and objective lens of a lens meter are designated as f1, f2, respectively, the diameter of the effective luminous flux to be used as phi and the min. measuring cylindricity of the object to be examine as C. A pattern image 4' is focused to the 1st cylindric axis 8 of a lens TL to be examined, and when the plate 1 is rotated until the flow image 2n' of the dot pattern intersects orthogonally with a straight line image 3', the orientation direction of the image 4' coincides with the 2nd cylindric axis direction theta2. The angle theta1 of the 1st cylindric axis is obtd. by reading the same with a scale 10. The target plate is moved in the optical axis direction and is focused to the 2nd cylindric axis 9. An axial direction theta2 is read with the 10 from the orientation direction of the image 2' forming a straight line image with the image 3'.

Description

【発明の詳細な説明】 本発明はIIl、!鏡しンズ等の屈折特性を測定するレ
ンズメーター及びそれに使用されろメータ8ソト板に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is IIl,! This invention relates to a lens meter for measuring the refractive properties of mirror lenses, etc., and a meter 8 plate used therein.

眼視し/ズやコンタクトレンズなど眼屈折矯正11−l
の)Y:学gtt月(以ト単に被検レンズという)のj
ll(折’l’!J1住、例え(」、球面屈折力、円柱
’lit折力31しびにその佃1角度、及びブリズl、
屈折力並びにぞの基1戊方向右−1jlll定ずイ、f
r−W)の光学装買と1−1てレンズメーターがよく知
られCI7′1ろ。
Ocular refractive correction such as visual inspection/zu and contact lenses 11-l
) Y: Gtt month (hereinafter simply referred to as the test lens)
ll (fold 'l'! J1 residence, example ('', spherical refractive power, cylinder 'lit refractive power 31 and its Tsukuda 1 angle, and bris l,
Refractive power and base 1 direction right - 1 jllll fixed a, f
r-W)'s optical equipment and 1-1 lens meter are well known, such as CI7'1.

従来のレンズメーターの測定用ターケ゛ノドの例として
は、円fii’j状に小円を配列してなるコロナメータ
8ソトや2本線と3本線から成る2組のラインノミター
ンを直交させたクロスラインクーケ゛ットが知らノ1て
いる。これら従来のターケ゛ノドを有ずろレンズメータ
ーにおけろ被検乱視レンズの円柱軸方向の測定方法にお
いては、コロナターケ゛ソトの場合はコロナ小円の流れ
方向を円柱軸方向として測定し、クロスラインターケ゛
ットの場合はそのライン・Pターン交差部の小矩形群の
歪みが補正きれ、た位置でのラインパターンの走り方向
な円柱軸方向として測定していた。
Examples of conventional lensmeter measurement nodes include a coronameter 8 soto, which is made up of small circles arranged in a circular fii'j shape, and a cross line, which is made by orthogonal to two sets of line nomiturns made up of two lines and three lines. Kukket is the best I know. In these conventional methods of measuring the cylinder axis direction of the astigmatic lens to be tested using a zero lens meter with a target, in the case of a corona target, the flow direction of the corona small circle is measured as the cylinder axis direction, and the cross line target is measured in the direction of the cylinder axis. In this case, the distortion of the small rectangular group at the line/P-turn intersection had been corrected, and the measurement was taken as the cylinder axis direction, which is the running direction of the line pattern at that position.

しかしながら、これら従来のレンズメーターにおいては
、被検乱視レンズがその円柱屈折力を例えば0. / 
、2 Dioptor 、 0..2 、!r Dlo
ptor程度の微小計だけである弱度乱視レンズの場合
、」二連したコロナターケ゛ノドの流れ量やクロスライ
ンターケ′ソトの小矩形群の歪み量が微小であるだめ、
円柱軸方向の決定が困蛯であり、故に正確な被検レンズ
の屈折特性測定か出来ないという欠点があった。
However, in these conventional lens meters, the astigmatic lens to be tested has a cylindrical refractive power of, for example, 0. /
, 2 Dioptor, 0. .. 2,! rDlo
In the case of a weakly astigmatic lens with only a micrometer of the order of ptor, the amount of flow in the two consecutive corona nodes and the amount of distortion in the small rectangular group of the cross line beams are minute, so
It is difficult to determine the cylinder axis direction, and therefore, there is a drawback that it is not possible to accurately measure the refractive characteristics of the lens to be tested.

従来のレンズメーターの測定用ターケ゛ソ]・の他の例
としては、直角ななすλつの方向に小円を並べたものが
実開昭5s−i<tsot号や英国時、i/[第1. 
/4’7. tl−タノ号によって提案をれている。こ
J′LI−)−被検乱視レンズの円柱軸方向に流れた小
円像か互に他の小円像と重なって検出しゃす〈lろこと
を利用ず4)ものである。しかしこのような構成におい
ても市販の眼鏡レンズの最小円柱度数C= 0.725
デイメプタ一程度の測定を迅速かつ11゛確に行うこと
は困か(fである。
Another example of a conventional lens meter measuring instrument is one in which small circles are arranged in λ directions at right angles to each other.
/4'7. The proposal was made by the tl-tano issue. The small circular images flowing in the cylindrical axis direction of the astigmatic lens to be tested are detected by overlapping each other with other small circular images. However, even with this configuration, the minimum cylindrical power of commercially available eyeglass lenses C = 0.725
It is difficult to quickly and accurately measure a distance of about 11° (f).

奉加発明−−係る従来のレンズメーターの欠点をFlr
il決ずろた−めになされたもので、その第1の目的に
〒If来のliンでメーターに比較して測定精度特に、
弱度の円杆屈IJr力なもつ被検レンズの円柱軸方向を
よりオ青度、1、〈d相定て・きろレンズメーターを1
是供することにあイ)・・ 本願発明の第2の目的d1、従来のレンズメーターJl
jメーケ゛ノI・板の欠O1をM決ずろためになされl
rもので、従来のレンズメーター用メーケ゛ノド板ど1
1;軸1て測定精度特に弱度の円柱屈折力をもつ被検1
メンズの円柱軸方向なより精度よ< 1lill定でき
ろ新規なターケ゛ソトパターンを有す7.)レンズメー
ター用メーケ8ソト板を提供することにある。
Additional invention--Flr.
It was designed to improve the accuracy of measurements compared to conventional meters, especially if
The cylindrical axis direction of the lens to be tested with a weak concussion IJr force is set at 1,000 degrees, and the lens meter is set at 1,000 degrees.
The second object d1 of the present invention is to provide a conventional lens meter Jl.
It was done to fix the missing O1 of the make I/board.
It is a conventional lens meter make throat plate 1.
1; Axis 1 measurement accuracy, especially for test subject 1 with weak cylindrical refractive power.
7. It has a new target pattern that can be determined with < 1lill accuracy in the direction of the cylinder axis. ) Our objective is to provide a make 8 type plate for lens meters.

上記目的な達成するだめの本発明の特徴は、ターケ゛ツ
ト板のターケ゛ソトノqターンとして少なくとも7本の
黒血線と該黒血線と平行な少なくとも7本の直線からな
る直線群パターンを用い、かつこの黒血線を構成する点
・やターンの直径並びに直線の幅及び点10線と直線間
の間隔を後に詳述する定量関係をもつように構成するこ
とにより、4111定」二要求される被検レンズの最小
測定h」能円柱度敷及びそ11以上の円柱度数の被検乱
視し/ズ測定顛おいて面線群・ξターンの配向か被検レ
ンズの円柱軸方向と異なるとき、上記面線群・Pターン
の直線像と黒血線を構成す2)点・やターンの流れ像が
飴序゛1ずろようになり、寸だ逆に、直線群パター7の
配向か被検レンズの円柱軸方向と一致ずろときjPj線
像と点パターンの流れ像が接しかつ両者が直交ずろよう
に作用ずろレンズメーター及びそれに使用するレンズメ
ーター用メーケゞノド板である。
A feature of the present invention to achieve the above object is that a straight line group pattern consisting of at least seven black blood lines and at least seven straight lines parallel to the black blood lines is used as the target sotono q-turn of the target board; By configuring the diameters of the points and turns constituting the black blood line, the width of the straight line, and the interval between the point 10 line and the straight line so that they have the quantitative relationship described in detail later, the required test When the orientation of the plane group/ξ turn is different from the cylindrical axis direction of the lens to be tested, the above-mentioned surface is 2) The straight image of the line group/P turn and the flow image of the points/turns that make up the black blood line are shifted by 1, and on the contrary, the orientation of the straight line group pattern 7 or the lens to be tested is different. This is a lensmeter that acts so that the jPj line image and the flow image of the dot pattern are in contact with each other and are perpendicular to each other when they are aligned with the cylinder axis direction, and a make throat plate for the lensmeter used therein.

本発明C】1検、との眼の視覚特性、すなわち多数の小
直線(本発明においてけ点・eターンの流れ像がこ)1
に相当すイ、)かその配列方向に対し傾斜しているか否
かを視知覚する場合、弔に小直線IIFを見てr11断
ずイ)3Lりも、その小直線群の配列方向と平行にのび
ろ直線との傾斜を比較する方が視知覚精度が向上(−7
、さらに、上記直線は小直線群と接する場合の方がテ下
らに傾斜量の視知覚精度は向上ずイ)といつ人眼の視覚
特性を有効に利団1した点にある。
Invention C] Visual characteristics of the eye, that is, a large number of small straight lines (in the present invention, the flow image of the corner point and e-turn) 1
When visually perceiving whether or not the small straight line IIF is inclined with respect to the arrangement direction of the small straight line IIF, it is necessary to visually perceive whether or not the small straight line IIF is inclined to the arrangement direction of the small straight line group. Visual perception accuracy is improved when comparing the slope with the straight line (-7
Furthermore, when the above-mentioned straight line is in contact with a group of small straight lines, the accuracy of visual perception of the amount of inclination does not improve as much as when the straight line is in contact with a group of small straight lines.

さらf、本発明のより限定的実施態様においてし、1、
λ木の、げEI白躬4と、それらの間にさらに1白彩夛
をこ;l+ I、: 3者かtiいに下行になるように
配置したターウ゛ノド・9ターンを構成ずろことにより
、−J、l記視’n’L ’l!I’ li・の他にへ
らにr(いに対向ずろ小直線の端バ1jの合致・非合致
により小直線の傾斜のイ1無がより11:確に判断”C
きイ)といつ他の人眼の視覚行件シも有効に利Jl’l
 +〜/こ点にある。
Further f, in a more limited embodiment of the invention, 1,
In the λ-tree, add 4 GE and 1 white color between them; l + I,: By configuring 9 turns of Turbines arranged in a descending manner, -J , lnotation 'n'L 'l! In addition to I' li, it is also possible to determine whether the slope of the small straight line is 11 or not depending on whether the end bar 1j of the opposite small straight line matches or does not match.
When the visual behavior of other people's eyes is also effectively used.
+〜/It's at this point.

本発明の構成・作用・効果は以−トに図にもとすいて訂
Jzト寸乙)原理及び実Mx例の説明によりより明確に
なるであろう。
The configuration, operation, and effects of the present invention will become clearer through the explanation of the principles and actual examples with reference to the drawings.

寸ず、本願発明の詳細な説明する。第1図はレンズメー
ターの光学系の構成を原理的に示ず余1視図である。被
検レンズTLを測定光路内に配置l−ないときのこの光
学系の構成・作用は次の通りである。被検し/ズ王りが
光路内に配置をれていないとき、焦点距離f□を有する
コリメーターレンズCしの前側焦点位価に置かれたター
ケ゛ノド板■    ・の点状J−9゛7トjから0射
出光束は・”1.%−。
The present invention will now be described in detail. FIG. 1 is a perspective view without showing the principle of the structure of the optical system of the lens meter. The configuration and operation of this optical system when the test lens TL is not placed in the measurement optical path are as follows. When the object to be inspected is not placed in the optical path, a dot J-9゛7 of the target plate ■ is placed at the front focal point of the collimator lens C having a focal length f□. The zero emitted light flux from j is 1.%.

ターレンズCLを射出後対物レンズOLに向う。After exiting the target lens CL, the object lens CL is directed toward the objective lens OL.

この対物レンズOLはその後側焦点f2の位置に焦点板
りが置かれている。上記対物レンズOLに入射したコリ
メーターレンズからの平行光束は、対物レンズOLによ
り焦点板L」−にターケ゛ノドtの像t′を作る。ζこ
てターケ゛ノド像1′を結像するために利用き!1−ろ
光束は、主として被検レンズを測定光路内に載置するだ
めの被検レンズ受は部Sの有効径φにより決斗ろ。
This objective lens OL has a focusing plate located at the rear focal point f2. The parallel light beam from the collimator lens that is incident on the objective lens OL forms an image t' of the target lens t on the focus plate L'- by the objective lens OL. Used to form the ζ tip target image 1'! 1- The light flux is mainly focused by the effective diameter φ of the portion S of the lens holder to be tested, which is used to place the lens to be measured in the measurement optical path.

次に、乱視レンズである被検レンズT1−か波検しンズ
受は剖Sにより測定光路内に載置きi1次状1〆■な考
えろど、被検レンズTLな射出後の光束は317行九束
とならずクーケ゛ノl−tの像は焦点板り上匠結1象し
なくなる1、従ってターケ゛ノ1板Tを訓電)!−軸−
にで前後移動させ焦点板り上にタ〜ケ゛ノド像t′が結
像烙f1.ろように合焦調節しなけ第1はならない。U
7かしながら、この場合、被検レンズTLが乱視レンズ
であるため、ター外ノド像t′はターク゛゛ソl−tが
点状であるにもかかわらず点像として結像≧」)、ずに
、被検レンズの強弱いずノ1かの主経線方向と垂直な方
向に流れた直線状像となる。
Next, the test lens T1, which is an astigmatism lens, is placed in the measurement optical path by the autopsy S, and considering that it is in a 1-dimensional state, the light flux after exiting the test lens TL is 317 lines. If there are no nine bundles, the image of Kukano L-t will not appear as a result of the focusing plate (1, therefore, the image of Kukano L-t will not appear) (1, therefore, the image of Kukano L-t will not appear as a result of the focus plate)! -Axis-
The focal plane image t' is formed on the focal plane f1. The first thing you need to do is adjust the focus. U
However, in this case, since the lens TL to be tested is an astigmatic lens, the outer nodal image t' is formed as a point image even though the outer nodal image t' is point-like. This results in a linear image flowing in a direction perpendicular to the principal meridian direction of the lens to be tested.

liM閣肯璃一種線−I圃纏−1浦1この直線状像の長
をを第1図に示す」:うに2hとし、以−ト、上nL 
l’f’l成からなるレンズメーターの測定光学系及び
被検レンズな薄肉1/ンズ系として考察ずろこととずろ
The length of this linear image is shown in Figure 1.
Let's consider the measurement optical system of a lensmeter consisting of l'f'l and the thin 1/lens system of the lens to be tested.

ターゲット4反Tの移動量−被検レンズTl−の屈11
〒JJと線形な関係にあり干1位屈折力当すターク1ノ
ド板Tの移動tArlION’。
Movement amount of target 4 anti-T - inflection 11 of test lens Tl-
〒Movement tArlION' of Turk's first throat plate T, which has a linear relationship with JJ and has a refractive power of 1st position.

となろ。ここで、flは一ヒ述したようにコリメーター
レンズCしの焦点距離である。従って被検レンズTしの
円柱屈折力がCデ1オプクーてあろとすると、それによ
ろメータ8ット板Tの移動幅mはとなる。
Tonarro. Here, fl is the focal length of the collimator lens C, as described above. Therefore, if the cylindrical refractive power of the lens T to be tested is C.sub.1, then the moving width m of the meter plate T will be as follows.

すなわち第1図において、第1焦線F」が焦点板り上に
結像している状態からターケ゛ソト板■を上記(2)式
の移動幅mだけ移動させろと、焦点板「上の第1焦線E
□は移動して、かわりに第1焦線E□が焦点板し上に結
像されろことな意味する。
In other words, in FIG. 1, from a state where the first focal line F is focused on the focus plate, the focus plate Caustic line E
□ means that the first focal line E□ should move and be imaged onto the reticle instead.

θこに、ターゲット4反(焦線像)の倍率関係な考えろ
。レンズメーターは、」二連したように被検レンズが1
1111定光路内に配置さ」1ているとき、ターケ゛ソ
ト板■を測定光軸方向に移動量せて被検レンズを射出後
の光束が平行光束となし、その平行)L東か対゛吻しン
ズの焦点位置に配置された焦点板上に集光し、ターケ゛
ソト像を結像できるようになる。
Think about the relationship between θ and the magnification of target 4 (focal line image). The lens meter measures 1 lens to be tested, like 2 consecutive lenses.
1111 When placed in a fixed optical path, move the target plate ■ in the measurement optical axis direction to make the light beam after exiting the test lens a parallel light beam, The light is focused on a focus plate placed at the focal point of the lens, and a target image can be formed.

この状態すなわらターケ゛ソト板■の移動後の位置から
麟萌tlJ P41^11誦Aヒ4LJm−柵1副−Q
’mfl瘤煽鋪痛開圃嚇幽−1−M−被検レンズの屈折
力をもとめろものてある。
From this state, that is, the position after the movement of the target board ■, Rinmen tlJ P41^11 Recite Ahi 4LJm-Fence 1 sub-Q
'mfl Aneurysm Inflammation Pain - 1-M- Determine the refractive power of the lens to be tested.

一般に焦点1111離f1とfJの!っのレンズを間隔
りを隔てて配、11りしかときの合成焦点距離foは、
/    /   /    t ・ ・・・(3) 1 ()  f 1f )  f 1f 1ど1−てり
えら第1イ)。従って、焦点距肉1#f上 のコリメー
ターレンズCLと、焦点距IJJF(被検レンズが乱視
レンズの場合は、第1寸たけ第2の主経線の焦点距削)
を有する被検レンズTLとの合成焦点j、111i鰐t
iFoit、原理上、被検レンズTLをコリメーターレ
ンズOLとコリメーターレンズCL ノ焦、「、′j、
 Ifl」)’lit f )  たけ隔てて配置する
場合、十記(31式: どなイ)。Jなわら合成焦点1?[−i蛸1d常にコリ
メーターレンズの焦点距離f1  となる。
Generally the focus 1111 apart f1 and fJ! The composite focal length fo when there are only 11 lenses arranged at intervals is,
/ / / t ・ ... (3) 1 () f 1f ) f 1f 1d 1-teriera 1st a). Therefore, the collimator lens CL on the focal length 1#f and the focal length IJJF (if the test lens is an astigmatic lens, the focal length of the second principal meridian is reduced by the first dimension)
Synthetic focus j, 111i with test lens TL having
iFoit, in principle, the test lens TL is the collimator lens OL and the collimator lens CL.
Ifl'')'lit f) When placed at different intervals, Juki (Type 31: Donnai). J Nawara synthetic focus 1? [-i1d is always the focal length of the collimator lens f1.

一方、被検レンズTLと対物レンズ0しとは平行光束で
結ばれているから、全光学系の横倍率βは、 2 β−−=−(!’il 1 となる。
On the other hand, since the test lens TL and the objective lens 0 are connected by a parallel light beam, the lateral magnification β of the entire optical system is 2 β−=−(!′il 1 ).

以上より、第1図における第1焦線FL と第1焦線E
□ との間の焦線間距離DF は、DF  =P−f2 000 により求めろことができろ。こJ王より焦線の長さh(
ここで焦線の長さhは光軸を境いに)’+’ 1ull
の艮さヤhとずろ1、焦研全体の長さにノh″′C表わ
さt′1石。)は、比Ilシt+19tl係からと石、
ろ。(7)式より焦点板T上での焦線の長4 h−Jな
求めろと、 hH=− β 「2・C+1000 .2 となる。
From the above, the first focal line FL and the first focal line E in FIG.
The focal line distance DF between □ can be found by DF = P - f2 000. The length of the caustic line h(
Here, the length h of the focal line is from the optical axis)'+' 1ull
The length of the whole length is 1 stone.
reactor. From equation (7), find the length of the focal line on the reticle T, 4h-J, and we get hH=-β'2.C+1000.2.

ここで、円柱IW数をCとしこのレンズメーターに要求
さ1+、イ)J′1ψ小測定可能円柱度数を市販の眼鏡
l/ノノズ最小円柱度数であろ0−0. / 2 !デ
ィオフ0ターとすると、ターケ゛ツト板■上での長さh
「は、(8)式より、 としてカえられる。
Here, if the cylinder IW number is C, the required cylinder power for this lens meter is 1+, and the small measurable cylinder power is 0-0. / 2! If the deoffer is 0, the length h on the target board ■
From equation (8), `` can be added as .

このことより1第λ図(A)に示すようにターケ゛ット
板T上の点・Pターンtoと直線lの中心開用tlE 
Kを、両者が最小円柱度Cにおいて合致するように選べ
ば、k、2h丁          ・・・・・・θ(
)となる。また、点パターンt□の直径aと直、岬lの
幅dのそノ1.それな、k−a=hT及びに−d=I−
I王となるように、 d = hT ト選ぶ。このレンズメーターで最小測定可能円柱度数C
I(91式において、C−θ/2夕としている)を有す
る被検レンズな測定すると、被検レンズの第1の円柱軸
方向とターケ゛ット板T上の直線群パターンの配向力向
が直交したとき(言い換えれは、被検レンズの第2の円
柱軸方向とターケゞット板T」−の直線群・Qターンの
配向方向が一致したとき)、第2図(8)に示すように
焦点板り上での点、9ターン1象t′と直線像t′とは
、被検レンズの第λの円柱屈折力の作用を受は第2の円
柱軸方向に流れ、点・Pターン像t’、直線パターン像
l′とは互いに接するようにすることができろ。すなわ
ち、この点パターンの流れ像t′と直線像l′との交差
角γが直角であるか否かによって面線4’f / Nタ
ーンの配向方向か被検レンズの円柱軸の方向と一致して
いるか否かな検出することができる。
From this, as shown in Figure 1 (A), the point P turn to on the target plate T and the center opening tlE of the straight line l
If K is chosen so that both coincide at the minimum cylindricity C, then k, 2h di......θ(
). Also, the diameter a and the straightness of the dot pattern t□, and the width d of the cape l. Well, ka=hT and ni-d=I-
Choose d = hT so that the king is I. Minimum measurable cylindrical power C with this lens meter
When measuring a test lens with I (in formula 91, it is set as C-θ/2), the first cylindrical axis direction of the test lens and the orientation force direction of the linear group pattern on the target plate T are orthogonal. When (in other words, when the second cylindrical axis direction of the test lens and the alignment direction of the straight line group/Q-turn of the target plate T'- coincide), the focal point is as shown in Fig. 2 (8). The point on the board, the 9-turn 1-quadrant t' and the straight line image t' are affected by the λ-th cylindrical refractive power of the test lens, and flow in the direction of the second cylindrical axis, resulting in a point/P-turn image. t' and the linear pattern image l' can be made to touch each other. That is, depending on whether the intersection angle γ between the flow image t' and the straight line image l' of this point pattern is a right angle, the alignment direction of the surface line 4'f/N turns is aligned with the direction of the cylindrical axis of the test lens. It is possible to detect whether or not the

このよりに、本発明は、人眼の視知覚精度が極めて高い
1基帖直線を比較目安とする小直線の傾き知覚」を利/
1.I L、ているため、円柱軸方向の測定精度を非常
に高くずろことができる。
As a result, the present invention utilizes "the perception of the slope of a small straight line using the one-line straight line as a comparison standard," which has extremely high visual perceptual accuracy for the human eye.
1. Because of this, the measurement accuracy in the cylinder axis direction can be shifted to a very high degree.

以上説、明1.. l打原理にもとず〈レンズメーター
及びレンズメーター用メーケ゛ノド板の置体的実施例を
図をもとに以ト詳説する。捷ず、レンズメーター用メー
ケ゛ノド板の第1の実Mli例を第3図ないし7第A図
にもとすいて説明する。第3図に示すように、メータ8
ソト板1には多動の点、9ターノ21.22.23・・
・・・2nから構成き;f’1.fr、黒血線2とこの
黒血線2に平行に配置きれた直線3とから構成きれた直
線群・やターン4が形成されている。この直線群パター
ン4を構成する黒血線2と直線3の間隔は、前記00式
の関係なもち、寸だ黒血線2を構成する点・マターンの
直径と直線3−の幅は前記00式の関係をもつ。さらに
、ターケ゛ノド板1には、上述の直線群・Pターン4と
直交する第2の直線パターン5が形成されている。この
第2的線パターン5は、後述するように被検レンズの円
柱軸角度の読み取りをしやすくするだめのもので、必ず
しも本発明の必須要素ではない。、 第弘図ないし第4図は、第3図に示したターケ゛ソト板
Tを使用して被検レンズTしの屈折特性を測定する方法
を模式的に示す(図であり、ターケ゛ノドTの焦点板6
への投影像と被検レンズ■しの円柱軸配置の関係を示し
ている。被検レンズTLの第1円柱軸8は、基準水5V
線(焦点板6のθ°−igo°目(票線7)に対し角度
αをもつθ1方向にあり、第1円柱軸9はθ2−01+
90° の方向にあるものとすイ)。
Above explanation, clarification 1. .. Based on the striking principle, embodiments of a lens meter and a make plate for a lens meter will be described in detail below with reference to the drawings. Without further ado, a first practical example of a lens meter make-up plate Mli will be explained with reference to FIGS. 3 to 7A. As shown in Figure 3, the meter 8
Soto board 1 has hyperactive points, 9 tano 21.22.23...
...Constructed from 2n; f'1. fr, a group of straight lines and turns 4 are formed by the black blood line 2 and straight lines 3 arranged parallel to the black blood line 2. The distance between the black blood line 2 and the straight line 3 that constitute this straight line group pattern 4 has the relationship of the above-mentioned 00 formula, and the diameter of the points/patterns that constitute the black blood line 2 and the width of the straight line 3- are the above-mentioned 00 It has the relationship of Eq. Furthermore, a second straight line pattern 5 is formed on the target plate 1, which is orthogonal to the above-mentioned straight line group/P-turn 4. This second line pattern 5 is only for making it easier to read the cylindrical axis angle of the lens to be tested, as will be described later, and is not necessarily an essential element of the present invention. , Figs. 4 to 4 schematically show a method for measuring the refractive characteristics of the target lens T using the focus plate T shown in Fig. 3. 6
The relationship between the projected image and the cylindrical axis arrangement of the lens to be tested is shown. The first cylindrical axis 8 of the test lens TL is connected to the reference water 5V.
line (located in the θ1 direction with an angle α to the θ°−igo° (score line 7) of the focusing plate 6, and the first cylindrical axis 9 is θ2−01+
(a) in the direction of 90°.

ここで、第を図に示すように、直線群がターンf家4 
’の配向方向が、第2円柱軸9の方向と異なるように焦
点板6上に投影さ、l′1.、 、かつ第1円柱軸8の
焦点位置に合焦されているとすれば、恵庭線f象2 ’
の各点、9ターノ像2n”(n’ =1.2.3 )口
、第1円柱軸8の軸方向θ1と平行な流i1.像と斤り
、かつこの流ノ1像は直線像3′の走り方向に利し傾向
しているので、検者はすみゃかにターケ゛ソトの方向か
11シ倹レンズの円柱軸の方向と不一致゛(゛あること
を検知ずろことができろ。
Here, as shown in the figure, the straight line group is turn f house 4
' is projected onto the focusing screen 6 such that the orientation direction of l'1.' is different from the direction of the second cylinder axis 9; , and if it is focused on the focal position of the first cylindrical axis 8, then the Eniwa Line f-elevation 2'
Each point, 9 turn image 2n''(n' = 1.2.3) mouth, flow i1. image parallel to the axial direction θ1 of the first cylindrical shaft 8, and this flow 1 image is a straight line image Since there is a tendency to favor the running direction of the 3' lens, the examiner can immediately detect that the direction of the target lens is inconsistent with the direction of the cylindrical axis of the lens.

次に、第5図に示すように、ターケ゛ノド板Tをその小
・Pターンの流れ像2 n /が直線像3′ (直線・
9クーン3′はぼけてはいイ)が、その直線V1ミ回゛
失っていない)と直交する捷で回転する。そして流f+
、f象が1r1交し/ことき、直線11゛1・やターン
像4′の配向方向は第1円柱軸9の方向θ2と一致し、
寸/こ同時に第、2 i/i線・Pり〜ン像5′は第1
円柱軸8柱軸8の焦点位置に合焦されているので、との
第2直線・やターン像5′は鮮明な合焦像となる。そ1
〜てこの第2直線パターン像5′の方向を焦点板6に形
成i hている角度目盛10で読み取り第1円柱軸角母
θ」をうろ。
Next, as shown in FIG.
9 Kuhn 3' is blurred (yes), but rotates in a direction perpendicular to its straight line V1 (not lost). And flow f+
, the f-elements intersect 1r1, and the orientation direction of the straight line 11゛1. and the turn image 4' coincides with the direction θ2 of the first cylindrical axis 9,
At the same time, the 2nd i/i line/P-line image 5' is at the 1st position.
Since the cylindrical shaft 8 is focused on the focal position of the cylindrical shaft 8, the second straight line/turn image 5' becomes a clear focused image. Part 1
The direction of the second linear pattern image 5' of the lever is read using the angle scale 10 formed on the focus plate 6, and the first cylindrical axis angle matrix θ is measured.

次に、ターケ゛ソト板を回転することなく、ただターケ
゛ノド板を測定光軸方向に移動さぜろど、第4図に示す
ように、直線群・ぐターン像4′が第1円柱軸8の焦点
位置に合焦さり、ろ。このとき直線像3′と恵庭線像2
′とはともに鮮明な像となりかつ恵庭線の点・9ターン
像の各々は第2円柱軸方向θ2 と平行になるため各々
の点パターン像は一部重り合い、全体として一本の直線
像を形成ずろ。
Next, without rotating the target plate, simply move the target plate in the direction of the measurement optical axis, and as shown in FIG. Focus on the position, lol. At this time, straight line image 3' and Eniwa line image 2
′ becomes a clear image, and each of the point and 9 turn images of the Eniwa line is parallel to the second cylinder axis direction θ2, so each point pattern image partially overlaps, forming a single straight line image as a whole. Formation Zuro.

この鮮明となった直線像3′と一本の直線像となった恵
庭線パターン像2′の配向方向から第2円柱軸方向θ2
を角度目盛10で読み取ることができる。
The second cylinder axis direction θ2 from the alignment direction of this clear straight line image 3' and the Eniwa line pattern image 2' that has become one straight line image.
can be read on the angle scale 10.

第7図は本発明のメーケ8ツト板の第2の実施例を示す
平面図である。この実施例におけろターケ゛ノド板20
には、2本の面線群パターン21.22が11いに直交
するように形成キノ1−てぃろ。さらにll′1線群・
やターフ21は、2本の平行な点丙線23と24と、こ
れらに平行でかつその間に配置きノ]−た直線25とか
ら構成さノ)ている。そして点irj 絢23.24を
構成する点パターン26n127 n (n = 1.
2.3−)の面径並びに直線25の幅は、前述の圓式に
より与えられろこと、及び、直線25と点ii、&!2
3.24 トノ1M1ll?%Uソノ′1ぞ11前コボ
の(In式により与えられろことは上述の第1実施例と
同様である。寸だl+il 1子て、直線群・PJ−7
22もJ本の恵庭線3o、31とiim#JI32とか
ら形成さ)]、ている。
FIG. 7 is a plan view showing a second embodiment of the make-up plate of the present invention. In this embodiment, the target plate 20
In this case, two surface line group patterns 21 and 22 are formed so as to be orthogonal to each other. Furthermore, ll′1 line group・
The turf 21 is composed of two parallel dotted lines 23 and 24, and a straight line 25 parallel to these and arranged between them. Then, a point pattern 26n127 n (n = 1.
The surface diameter of 2.3-) and the width of the straight line 25 are given by the above-mentioned circle formula, and the straight line 25 and the point ii, &! 2
3.24 Tonneau 1M1ll? %U sono'1 is 11 before Kobo's (The fact that it is given by the In formula is the same as in the first embodiment above. Dimensions l + il 1 child, straight line group PJ-7
22 is also formed from J Eniwa Lines 3o, 31 and IIM#JI32)].

第g図d1、第7図のターケ゛ソト板20の焦点板6へ
の投影像と被検しンズ丁りとの関係を示す模式図であり
両者の配置関係d前述の81!/実施例の第11ソ1と
同様であり、寸だ回−構成彎累には同一のf′′1号を
附し゛CC説明者省略る。直線!1し9ターンf$21
’、22’の配向力向と被検レンズの円柱+lllノJ
向ノー″か相′?1シする場合、点ifj線像23’、
24’、30′及び31′の点・ぐターン像の流れ像は
それぞれ直線像25′、32′と傾斜する方向に流れそ
の交差角εが直角とならない。
Fig. g is a schematic diagram showing the relationship between the projected image of the focusing plate 20 on the focusing plate 6 of Fig. 7 and the position of the lens to be examined; /It is the same as the 11th section 1 of the embodiment, and the same number f''1 is attached to the dimensional and structural changes.CC explanations are omitted. Straight line! 1 and 9 turns f$21
', 22' orientation force direction and cylinder of test lens + lll no J
In the case of 1 shift, the point ifj line image 23',
The point/gutter images 24', 30' and 31' flow in directions oblique to the straight line images 25' and 32', respectively, and their intersection angles ε are not at right angles.

さらに本実施例においては、/MAの恵庭線を構成する
点パターンを互いに対を成して対向するように構成され
ている。従って、直線!1・Pターンの配向と円柱軸の
配向とが相異していると、第g図に示すように、各々点
・ぐターンの流れ像はΔ1あるいはΔ2の横ずれを生ず
る。そして、ターケ゛ツト板を回転して直線群・eター
ンの配向と被検レンズの円柱軸方向とが一致すると、第
2図に示すように、点パターンの流れ像は横すれかなく
なって互いに一致する。このように本実施例においては
点パターンの流ね、像の直線像に対する傾斜だけでなく
、流れ像相qの合致・非合致をも円柱軸測定に利用でき
、より高い測定精度を得ろことができる。
Further, in this embodiment, the point patterns forming the Eniwa line of /MA are configured to face each other in pairs. Therefore, a straight line! If the orientation of the 1/P turn is different from the orientation of the cylinder axis, the flow images of the respective points/turns will be shifted laterally by Δ1 or Δ2, as shown in Fig. g. Then, when the target plate is rotated and the orientation of the straight line group/e-turn matches the cylindrical axis direction of the test lens, the flow images of the dot patterns no longer cross each other and coincide with each other, as shown in Figure 2. . In this way, in this embodiment, not only the flow of the point pattern and the inclination of the image with respect to the straight line image, but also the matching/non-matching of the flow image phase q can be used to measure the cylinder axis, making it possible to obtain higher measurement accuracy. can.

第10図は本発明のレンズメーター用メーケ゛ント板の
第3の実施例を示す平面図である。このターケ゛ソト板
40には、前述の第2実施例と同様に2本の直線群・ぐ
ターン21.22が直交するように形成きノt1イの切
断さノまた交差部にdをらに公知の円形コ【7す・Qタ
ー/41か形成されている。
FIG. 10 is a plan view showing a third embodiment of the lens meter make-up plate of the present invention. On this cutter plate 40, two straight line groups 21 and 22 are formed so as to be perpendicular to each other, as in the second embodiment, and d is also provided at the cutting edge of t1 and at the intersection. It is formed into a circular shape.

この実施例σ〕ターゲット板は、弱度の円柱屈折力をイ
1ずろ被検1/ノズに対して一直線tj−f 7%ター
/を利用1−2てイーの円柱側1方向を測定し、強度の
円柱屈折力な有すイ)被検レンズに対し7て一円形コ「
1す・Pクーンを利用1してその円柱用1方向を測定す
るものでなる。
This example σ] The target plate measures the cylindrical side 1 direction of E using the weak cylindrical refractive power 1-2 using a straight line tj-f 7% ter/ with respect to the test object 1/nozzle. , has a strong cylindrical refractive power a) A circular shape 7 is placed against the test lens.
This method uses a S.P. Kuhn to measure one direction of the cylinder.

なお、」二連の第1ないし第!実施例におけろ点・9タ
ーンの面径a1及び点面線2a、2bの間隔にの1」、
体的数値例を(9)ないしく10式により求めろと第1
表の71、つになる。
In addition, ``The first to the second of the double series! In the example, the surface diameter a1 of the 9th turn and the distance between the dotted surface lines 2a and 2b is 1",
The first part asks you to find physical numerical examples using equations (9) or 10.
71 in the table becomes one.

第1/1シl lqt 、−I、述のターり゛ノド板な
哨ずろし/ズメーターの横fJkσ片−例を示す光学系
配置図である。
1/1 SIL lqt,-I is an optical system layout diagram showing an example of the transverse fJkσ piece of the above-mentioned tertiary throat plate watch/sumemeter.

測定九個)0」−にd、ターケ゛ノド板1、ターケ゛ソ
ト板1ろ′照明ずイ)ための尤64i 1o o 、コ
リメーターレフ・′ズ101、被検レンズ受は手段10
2、対物し・ンズ103、焦点板6、接眼し/ズ104
シ(−才1そ)1有(〜ている0、ターケ゛ノド扱1は
円筒軸113に取1−]けら11、円筒軸113はビニ
オ/110の回転により前後移a01するラック111
な有ずろ輔受部sz i 12内に回転n」能に嵌入づ
れろ。寸だ、回Q1r、y−71゛ル114を治ずろ4
t: ’?’f 11 sが円筒11tll+ 1.1
3内に嵌入さノ1ている。この1llll’ft’ 1
15の管内面に  lしl’ 11i1+1刀向にスロ
ット116.117か形成さJl−て1、=す、I−ノ
y、 r+ ノl□ 116.117に&:1円筒+M
I+113に4′ff設丁! :j’1. lンーヒ0
ン120.121かぞJlぞJ14111人さノ1てい
イ)。この構成により、回転・〜/ドlし114な回転
(7てクーク゛ノド4反1を光軸0の寸わりに回転C〜
、かつビ′二t)110ケ回転すると/′1zi−l、
リターク゛ツト板1を光りIl+ oの方向にnil接
+7.  「I山 (ヘ イ)1、 寸たターケ゛ソト板1の移動量は、ディオフ0ター値と
してラック111に取付けられ/ζスケール板130か
も読み取ることができろ。このスケール板130の目盛
像130′は目盛リレー光学系200により焦点板6上
に投影される。
Measurement nine pieces) 0"-d, target plate 1, target plate 1, illumination lens) 64i 1o o, collimator reflex lens 101, test lens holder means 10
2. Objective lens 103, focus plate 6, eyepiece lens 104
The rack 111 moves back and forth with the rotation of the binio/110.
Insert the rotary ring into the support part sz i 12. It's time, Q1r, fix y-71゛l 114 4
t: '? 'f 11 s is cylinder 11 tll + 1.1
3 is inserted into 1. This 1llll'ft' 1
On the inner surface of the tube of 15, a slot 116.117 is formed in the direction of the cylinder.
4'FF installation at I+113! :j'1. ln-hi 0
120.121 people Jl 14111 people). With this configuration, rotation ~ / 114 rotations (7 to 4 rotations 1 to 1 about the optical axis 0)
, and bi'2t) 110 rotations /'1zi-l,
Lightly connect the retarded plate 1 to nil +7 in the direction of Il+o. ``Mount I (hey) 1. The amount of movement of the scale plate 1 can also be read as the diopter value on the /ζ scale plate 130 attached to the rack 111.The scale image 130' of this scale plate 130. is projected onto the focus plate 6 by the scale relay optical system 200.

以上説明したレンズメーターの実施例はいわゆる望遠鏡
式レンズメーターについてであるが、本発明はこれに限
定されるものでなく、前記焦点板24をスクリーンとし
た構成からなるいわゆる投影式レンズメーターにおいて
も成立することは説明するまでもない。
Although the embodiment of the lens meter described above is about a so-called telescopic lens meter, the present invention is not limited thereto, and can also be applied to a so-called projection type lens meter having a configuration in which the focusing plate 24 is used as a screen. There is no need to explain what it does.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明ずろためのレンズメーター
の光学配置図、第2図(A)、(B)は点パターンと直
線の関係を示す図、第3図は本発明のターケ゛ット板の
第1の実施例を示す平面図、第グ図ないし第を図は第1
の実施例の作用を説明するだめの模式図、第7図は本発
明のターケ゛ソト板の第2の実施例を示す平面図、第g
図及び第7図は第!実施例の作用を説明するだめの模式
図、第1Oし1は本発明のクーケ゛ット板の第3の実施
例を示す平面図、第1/図は本発明のレンズメーターの
実施例を示す説明図である。 T、1.20.40−ター’y゛7 t・板CL、10
1・・・・・コリメーターレンズ102・・・被検レン
ズ受は部材 OL、103・・・・・対物レンズ 6  ・焦点板
Fig. 1 is an optical arrangement diagram of a lens meter for detailed explanation of the present invention, Figs. 2 (A) and (B) are diagrams showing the relationship between dot patterns and straight lines, and Fig. 3 is a target plate of the present invention. A plan view showing the first embodiment of the invention.
FIG. 7 is a schematic diagram for explaining the action of the embodiment of FIG. 7, and FIG.
Figures and Figure 7 are the! A schematic diagram for explaining the function of the embodiment, No. 1 is a plan view showing a third embodiment of the coupon plate of the present invention, and Fig. 1 is an explanatory diagram showing an embodiment of the lens meter of the present invention. It is. T, 1.20.40-ter'y゛7 t・plate CL, 10
1...Collimator lens 102...Test lens holder is member OL, 103...Objective lens 6 - Focusing plate

Claims (1)

【特許請求の範囲】 (1)  測定光軸を回動軸として回動可能なターケゝ
ソト板と、該ターケ゛ット板照明用の光源と、該ターケ
゛ソト板の位置に焦点を有するコリメーターレンズと、
該コリメーターレンズからの平行光束を焦点板上に集光
をぜ該ターケ゛ソト板の像を該焦点板上に結像するだめ
の対物レンズと、該コリメーターレンズと該対物レンズ
の間に配置きれた被検レンズを載置ずろための被検しン
ズ受は手段とを少なくとも廟するレンズメーターにおい
て、 前記ターケ゛ノド板は少なくとも7本の黒血線と、該黒
血線に平行な少なくとも7本の直線とから成る直線群パ
ターンを有しており、前記コリメーターレンズの焦点距
離をfよ (ミリ)、前記対物レンズの焦点距離をf2
11J)、前記被検し/ズ受は手段の使用有効光束径な
φ(< IJ ) 、要求されろ被検レンズの最小Ml
ll固定度数をC(ディオプター)とそれぞれするとき
、前記黒血線を構成する点/、oターンの直径及び前記
直線の幅が として力えられる大きさh□をもち、かつ前記黒血線と
前記直線の間隔は2hTの量を有していることを特徴と
するレンズメーター。 (2)前記ターケ゛ット板には、前記直線群・やターン
が2本互いに直交するように形成されていることを特徴
とする特許請求の範囲第1項記載のレンズメーター。 (3)前記直線群・ぐターンは、互いに平行な第1及び
第2の黒血線と、該第1及び第2の黒血線の間に、これ
らと平行に配置された7本の直線と1から成り、かつ該
第1点直線と該直線との間隔及び該第2点直線と該直線
との間隔はそれぞれ、2110であることを特徴とする
特許請求の範囲第1項寸だに第2項記載のレンズメータ
ー。 (り)  前記2本の直線群パターンの交差部は切断さ
れており、かつこの切断部には円形コロナ・Qターンか
配きれていることを特徴とする特許請求の範囲第2項寸
たけ第3項記載のし/ズメーター轡 。 (力 測定光軸を回動軸として回動oJ能なターケ゛ツ
ト板を照明するだめの光源と、該ターケ゛ノド板の光束
を)ど行光束とするだめの焦点距離f1(−、す)のコ
リメーターレンズと、被検レンズを載置ずろための使用
有効光束径φ(ミリ)の被検レンズ受は部組と該コリメ
ーターレンズからの光束を焦点板上に焦光し該ターケ゛
ノド板の像を該焦点板」−に結像きせるだめの焦点距離
f2 (より)の対物レンズとを少なくともイ」ずイ)
レンズメーターのメータ8ソト板てあって、そのターケ
゛ノド板には少なくとも7本の点IG線と、該黒血線に
平行な少なくとも7本の内線とがら成ろ1h線IT・Q
ターンな有して」・・す、前記コリメーターレンズの焦
点距離をfl(< IJ l 、前記対物レンズの焦点
距離を12(ミリ)、前記被検レンズ受は手段の使用有
効光束径なφ(ミリ)、要求さitろ被検レンズの最小
測定円柱度数をC(ディオプター)とぞ、11゜ぞわ、
ずろとき、前記黒血線を構成する点パターンの直径及び
前記直線の幅は、 として与えられろ大きさh工をもち、 かつ、前記黒血線と前記直線の間隔は、2h□の量を有
していることを特徴とするレンズメーターに使用されろ
メータ8ノド板。 (乙) 前記直線群・Qターンが2本互いに直交ずろよ
うに形成きれていることを特徴とする特π「請求のei
i)間第j項記載のレンズメーターに使1月さノするタ
ーケゝノド板。 (7)前記直線群パターンは、〃いに平行な第1及び第
2の黒血線と、該第1及び第!の黒血線の間にこtlら
と平行に配置され/こ7本の直線とから成り、かつ該第
1点直線と該直線との間隔及O該第λ点面線と該直線と
の間隔けぞtlぞtl−?[1工であイ)ことを特徴と
する特π「請求の範囲第夕項斗たけ第を項記載のレンズ
メーターに使用略りろターケゞノド板。 <g)  前記2本のifS線群、9ターンの交差部は
切断さilており、かつ、この切断部には円形コロナパ
ターンが配きノ1ていることな特徴とずろ特許請求の範
囲第6項または第7項記載のレンズメーターに使1[1
をilろターク゛ソト板。
[Scope of Claims] (1) A target plate that is rotatable about a measurement optical axis, a light source for illuminating the target plate, and a collimator lens having a focal point at the position of the target plate.
An objective lens for condensing the parallel light beam from the collimator lens onto the focusing plate and forming an image of the focusing plate on the focusing plate, and an objective lens disposed between the collimator lens and the objective lens. In the lens meter, the target lens plate has at least seven black blood lines and at least seven black blood lines parallel to the black blood lines. The focal length of the collimator lens is f (mm), and the focal length of the objective lens is f2.
11J), the above-mentioned lens/receiver is the effective luminous flux diameter φ (< IJ ) of the means used, and the minimum Ml of the lens to be tested is required.
When the fixed power is C (diopter), the point constituting the black blood line /, the diameter of the o-turn, and the width of the straight line have a size h□ that can be forced as, and the black blood line and A lens meter characterized in that the distance between the straight lines has an amount of 2hT. (2) The lens meter according to claim 1, wherein the target plate is formed with two groups of straight lines or turns so as to be perpendicular to each other. (3) The straight line group/gutern includes first and second black blood lines that are parallel to each other, and seven straight lines arranged parallel to these between the first and second black blood lines. and 1, and the distance between the first point straight line and the straight line and the distance between the second point straight line and the straight line are each 2110. The lens meter described in Section 2. (ri) The intersecting portion of the two straight line group patterns is cut, and a circular corona/Q-turn is disposed at the cut portion. The measurements listed in Section 3. (A light source that illuminates a target plate that can rotate with the force measurement optical axis as the rotation axis, and a collimator with a focal length f1 (-, The lens and the test lens holder, which has an effective luminous flux diameter φ (mm) used for mounting and shifting the test lens, focus the light flux from the subassembly and the collimator lens onto the focusing plate, and form an image on the focal plate. At least an objective lens with a focal length f2 to form an image on the reticle
There is a meter 8 side plate of the lens meter, which consists of at least 7 point IG lines and at least 7 extension lines parallel to the 1h line IT/Q.
The focal length of the collimator lens is fl (< IJ l , the focal length of the objective lens is 12 (mm), and the effective luminous flux diameter of the test lens receiver is φ (mm), the minimum measured cylindrical power of the lens to be tested is C (diopter), 11°.
The diameter of the dot pattern constituting the black blood line and the width of the straight line are given as follows: and the distance between the black blood line and the straight line is 2h square. An 8-node meter plate used in a lens meter, characterized in that it has an 8-node plate. (B) The feature π "Claim ei" characterized in that the two straight line groups/Q turns are formed so as to be orthogonal to each other.
i) A turret plate that is used for the lens meter described in item j. (7) The straight line group pattern includes first and second black blood lines that are parallel to each other, and the first and second black blood lines that are parallel to each other. between the black blood lines and consisting of seven straight lines, and the distance between the first dotted line and the straight line and the distance between the λth dotted plane line and the straight line. Let's space it out tl-? <g) The two ifS line groups , the intersection of the nine turns is cut, and a circular corona pattern is disposed on the cut part.The lens meter according to claim 6 or 7, ni messenger 1 [1
Illo Turksoto board.
JP13893982A 1982-08-10 1982-08-10 Lens meter and target plate used therefor Granted JPS5928640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13893982A JPS5928640A (en) 1982-08-10 1982-08-10 Lens meter and target plate used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13893982A JPS5928640A (en) 1982-08-10 1982-08-10 Lens meter and target plate used therefor

Publications (2)

Publication Number Publication Date
JPS5928640A true JPS5928640A (en) 1984-02-15
JPH0353572B2 JPH0353572B2 (en) 1991-08-15

Family

ID=15233673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13893982A Granted JPS5928640A (en) 1982-08-10 1982-08-10 Lens meter and target plate used therefor

Country Status (1)

Country Link
JP (1) JPS5928640A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120498A (en) * 1985-11-19 1987-06-01 Matsufumi Takatani Composite chromium plating and plating method
JPH06316789A (en) * 1993-08-27 1994-11-15 Matsufumi Takatani Composite chromium plating and plating method
US5582707A (en) * 1993-11-09 1996-12-10 Golan Galvanics, Ltd. Electrolyte for electroplating of chromium based coating, having improved wear resistance, corrosion resistance and plasticity
US6013380A (en) * 1996-11-11 2000-01-11 Teiko Piston Ring Co., Ltd. Composite chromium plating film and sliding member covered thereof
US6054225A (en) * 1996-11-11 2000-04-25 Teikoku Piston Ring Co., Ltd. Composite chromium plating film and sliding member covered thereof
CN107741206A (en) * 2017-09-20 2018-02-27 宁波舜宇仪器有限公司 Parallel light tube and target unit and module detection method containing the light pipe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514506U (en) * 1978-07-14 1980-01-30
JPS5729922A (en) * 1980-07-31 1982-02-18 Tokyo Optical Co Ltd Measuring device for refractive characteristic of optical system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514506B2 (en) * 1973-06-18 1980-04-16

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514506U (en) * 1978-07-14 1980-01-30
JPS5729922A (en) * 1980-07-31 1982-02-18 Tokyo Optical Co Ltd Measuring device for refractive characteristic of optical system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120498A (en) * 1985-11-19 1987-06-01 Matsufumi Takatani Composite chromium plating and plating method
JPH06316789A (en) * 1993-08-27 1994-11-15 Matsufumi Takatani Composite chromium plating and plating method
US5582707A (en) * 1993-11-09 1996-12-10 Golan Galvanics, Ltd. Electrolyte for electroplating of chromium based coating, having improved wear resistance, corrosion resistance and plasticity
US6013380A (en) * 1996-11-11 2000-01-11 Teiko Piston Ring Co., Ltd. Composite chromium plating film and sliding member covered thereof
US6054225A (en) * 1996-11-11 2000-04-25 Teikoku Piston Ring Co., Ltd. Composite chromium plating film and sliding member covered thereof
CN107741206A (en) * 2017-09-20 2018-02-27 宁波舜宇仪器有限公司 Parallel light tube and target unit and module detection method containing the light pipe

Also Published As

Publication number Publication date
JPH0353572B2 (en) 1991-08-15

Similar Documents

Publication Publication Date Title
DE602004004916T2 (en) OPTICAL FREE-FORM SURFACE MEASURING DEVICE AND METHOD
JPS62122629A (en) Eye refractometer
US4130361A (en) Lens meter without relatively moving optical parts
JPS5928640A (en) Lens meter and target plate used therefor
US3574464A (en) Camera test equipment and method
CN101652696A (en) Optical device
JPS6249925B2 (en)
JPH0365488B2 (en)
US3832063A (en) Lens axis detection using an interferometer
WO2006070037A2 (en) Aperture diffraction interferometer (adi) for the inspection and measurement of ophthalmic optical components
JPS6345530B2 (en)
JPH0353571B2 (en)
JPH0346774B2 (en)
Mandell Jesse Ramsden: inventor of the ophthalmometer
JP2605528Y2 (en) Lens meter
SU756246A1 (en) Autocollimation microscope for measuring astigmatizm of optical system
EP0025695A2 (en) Instrument for measuring or marking out the distance of a point from a basic plane or line
CN112964203B (en) Glancing incidence common-path self-interference device for detecting rough plane surface type
JPH06347732A (en) Lens meter
JPS6052371B2 (en) Focal position measuring device
US1649106A (en) Device for testing bolt threads
US1588221A (en) Method of making mark plates for micrometer oculars and mounting of the same
SU1254291A1 (en) Device for measuring diameter of shaft
Tai-huo et al. Theory And Structure Of A Novel Laser Interferometric Lens-Centring System
JPS6240568Y2 (en)