JPS5926979A - Basic indefinite form refractories for molten metal vessel - Google Patents

Basic indefinite form refractories for molten metal vessel

Info

Publication number
JPS5926979A
JPS5926979A JP57135389A JP13538982A JPS5926979A JP S5926979 A JPS5926979 A JP S5926979A JP 57135389 A JP57135389 A JP 57135389A JP 13538982 A JP13538982 A JP 13538982A JP S5926979 A JPS5926979 A JP S5926979A
Authority
JP
Japan
Prior art keywords
basic
cracks
construction
coarse
refractories
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57135389A
Other languages
Japanese (ja)
Other versions
JPS6028783B2 (en
Inventor
英雄 田中
康平 島田
倫 中村
明 渡辺
岡村 武雄
茂幸 高長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Kyushu Refractories Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Refractories Co Ltd, Nippon Steel Corp filed Critical Kyushu Refractories Co Ltd
Priority to JP57135389A priority Critical patent/JPS6028783B2/en
Publication of JPS5926979A publication Critical patent/JPS5926979A/en
Publication of JPS6028783B2 publication Critical patent/JPS6028783B2/en
Expired legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は取鍋、炉外精錬炉、タンディツシュなど(以
下単に取鍋等という)の主として製鋼用の溶融金属容器
の内張り耐火物として有用な塩j、4性不定形耐火物に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a 4-character amorphous salt useful as a refractory lining for molten metal containers mainly for steelmaking, such as ladles, external refining furnaces, and tundishes (hereinafter simply referred to as ladles). It concerns refractories.

近年製鋼においては、高級鋼棟の需要増大に伴なう連続
鋳造、脱ガス処理、取鍋精錬等の採用によシ出鋼温度が
上昇し、取鍋等の使用温度は11毛<なシ、しかも鋼の
取鍋内滞留時間が長くなるなど取鍋等の使用条件は益々
苛酷になっている。
In recent years, the steel manufacturing industry has seen an increase in the tapping temperature due to the adoption of continuous casting, degassing treatment, ladle refining, etc. due to the increasing demand for high-grade steel buildings, and the operating temperature of ladle etc. has reached 11 mm. Furthermore, the conditions for using ladles and the like are becoming increasingly severe, such as the residence time of steel in the ladle becoming longer.

このため取鍋等の内張シ耐大物としてこれまで汎用され
ていた高けい酸質耐火物に代えて、ジルコン質あるいは
高アルミナ質等の高級耐火物が使用されるようになって
きているが、これらはスラグ面1食性の点で充分満足す
る耐用が得られないのが現状である。
For this reason, high-grade refractories such as zircon or high alumina are now being used in place of the high silicic acid refractories that have been widely used for large linings such as ladles. Currently, these materials do not have sufficient durability in terms of monocorrosion on the slag surface.

このスラグ面1食性の向」二による耐用の飛躍的増大と
共に、鋼の清浄化をはかる目的で塩基性耐火物を取鍋等
に適用する試みがなされてはいるが、塩基性耐火物の宿
命である熱的および構造的スポーリングによる亀裂の発
生と、この亀裂への地金の侵入と耐火物の剥離の発生に
よる損耗によって塩基性耐火物の有する慶れだ効果を活
用できず、未だ実用化舌れる1でに至っていない。
Along with the dramatic increase in service life due to the corrosion resistance of the slag surface, attempts have been made to apply basic refractories to ladles, etc. for the purpose of purifying steel, but the fate of basic refractories is Due to the occurrence of cracks due to thermal and structural spalling, the intrusion of metal into the cracks, and the wear and tear caused by peeling of the refractory, the advantageous effects of basic refractories cannot be utilized, and they are still not practical. I haven't reached the point where I can change my mind.

取鍋等の施工面では、れんが績み施工から流し込み、振
りv1成形lとを利用する不定形施工への移行が行なわ
れている。この不定形施工は、(1)れんが積み施工に
比べて簡餠である。(2)施工現場での発塵などがなく
作業環境が改善される。(3)中間修理時に継ぎ足しh
【クエが可[誦で、れんがの場合のように残寸のある未
使用部を廃却しないですみ、コスト低減となる。(4)
耐火物製造時の焼成などが不要で省エネルギーとなる。
In terms of construction of ladles, etc., there has been a shift from brick laying construction to irregular-shaped construction using pouring and swing v1 molding. This irregular-shaped construction is simpler than (1) brickwork construction. (2) The work environment is improved because there is no dust generated at the construction site. (3) Addition h during interim repairs
[Questions can be used] There is no need to dispose of unused parts with remaining space, as is the case with bricks, which reduces costs. (4)
There is no need for firing during the manufacture of refractories, resulting in energy savings.

などの利点が多いが、なかでも最大の利点は施工時間の
短縮による省力化である。例えば150 ton取鍋の
施工の場合、従来のれんが粕み施工では3日を要すると
ころが、流し込み施工では僅か半1」で終了するのであ
る。
There are many advantages such as, but the biggest advantage is labor saving by shortening the construction time. For example, in the case of constructing a 150 ton ladle, conventional brickwork construction would take three days, but pouring construction could be completed in just half an hour.

しかして前述した塩基性耐火物を不定形施工すれば最適
であると考えられるが、塩基性耐火物による取締等の溶
融金属容器は、れんがletみl名工に比較しても強度
が小さく、体積変化が犬きく、また充填が悪いうえに塩
基性材料の特性である熱膨張が大きく、溶融スラグを吸
収しやすいことがll(なって亀裂の集中発生と剥離が
起る欠点がある。
Therefore, it is thought that it would be optimal if the above-mentioned basic refractory is used for construction into an irregular shape, but the molten metal container made of basic refractory, etc., has low strength and volume compared to the brickwork. It has the disadvantage that it is difficult to change, has poor filling, and has a large thermal expansion characteristic of basic materials, so it easily absorbs molten slag (this has the disadvantage of causing concentrated cracking and peeling).

これらの問題を解決すべくこれまでにも4・11々の試
みがなされている。例えば(1)  添加水分を少なく
する。(2)流し込み施工時にバイブレータ−を使用す
る。(3)  乾式施工する。などの検討−がなされ、
これらの対策によシある程度の改善はされているが、未
だ不十分である。
Attempts have been made to solve these problems since April 11th. For example, (1) reduce the amount of added water. (2) Use a vibrator during pouring work. (3) Dry construction. Such considerations were made,
Although these measures have brought about some improvement, they are still insufficient.

本発明者らは、これらの点に鑑み独々検討を重ねた結果
、塩基性不定形耐火物による取鍋等に発生する亀裂と剥
離の防止のために粗大粒の使用に着目したものである。
In view of these points, the present inventors conducted independent studies and focused on the use of coarse particles to prevent cracks and peeling that occur in ladles, etc. made of basic monolithic refractories. .

特公昭56−22835号公報にはセメントロータリー
キルンのキャスタブル施工に粒径4ON11以下のアル
ミナ−シリカ系粗大粒を用いて、熱による体積安定性、
耐摩耗性、強度の向上がなされ、しかも材料のポンプ圧
送が可能であることがのべられている。
Japanese Patent Publication No. 56-22835 discloses that alumina-silica coarse grains with a grain size of 4ON11 or less are used for castable construction in a cement rotary kiln to improve volume stability due to heat.
It is said that the wear resistance and strength have been improved, and that the material can be pumped.

また特開昭53−4022号には高炉出銑樋用耐火物に
粒径10〜100 mの高アルミナ質粗大粒を用いて充
填率、強度、耐食性、耐摩耗性などを向上させる方法に
ついてのべられている。
In addition, JP-A No. 53-4022 describes a method for improving filling rate, strength, corrosion resistance, wear resistance, etc. by using coarse high alumina particles with a particle size of 10 to 100 m in refractories for blast furnace tap runners. It's being ignored.

本発明者らは塩基性不定形耐火物施工体の加熱冷却に伴
なう亀裂の発生について詳細に検討した結果、加熱冷却
に伴なって施工体内に発生する熱応力は、特にマトリッ
クス部を伝播し、組織的に特に弱い点に集中し、大きな
亀裂となる。
The present inventors conducted a detailed study on the occurrence of cracks due to heating and cooling of basic monolithic refractory construction bodies, and found that the thermal stress generated within the construction body due to heating and cooling propagates particularly through the matrix part. However, they concentrate on particularly weak points in the organization, leading to large rifts.

ところが施工体内に粗粒が存在すると、不定形施工体で
はマトリックス部に比較して粗粒部の方が組織が強固で
あるので、応力の伝播は止まる。
However, if coarse grains exist in the construction body, the structure of the coarse grain part is stronger than that of the matrix part in the irregularly shaped construction body, so the propagation of stress is stopped.

しかじ粗粒があまシ大きくない場合応力の伝播が粗粒と
の境界に達すると、粗粒を回り込む形で伝播する。
However, if the coarse grains are not very large, when the stress propagates to the boundary with the coarse grains, it propagates around the coarse grains.

この粗粒がある程度以上に大きいと、応力の伝播が粗粒
を回り込むことができず、そこで伝播が止まり、結局応
力が一点に集中することなく、分散された状態で留まる
ことになる。従って、マトリックス中に極く微細な亀裂
が発生することはあっても、集中して大きな亀裂になる
ことはなく、地金の侵入や剥離の発生にはつながらない
ことが判った。
If the coarse grains are larger than a certain level, the propagation of stress will not be able to go around the coarse grains, and the propagation will stop there, resulting in stress not being concentrated at one point but remaining in a dispersed state. Therefore, it was found that although very fine cracks may occur in the matrix, they do not concentrate to become large cracks, and do not lead to the intrusion of base metal or the occurrence of peeling.

一方、取鍋等の溶融金属容器に塩基性不へ定形材を10
0眉以上の施工厚さで施工した場合、稼動面よシ30〜
50mm内部までに集中的に亀裂が発生し、受鋼を重ね
ると亀裂が大きく発よ・賀して30〜50mmの厚さの
処で剥離が起る。
On the other hand, add 10% of the basic non-forming material to a molten metal container such as a ladle.
When applied with a thickness of 0 or more, the working surface will be 30~
Cracks occur intensively within 50mm, and when the steel plates are stacked, the cracks grow larger and peeling occurs at a thickness of 30 to 50mm.

稼動面よシロ0#I以上の内部には亀裂の発生tよ非常
に少なく剥離の原因とはならない。
On the operating surface, the occurrence of cracks is very small and will not cause peeling.

この理由としては、主に次の2点が考えられる。There are two main reasons for this.

一つは、稼動中の取鍋等は1000℃から1600°C
程度の範囲で急熱、急冷が繰返されており、この熱サイ
クルの温度差は稼動面より内部になるに従って次第に小
さく々り稼動面よl) 5 Q FI1m内部では温度
差は非常に小さくなる。
One is that the temperature of the ladle etc. during operation is 1000°C to 1600°C.
Rapid heating and cooling are repeated within a certain range, and the temperature difference in this thermal cycle gradually becomes smaller as you move from the operating surface to the inside.The temperature difference becomes extremely small inside the operating surface.

もう一つの理由はスラグの侵入である。稼動面よ930
〜50厘まではスラグの侵入が著しく、侵入したスラグ
と〜耐火物とが反応し、原組織と異なった組織となり、
構造的スポーリングが発生し剥離となる。
Another reason is slag intrusion. Operational aspect 930
Until ~50 rin, the penetration of slag is significant, and the invaded slag reacts with the ~ refractory, resulting in a structure different from the original structure.
Structural spalling occurs and peeling occurs.

この発明は塩基性耐火月利中に粒径5o〜90amの粗
大粒を15〜50 M ’i;: %配合した溶融金属
容器用塩基性不定形劇火物である。
This invention is a basic amorphous explosive for molten metal containers, which contains 15 to 50 M'i;:% of coarse particles with a particle size of 5 to 90 am in a basic refractory.

粗大粒として粒径50〜9 Q mmのものを使用する
ことにより、マトリックス部に発生した熱応力の伝播が
この粗大粒で阻止され、一点に集中することがない。即
ち通常に使われる粒度構成の塩基性不定形材にみられる
稼動面より30〜506〜内部に集中的に発生する亀裂
が、粒径5o〜90mmの粗大粒を使用することにょシ
分断され、連続シタ亀裂となることを防止するのである
By using coarse particles having a particle size of 50 to 9 Q mm, the thermal stress generated in the matrix portion is prevented from propagating and is not concentrated at one point. In other words, the cracks that occur intensively in the 30 to 50 mm interior of the working surface, which are found in basic irregularly shaped materials with commonly used particle size configurations, can be broken up by using coarse particles with a particle size of 5 to 90 mm. This prevents continuous cracks from forming.

実際に取鍋に使用した内張シ耐大物の結果をみても粒径
50〜90面の粗大粒を用いたものは一部の粗大粒とマ
トリックス部の境界部あるいはマトリックス部に断続的
に微細な亀裂が多く発生しその亀裂は全て粗大粒によシ
分断されており、連続的な集中亀裂はなかった。
Looking at the results of large-sized lined materials actually used in ladles, those using coarse grains with a grain size of 50 to 90 sides show that fine grains are found intermittently at the boundary between some coarse grains and the matrix part, or at the matrix part. Many cracks occurred, all of which were divided by coarse grains, and there were no continuous concentrated cracks.

これは粗大粒が組織全体の楔的効果を果しているもので
あり、また微細亀裂のだめ地金の侵入もなく剥離も発生
していない。しかし粗大粒として4 Q mm以下の粒
径のものを使用した場合には、亀裂の分断効果は小さく
、楔的役割が十分に発、11毛されず、粗大粒を使用し
ない場合はどではないが、亀裂の集中発生とその亀裂の
発達による地金の侵入と剥離が起υ、また粒径90#以
上とすると施工時の流動性が悪くて粒分離する可能性が
あって好ましくなく、このためこの発明では粗大粒の粒
径を50〜9Qmmの範囲に限定するものである。
This is because the coarse grains have a wedge-like effect on the entire structure, and there is no intrusion of bare metal due to microcracks and no peeling. However, when coarse grains with a particle size of 4 Q mm or less are used, the crack splitting effect is small, and the wedge-like role is not sufficiently developed. However, the concentration of cracks and the development of the cracks may cause intrusion and peeling of the base metal, and if the particle size is 90# or more, the fluidity during construction may be poor and the particles may separate, which is undesirable. Therefore, in this invention, the particle size of the coarse particles is limited to a range of 50 to 9 Qmm.

上記のようにこの発明では粒径50〜9 Q mmの粗
大粒を塩基性耐火材)I中に15〜50重量%好ましく
は25〜40重量%含有させるものであり、この粗大粒
の含有量−が15重量飴以下では粗大粒裂が発生し、地
金の侵入剥離が起とシ、また50重址チ以上では混練時
や輔工時に流動性が十分でなくて粒分yltが起こりゃ
すくなって好ましくなへこの発明で塩基性11i1J火
材料とは、マグネシアクリンカ−、ドロマイトクリンカ
−、マグネシアスピネル、クリンカー、マグクロクリン
カー、マグネシアシリカ質などの公知のものを云’−”
sMgQとCaOの含有量がその舎利で507jtff
i%以上のものが好ましい。
As mentioned above, in this invention, coarse particles with a particle size of 50 to 9 Q mm are contained in the basic refractory material (I) in an amount of 15 to 50% by weight, preferably 25 to 40% by weight, and the content of these coarse particles is - If the weight of the candy is less than 15, coarse grain cracks will occur, causing intrusion and peeling of the base metal, and if the weight is more than 50, the fluidity will not be sufficient during kneading or machining, and grain separation may occur. In the present invention, the basic 11i1J fire material, which is preferred because of its low density, refers to known materials such as magnesia clinker, dolomite clinker, magnesia spinel, clinker, maguro clinker, and magnesia silica.
The content of sMgQ and CaO is 507jtff in the ashes.
i% or more is preferred.

これは50爪量饅以下では塩基性材料のスラグに対する
)η目食性がyr L <。失なわれるためである。
This means that when the amount is less than 50, the η eye eating (to the slag of basic material) is yr L <. Because it is lost.

この塩基性材料中のMgOとCaO以外の成分としては
、S i02、A11’g08、Zr0B、TiO2、
Cr20BなどであッテMgO旬aOと反応して融点を
下げたシ、その他の特性を著しく成子させるものでなけ
ればよい。
Components other than MgO and CaO in this basic material include Si02, A11'g08, Zr0B, TiO2,
It is sufficient as long as Cr20B or the like does not react with MgO to lower the melting point or significantly deteriorate other properties.

この発明に使用する粗大粒は粗大粒以外の成分と反応し
て低1i<’If点物を形成したり、スラグ耐食性を低
下させないもので、あって、粗大粒の圧縮強さが300
−以上、好ましくは500%)以上、気孔率は20qb
以下のものが必要である。
The coarse grains used in this invention do not react with components other than the coarse grains to form low 1i<'If points or reduce slag corrosion resistance, and the coarse grains have a compressive strength of 300
- or more, preferably 500%) or more, porosity is 20qb
You will need the following:

これは圧縮強さが300憤未渦では熱応力によって粗大
粒自身が割れたシ、マトリックス部に発生した13.裂
を止めることができないおそれがあり、才だ気孔率が2
0チをこえると、スラグが侵入しやすくなって好ましく
ないためである。
This is because when the compressive strength was 300 degrees, the coarse grains themselves cracked due to thermal stress, which occurred in the matrix part13. If the porosity is 2, there is a risk of not being able to stop the cracks.
This is because if the temperature exceeds 0, slag easily enters, which is undesirable.

次にこの発明で使用する粗大粒の製造方法としては、公
知のれんが↓遺失によシ原料を粒度配合し、バインダー
を加え混練、成形、焼成したものを粗砕して篩分ける方
法、ベレツター、転動造粒機その他の方法で造粒し、そ
のt1使用する方法、あるいは天然マグネザイト鉱石を
そのまま焼成し、粗砕して篩分ける方法など、各種の方
法が用いられ、前述の条件を満足するものであれば特に
限’iNするものではない。
Next, as a method for producing the coarse grains used in this invention, there is a known method of blending the grain size of the brick material, adding a binder, kneading, molding, and firing, and then coarsely crushing and sieving the resulting material. Various methods are used, such as granulating with a rolling granulator or other method and using the t1, or calcination of natural magnezite ore as it is, coarsely crushing and sieving, and satisfying the above conditions. There is no particular restriction as long as it is something.

この発明による塩基性不定形耐火物の粗大粒以外で特に
施工性、性状などに影響を及はすものは、微粉部(粒径
0.125a以下)である。
In addition to the coarse particles of the basic monolithic refractory according to the present invention, what particularly affects workability, properties, etc. is the fine powder portion (particle size of 0.125a or less).

この微粉の使用量は、粗大粒の使用M1.によって調整
されるが、耐火材原料の25〜35]F量条用いること
が好丑しい。面]火材以外では必要に応じて結合剤、減
水11す、分散剤、解膠剤、爆裂防1ト剤、増粘剤など
通常不定形耐火物に使用されるものを適宜用いればよく
、結合剤としては、自硬性まtcは熱硬化性物質例えば
リン酸アルミニュウム、アルミナセメント、けい酸ソー
ダ、マグネシアセメント、硫酸アルミニウム、粘土、エ
チルシリケートなどがある。
The amount of this fine powder used is M1. However, it is preferable to use 25 to 35] F of the refractory raw material. ] In addition to fire materials, binders, water-reducing agents, dispersants, peptizers, explosion prevention agents, thickeners, etc. that are normally used for monolithic refractories may be used as appropriate. Examples of binders include self-hardening materials such as thermosetting materials such as aluminum phosphate, alumina cement, sodium silicate, magnesia cement, aluminum sulfate, clay, and ethyl silicate.

減水剤、分散剤、解膠剤、としてはリン酸塩、けい酸塩
、スルホン酸系化合物などが、葦だ爆裂防止剤としては
各種界面活性剤が用いられる。
Phosphates, silicates, sulfonic acid compounds, etc. are used as water reducing agents, dispersants, and peptizers, and various surfactants are used as reed explosion prevention agents.

これらの物質を適当数州いれば流し込み施工の場合はボ
ンド部の粘性は比較的大きく、粗大粒を用いても沈降に
よる粒分離は起こりにくいが、バイブレータ−を使用す
る場合には公知のパルプ廃液、シリカゲル、粘土、CM
c1アルギン酸ソータζPVAなどの増粘剤を少量添加
することによって粗大粒の沈降を防止することができる
If a suitable number of these substances are used, the viscosity of the bond part will be relatively high in the case of pouring construction, and particle separation due to sedimentation will not occur even if coarse particles are used, but when using a vibrator, known pulp waste liquid , silica gel, clay, CM
Sedimentation of coarse particles can be prevented by adding a small amount of a thickener such as c1 alginate sorter ζ PVA.

この発明による粗大粒を配合した塩基性不定形it大物
の取鍋等への施工法としては、流し込み、スタンプ、振
動成形など公知の施工法を採用すればよいが、なかでも
流し込み施]二法が最も好ましい0 この流し込み施工の揚台には、粗大≧′ケその他の酬人
材、結合剤などの添IJrl剤を秤量し、ポルテックス
ミキサー、モルタルミキサー、セメントミキサーなどな
るべく圧縮を伴なわないミキサー)自を用いて混合し、
仄いて水を固形′吻の5〜8係加えて3〜20分間混練
し、型枠にi+’+t L込む0脱!1.すまでの養生
時間は気温に左右されるが、0.5〜4時間程度が好ま
しい。その後昇温乾燥され、使用される。
As a construction method for ladle, etc. of basic amorphous IT large objects containing coarse particles according to the present invention, known construction methods such as pouring, stamping, and vibration molding may be adopted, but among them, two methods are known: pouring, stamping, vibration molding, etc. is the most preferable 0 For this pouring construction, weigh the coarse ≧'ke and other additives and additives such as binders, and use a mixer that does not involve compression as much as possible, such as a portex mixer, mortar mixer, or cement mixer. ) mixed using the
Then add 5 to 8 volumes of water to the solids, mix for 3 to 20 minutes, and pour into the formwork. 1. The curing time before the drying process depends on the temperature, but is preferably about 0.5 to 4 hours. It is then dried at elevated temperatures and used.

この発明による粗大粒使用の塩基付不定形耐火物u:、
’特に高温で使用される取鍋等の内張り耐火材として使
用され、塩基性材料の弱点である亀裂の発生とそれに伴
なう地金の侵入と剥離を粒径50〜90mmの粗大粒の
使用で防止して、塩基性材料のスラグ耐食性の特徴を十
分に発揮させるものである。
Base-attached monolithic refractory u using coarse particles according to this invention:
'It is used as a refractory lining material for ladles, etc. used at high temperatures, and uses coarse particles with a particle size of 50 to 90 mm to prevent the occurrence of cracks, which are the weak points of basic materials, and the accompanying penetration and peeling of base metal. This allows the basic material to fully exhibit its slag corrosion resistance characteristics.

同時に粗大粒の使用により、耐火l吻層の熱による体積
安定性、耐溶鋼摩耗性および骨材効果による強度を合わ
せもたせて、塩基性と不定形材の利点を充分に利用でき
るものである。
At the same time, by using coarse grains, it is possible to fully utilize the advantages of basicity and irregularly shaped materials by providing volumetric stability due to heat of the refractory lance layer, abrasion resistance of molten steel, and strength due to aggregate effect.

以下実施例によってこの発明の詳細な説明する。The present invention will be described in detail below with reference to Examples.

実施例1 (粗大粒の製造) 第1表に示す組成のマグネシアドロマイトクリンカ−を
粒度配合し、水3%を加えてウェット/(ンで混練し、
450tプレスで皿型れんが形状に成形後トンネルキル
ン中1580℃で焼成した。
Example 1 (Manufacture of coarse grains) Magnesia dolomite clinker having the composition shown in Table 1 was blended with a grain size, 3% of water was added, and the mixture was kneaded with a wet/(n).
After being molded into a dish-shaped brick shape using a 450t press, it was fired at 1580°C in a tunnel kiln.

焼成後のれんがの見掛気孔率は11%、圧縮強さは98
0餉であった。このれんがをショークラッシャで粗砕し
、篩分けにより90〜50fnfn、50〜5#とじた
0 第1表 実施例2.〜4゜ 取鍋を想定した直径1.5m 、高さ0.8mの鉄製容
器の内側に114順厚さに断熱れんがを築迄1その中央
に層厚さが200flとなるように鉄製中子を設置した
The apparent porosity of the brick after firing is 11% and the compressive strength is 98.
It was zero. The bricks were coarsely crushed using a show crusher and sieved to 90 to 50 fnfn and 50 to 5 #0 Table 1 Example 2. ~4゜ Inside a steel container with a diameter of 1.5 m and a height of 0.8 m, assuming a ladle, insulating bricks with a thickness of 114 mm are built. 1. An iron core is placed in the center so that the layer thickness is 200 fl. was installed.

ツクスミキサ−で混合し、水を加えて3分間混練した材
料を流し込み施工した。2時間放置後中子を取除き、直
ちに酸累−プロパンバーナーにより100°C/hrの
昇温速度で1000°ctで昇温し、3時間保持したの
ち、放冷した。
The materials were mixed using a mixer, water was added, and kneaded for 3 minutes, followed by pouring and construction. After standing for 2 hours, the core was removed, and the temperature was immediately raised to 1000[deg.]ct using an acidic propane burner at a rate of 100[deg.]C/hr, held for 3 hours, and then allowed to cool.

冷却後亀裂の状態を測定した。再び100℃/hrの昇
温速度で1600℃まで昇温し、10時間保持した。
After cooling, the state of cracks was measured. The temperature was again raised to 1600°C at a temperature increase rate of 100°C/hr and held for 10 hours.

熱間において第1表に示す組成の取;禍スラグの吹付け
、を行った。この吹付けにより炉は1000℃程度まで
冷却されたので再度100°C/hrで1600℃まで
昇温した。このスラグ吹付け、昇温の操作を5回繰返し
たのち冷却した。冷却後施工体の屯裂剣離の状態を観、
察した。その結果は第2表に示しだ。
The composition shown in Table 1 was prepared under hot conditions; spraying of disaster slag was carried out. This spraying cooled the furnace to about 1000°C, so the temperature was raised again to 1600°C at 100°C/hr. This operation of slag spraying and temperature raising was repeated five times, and then cooled. After cooling, check the condition of the tunriken separation of the construction body,
I guessed it. The results are shown in Table 2.

比較例1〜4 実施例2〜4と全く同じ方法で粗大粒等の配合組成の異
なる流し込み材について実験を行った。
Comparative Examples 1 to 4 Experiments were conducted using pouring materials having different compositions, such as coarse particles, in exactly the same manner as in Examples 2 to 4.

結果は第2表に示した。The results are shown in Table 2.

上記第2表の結果から明らかなように、粒径50〜9Q
mtgの粗大粒を15〜50重量%使用した流し込み材
は亀裂の発生は微細亀裂のみに留り、剥離の発生はみら
れなかった。しかし、粒径50〜90gmの粗大粒の使
用量が少ないか、あるいは粒径が5 Q rnm以下で
あったシ、粗大粒を全く使用しない場合は、大きな亀裂
が集中的に発生し、その亀裂も容器の上から下まで稼動
面から背面までに達し、剥離を伴っていた。
As is clear from the results in Table 2 above, the particle size is 50 to 9Q.
In the pouring material containing 15 to 50% by weight of mtg coarse particles, cracks occurred only in fine cracks, and no peeling was observed. However, if the amount of coarse particles with a particle size of 50 to 90 gm is small, or if the particle size is 5 Qrnm or less, or if no coarse particles are used at all, large cracks will occur intensively and the cracks will It also reached from the top to the bottom of the container, from the operating surface to the back, and was accompanied by peeling.

これによってこの発明の優秀性が認められた。This confirms the excellence of this invention.

実施例5 実施1++13の流し込み材を150を取鍋に施工厚み
1 s ommに全体施工(材料使用量13.’ 5t
) した結果亀裂の集中発生はなく、地金の材料中への
侵入や剥離はおこらず、比較例3の材料を施工した場合
の2倍の耐用を示した。
Example 5 The pouring material of Example 1++13 was poured into a ladle of 150 mm, and the entire construction was carried out to a thickness of 1 s omm (material consumption: 13.5 tons)
) As a result, there were no concentrated cracks, no intrusion into the material or peeling of the base metal, and the durability was twice as long as when the material of Comparative Example 3 was used.

Claims (1)

【特許請求の範囲】[Claims] 塩基性耐火材料中に粒径50〜9Qmmの粗大粒を15
〜50重量%配合してなる溶融金属容器用塩基性不定形
耐火物。
15 coarse particles with a particle size of 50 to 9 Qmm are added to the basic refractory material.
A basic amorphous refractory for molten metal containers containing ~50% by weight.
JP57135389A 1982-08-02 1982-08-02 Basic monolithic refractory for molten metal containers Expired JPS6028783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57135389A JPS6028783B2 (en) 1982-08-02 1982-08-02 Basic monolithic refractory for molten metal containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57135389A JPS6028783B2 (en) 1982-08-02 1982-08-02 Basic monolithic refractory for molten metal containers

Publications (2)

Publication Number Publication Date
JPS5926979A true JPS5926979A (en) 1984-02-13
JPS6028783B2 JPS6028783B2 (en) 1985-07-06

Family

ID=15150559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57135389A Expired JPS6028783B2 (en) 1982-08-02 1982-08-02 Basic monolithic refractory for molten metal containers

Country Status (1)

Country Link
JP (1) JPS6028783B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215267A (en) * 1985-03-18 1986-09-25 川崎製鉄株式会社 Monolithic refractories for molten metal vessel
JPS61215268A (en) * 1985-03-18 1986-09-25 川崎製鉄株式会社 Monolithic refractories for molten metal vessel
JPS62158170A (en) * 1985-12-30 1987-07-14 川崎製鉄株式会社 Monolithic refractories for iron mixing car
WO2007096469A1 (en) * 2006-02-20 2007-08-30 Bet-Ker Oy Method of manufacturing refractory structure and refractory structure for lining of metallurgical vessel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215267A (en) * 1985-03-18 1986-09-25 川崎製鉄株式会社 Monolithic refractories for molten metal vessel
JPS61215268A (en) * 1985-03-18 1986-09-25 川崎製鉄株式会社 Monolithic refractories for molten metal vessel
JPH032824B2 (en) * 1985-03-18 1991-01-17 Kawasaki Seitetsu Kk
JPH0420870B2 (en) * 1985-03-18 1992-04-07 Kawasaki Seitetsu Kk
JPS62158170A (en) * 1985-12-30 1987-07-14 川崎製鉄株式会社 Monolithic refractories for iron mixing car
JPH0335264B2 (en) * 1985-12-30 1991-05-27 Kawasaki Seitetsu Kk
WO2007096469A1 (en) * 2006-02-20 2007-08-30 Bet-Ker Oy Method of manufacturing refractory structure and refractory structure for lining of metallurgical vessel
EA012989B1 (en) * 2006-02-20 2010-02-26 Бет-Кер Ой Method of manufacturing refractory structure and refractory structure for lining of metallurgical vessel

Also Published As

Publication number Publication date
JPS6028783B2 (en) 1985-07-06

Similar Documents

Publication Publication Date Title
Lee et al. Castable refractory concretes
CA2940682C (en) Blast furnace hearth repair material
CN100584799C (en) Low-cost fire-resistant pouring material and method for making same
CN101921128B (en) Pouring material for lime rotary kiln
CN102491769A (en) Composite bonding low-temperature constructional castable refractory
CN101805198B (en) Mullite steel fiber castable
US2943240A (en) Furnace structures
CN114195529B (en) High-strength magnesia refractory mortar for refining ladle
JPS5926979A (en) Basic indefinite form refractories for molten metal vessel
US3403213A (en) Electric furnace having refractory brick of specific composition in the critical wear areas
JPS59128271A (en) Flow in material for molten iron desilicating launder
JPS61106465A (en) Refractory cement
JP2604310B2 (en) Pouring refractories
CA1273964A (en) Refractory thixotropic vibration compound and process for the vibration lining of metallurgical vessels with such compound
JPS604244B2 (en) Manufacturing method of stopper for preventing slag outflow
US4383044A (en) Slaking-resistant calcia refractory
RU2153480C2 (en) Method of making refractory compounds for monolithic linings
JPS59137368A (en) Refractories for repairment
JPH032825B2 (en)
JPS59469B2 (en) Method for manufacturing graphite-containing refractories
US2160924A (en) Refractory material
JPS5919905B2 (en) Fireproof insulation board
Biswas et al. Refractories for Iron and Steel Plant
JPS6049156B2 (en) Fireproof castable for ladle lining
JPH0317783B2 (en)