JPS5924370B2 - Infrared detector manufacturing method - Google Patents

Infrared detector manufacturing method

Info

Publication number
JPS5924370B2
JPS5924370B2 JP12281776A JP12281776A JPS5924370B2 JP S5924370 B2 JPS5924370 B2 JP S5924370B2 JP 12281776 A JP12281776 A JP 12281776A JP 12281776 A JP12281776 A JP 12281776A JP S5924370 B2 JPS5924370 B2 JP S5924370B2
Authority
JP
Japan
Prior art keywords
film
substrate
etching
infrared detector
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12281776A
Other languages
Japanese (ja)
Other versions
JPS5348791A (en
Inventor
寛児 川上
治 浅井
雅信 華園
直幸 井崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12281776A priority Critical patent/JPS5924370B2/en
Publication of JPS5348791A publication Critical patent/JPS5348791A/en
Publication of JPS5924370B2 publication Critical patent/JPS5924370B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は、赤外線を吸収することによつて生ずる温度変
化を電気抵抗値や熱起電力などの電気信号の変化として
捕捉し、これにより赤外線を検出する赤外線検出器の製
造方法に関する。
Detailed Description of the Invention The present invention is an infrared detector that detects infrared rays by capturing temperature changes caused by absorption of infrared rays as changes in electrical signals such as electrical resistance and thermoelectromotive force. Regarding the manufacturing method.

赤外線を熱的に検出する検出器としては、(1)熱電対
式、(2)熱抵抗式、(3)熱電堆式の3種類のものが
知られている。
There are three types of detectors that thermally detect infrared rays: (1) thermocouple type, (2) thermal resistance type, and (3) thermopile type.

熱電対式はただ1個の熱電対によつて検知しようとする
ものであるから、電気的感度が低い。熱抵抗式は抵抗体
に赤外線を吸収させたときの抵抗体の温度上昇による抵
抗値変化を利用するもので、熱電対式に比べ感度が高く
、構造が簡単で安価に実現できる特徴がある。熱電堆式
は数十〜数百対の熱電対を電気的に直列に接続したもの
であり、高い電気感度を有し、内部インピーダンスが低
いことから高い信号対雑音比を得られる特徴がある。赤
外線を熱的に検出する赤外線検出器を応用する装置にお
いては、周囲温度の緩やかな変化の影響を避けるために
、入射赤外線を+サイクル〜百サイクル程度の周期でチ
ョッピングし、赤外線検出器より得られる上記チョッピ
ング周期に一致する交流信号によつて入射赤外線の光量
に対応する電気信号を求める方式が採用されている。
The thermocouple type has low electrical sensitivity because it attempts to detect using only one thermocouple. Thermal resistance type uses the change in resistance due to the temperature rise of the resistor when it absorbs infrared rays, and has higher sensitivity than the thermocouple type, and has a simple structure and can be realized at low cost. The thermopile type has tens to hundreds of pairs of thermocouples electrically connected in series, and is characterized by high electrical sensitivity and low internal impedance, allowing a high signal-to-noise ratio to be obtained. In a device that uses an infrared detector that thermally detects infrared rays, in order to avoid the effects of gradual changes in ambient temperature, the incident infrared rays are chopped at a cycle of +cycle to 100 cycles, and the infrared detector A method is adopted in which an electric signal corresponding to the amount of incident infrared rays is obtained using an alternating current signal that corresponds to the above-mentioned chopping period.

このたお、検出器においては高感度でかつ速い応答が要
求される。従つて、検出器の受光部は、熱容量を極めて
小さくすることが要求される。上記のような要求を満た
すために、従来は、以下に述べる方法によつて赤外線検
出器を製造していた。
In addition, the detector is required to have high sensitivity and quick response. Therefore, the light receiving section of the detector is required to have an extremely small heat capacity. In order to meet the above requirements, infrared detectors have conventionally been manufactured by the method described below.

第1図は熱抵抗式赤外線検出器の製法の一例を説明する
ための図である。第1の工程aにおいて平滑な表面を有
する塩化ビニルもしくはアクリル等の有機樹脂基体2上
に例えば厚み50nm程度のニトロセルローズ膜1を形
成する。第2の工程bにおいて、膜1の上に真空蒸着法
あるいはスパツタ蒸着法等の手段により導体膜3を堆積
させる。第3の工程cにおいて、写真食刻法等の技術に
より導体膜3を所望の形状に形成して受光膜4を得る。
第4の工程において基体2をアセトンあるいはトリクロ
ールエチレン等の有機溶媒て熔解除去した後に接着材5
により支持体6上にニトロセルローズ膜1及び受光膜4
よりなる複合膜を固定し、dに示すよ5な断面の赤外線
検出器を得る。すなわち、平面形状は、第2図に示すよ
うに、支持体6上に各片の両端を固定されたジグザグ状
の受光膜4の最終的な両端に電気的接続端子10a,1
0bを有するものである。第2図ANにおける断面が第
1図dに一致するものである。受光膜4の大部分の直下
には支持体6を設けない構造とすることで、受光膜4の
熱容量を小さくしている。さらに、上述の製造法に導体
膜の形成工程を追加することにより第3図に示すような
熱電堆式の赤外線検出器が得られることは容易に理解で
きる。
FIG. 1 is a diagram for explaining an example of a method for manufacturing a thermal resistance type infrared detector. In the first step a, a nitrocellulose film 1 having a thickness of, for example, about 50 nm is formed on an organic resin substrate 2 such as vinyl chloride or acrylic having a smooth surface. In the second step b, the conductor film 3 is deposited on the film 1 by means such as a vacuum deposition method or a sputter deposition method. In the third step c, the conductive film 3 is formed into a desired shape by a technique such as photolithography to obtain the light-receiving film 4.
In the fourth step, after the base 2 is removed by melting with an organic solvent such as acetone or trichlorethylene, the adhesive 5 is removed.
The nitrocellulose film 1 and the light-receiving film 4 are placed on the support 6 by
A composite film consisting of the following is fixed to obtain an infrared detector with a 5-shaped cross section as shown in d. That is, as shown in FIG.
0b. The cross section in FIG. 2AN corresponds to FIG. 1d. The heat capacity of the light-receiving film 4 is reduced by having a structure in which the support body 6 is not provided directly under most of the light-receiving film 4. Furthermore, it is easily understood that a thermopile-type infrared detector as shown in FIG. 3 can be obtained by adding a step of forming a conductive film to the above-described manufacturing method.

すなわち、有機樹脂フイルム上に熱起電力能の高い2種
の導体膜11a,11b,11c,・・・・・・・・・
・・・・・・11f,11g,11h及び12a,12
b,・・・・・−・・・・・・・・・12e,12f,
12hを堆積形成したものを放熱片を兼ねる支持体6上
に接着固定することにより、それぞれ13a,13b,
13c,・・・・・・・・・・・・・・・13g,13
hを熱接点とし、14a,14b,・・・・・・・・・
・・・・・・14g,14h,141を冷接点とする熱
電対を電気的に直列接続したものとなり、端子15a,
15b間に各熱電対の熱起電力の総和に等しい出力を得
る。以上のように、従来は、薄膜加工技術を応用するこ
とにより高感度で応答の速い赤外線検出器を得ていた。
That is, two types of conductor films 11a, 11b, 11c, .
...11f, 11g, 11h and 12a, 12
b,...--...12e, 12f,
13a, 13b, and 12h are deposited and fixed on a support 6 that also serves as a heat dissipation piece, respectively.
13c, 13g, 13
Let h be the hot junction, 14a, 14b,...
・・・・・・Thermocouples with cold junctions 14g, 14h, and 141 are electrically connected in series, and the terminals 15a,
15b, an output equal to the sum of thermoelectromotive force of each thermocouple is obtained. As described above, conventionally, infrared detectors with high sensitivity and quick response have been obtained by applying thin film processing technology.

しかし、従来の検出器は有機樹脂フイルム上に導体膜を
真空蒸着、スパツタ蒸着等の技術で堆積せざるを得ない
ため、得られた赤外線検出器の雑音電圧を小さくなし得
なかつた。
However, since conventional detectors have no choice but to deposit a conductor film on an organic resin film using techniques such as vacuum deposition or sputter deposition, it has been impossible to reduce the noise voltage of the resulting infrared detector.

すなわち、導体膜を堆積させる際に有機樹脂フイルムの
温度を80〜100℃程度までしか加熱できないことか
ら均質な導体膜を実現し難かつた。また堆積導体材料の
蒸気が高エネルギーを持つて飛来するため有機樹脂フイ
ルムを蒸発させ、この蒸気が導体膜中に取り込まれ導体
膜の均質性を損ないやすかつた。このため熱抵抗式の赤
外線検出器においては、抵抗値を測定するためのバイア
ス電流を与えた際に雑音電圧を増加させるという不都合
があつた。
That is, when depositing a conductor film, it is difficult to realize a homogeneous conductor film because the organic resin film can only be heated to a temperature of about 80 to 100°C. Further, since the vapor of the deposited conductor material flies with high energy, it evaporates the organic resin film, and this vapor is easily taken into the conductor film and impairs the homogeneity of the conductor film. For this reason, thermal resistance type infrared detectors have the disadvantage of increasing noise voltage when applying a bias current for measuring resistance values.

また、導体膜表面が有機樹脂フイルムより蒸発した有機
物分子によつて汚染されることから、熱電堆式赤外線検
出器において各熱電対の熱接点及び冷接点における2種
導体間の接合が不安定となり、これが雑音電圧を発生さ
せる要因となつていた。さらに、上記製法による熱抵抗
式、熱電対式の赤外線検出器において有機樹脂フイルム
上に形成された赤外線エネルギーを電気信号に変換する
受光膜4を支持体6上に接着固定する工程を必要とする
。このとき、接着材の厚みが0.5〜10μm程度のば
らつきを生ずる。このため、多数の赤外線検出器を製造
したとき、受光膜と支持体間の熱抵抗の偏差が大きく、
個々の検出器の感度及び応答度の値に偏差が生じ、一定
範囲内の特性を持つ検出器を得ることが困難であつた。
また、従来、上記不都合を改善するために雲母薄片土に
受光膜を形成させる着想もあつたが、雲母は1μm以下
の一定の厚みの薄片を得ることは困難であり、高感度で
かつ応答速度の速い赤外線検出器を得ることは困難であ
つた。本発明の目的は、上記した従来技術での不都合を
除去することのできる赤外線検出器製造方法を提供する
にある。
In addition, since the surface of the conductor film is contaminated by organic molecules evaporated from the organic resin film, the bond between the two types of conductors at the hot and cold junctions of each thermocouple in the thermopile type infrared detector becomes unstable. This was a factor in generating noise voltage. Furthermore, in the heat resistance type or thermocouple type infrared detector according to the above manufacturing method, a step of adhesively fixing the light-receiving film 4, which converts the infrared energy formed on the organic resin film into an electric signal, onto the support 6 is required. . At this time, the thickness of the adhesive material varies by about 0.5 to 10 μm. For this reason, when manufacturing a large number of infrared detectors, there is a large deviation in thermal resistance between the light receiving film and the support.
Deviations occur in the sensitivity and responsivity values of individual detectors, making it difficult to obtain detectors with characteristics within a certain range.
In addition, in order to improve the above-mentioned disadvantages, there was an idea to form a light-receiving film on mica flake soil, but it is difficult to obtain mica flakes with a constant thickness of 1 μm or less, and it is difficult to obtain flakes with high sensitivity and response speed. It has been difficult to obtain fast infrared detectors. SUMMARY OF THE INVENTION An object of the present invention is to provide an infrared detector manufacturing method that can eliminate the disadvantages of the prior art described above.

本発明の特徴は、無機物の電気的絶縁性の基板上に導電
性の受光膜を形成し、かつこの受光膜の一部と上記無機
物基板とを熱的に分離させる製造法とすることにある。
The present invention is characterized by a manufacturing method in which a conductive light-receiving film is formed on an electrically insulating inorganic substrate, and a part of this light-receiving film is thermally separated from the inorganic substrate. .

以下、本発明の実施例を説明する。Examples of the present invention will be described below.

第4図は熱抵抗式赤外線検出器の製造に本発明を適用し
た場合の説明図である。
FIG. 4 is an explanatory diagram when the present invention is applied to manufacturing a thermal resistance type infrared detector.

第4図において、16は少なくとも一方の表面が電気的
絶縁性である無機物基板である。もし、基板16が電気
的絶縁性でないときは、その一方の表面上に無機絶縁膜
17を設けることで目的を満すことができる。第1の工
程において、基板16上に、もしくは基板16上に形成
された絶縁膜17上に、導体膜18を堆積させ、第4図
aに示すような断面の複合体を得る。第2の工程で、導
体膜18上にホトレジスト等の周知の食刻防止膜19を
所望形状に形成し、第4図bに示す断面を得る。第3の
工程において、bに示す複合体を導体膜18の食刻液に
浸し、導体膜18のうちの食刻防止膜19で覆われてい
ない部分を溶解し食刻する。食刻が完了した後に食刻防
止膜19を除去して、第4図cに示す断面形状を得て、
受光膜4とする。第4の工程において、基板16の裏面
に食刻防止膜20を形成した後に基板16を所望形状に
食刻して受光膜4の一部と基板16の熱的な分離を行な
うとともに基板16の一部により第4図dに示すような
支持体6を得る。絶縁膜17を基板16上に設ける場合
、支持体6を食刻防止体として絶縁膜17の不要部分を
除去することも可能である。
In FIG. 4, 16 is an inorganic substrate having at least one surface electrically insulating. If the substrate 16 is not electrically insulating, the purpose can be met by providing an inorganic insulating film 17 on one surface thereof. In the first step, a conductor film 18 is deposited on the substrate 16 or on the insulating film 17 formed on the substrate 16 to obtain a composite having a cross section as shown in FIG. 4a. In the second step, a well-known anti-etching film 19 such as photoresist is formed on the conductor film 18 in a desired shape to obtain the cross section shown in FIG. 4b. In the third step, the composite shown in b is immersed in an etching solution for the conductive film 18, and the portions of the conductive film 18 that are not covered with the anti-etching film 19 are dissolved and etched. After the etching is completed, the anti-etching film 19 is removed to obtain the cross-sectional shape shown in FIG. 4c.
This is referred to as a light-receiving film 4. In the fourth step, after forming the anti-etching film 20 on the back surface of the substrate 16, the substrate 16 is etched into a desired shape to thermally separate a part of the light-receiving film 4 from the substrate 16. A support 6 as shown in FIG. 4d is obtained from a portion. When the insulating film 17 is provided on the substrate 16, it is also possible to remove unnecessary portions of the insulating film 17 by using the support 6 as an anti-etching member.

また、絶縁膜17はその厚みを20〜50nm程度にな
し得るから、特に除去しなくとも、受光膜4の熱容量に
与える影響は十分小さくなし得る。以上において、基板
16及び絶縁膜17は融点が十分高い無機材料を使用で
き、従つて導体膜18を堆積させる際に200〜300
℃程度の望ましい程度に高めることが可能である。
Further, since the insulating film 17 can have a thickness of about 20 to 50 nm, the influence on the heat capacity of the light-receiving film 4 can be made sufficiently small even if it is not particularly removed. In the above, the substrate 16 and the insulating film 17 can be made of an inorganic material with a sufficiently high melting point.
It is possible to increase the temperature to a desired degree of about ℃.

基板16び絶縁膜17の上記温度における蒸気圧は極め
て小さく、それらの蒸気が導体膜18中に混入する量は
極めて小さくすることができ、同様に導体膜18の表面
における汚染も極めて小さくなることは明らかである。
また、受光膜4の一部は基板16と直接もしくは極めて
薄い絶縁膜17を介して接しているため受光膜4と基板
16間の抵抗を小さく、偏差の絶対量を小さくなし得る
ことも明らかである。前記第4図の第3の製造工程にお
いて、導体膜18を食刻する際に基板16の溶解を防止
する必要がある。
The vapor pressure of the substrate 16 and the insulating film 17 at the above temperature is extremely low, and the amount of these vapors mixed into the conductive film 18 can be extremely small, and contamination on the surface of the conductive film 18 can also be extremely small. is clear.
Furthermore, since a part of the light-receiving film 4 is in contact with the substrate 16 either directly or via an extremely thin insulating film 17, it is clear that the resistance between the light-receiving film 4 and the substrate 16 can be reduced and the absolute amount of deviation can be reduced. be. In the third manufacturing step shown in FIG. 4, it is necessary to prevent the substrate 16 from dissolving when etching the conductive film 18.

また、第4の工程において基板16を食刻する際に受光
膜4の溶解を防止する必要があることは自明である。か
かる条件を満すことは困難でない。受光膜4は熱抵抗式
の場合にも熱電堆式の場合も、銅、白金、ニツケルある
いはこれらを主成分とする合金が主として使用される。
これらは過硫酸アンモニウムあるいは王水等の強酸化性
の水溶液によつて食刻し得る。一方、強酸化性水溶液に
よつて緻密な酸化膜を形成する。シリコン、アルミニウ
ムあるいはタンタルのような、材料は上記水溶液に溶解
しない。逆に上記シリコン、アルミニウム及びタンタル
はいずれも苛性カリ等の強アルカリ性水溶液によつて食
刻することが可能であり、かつ上記受光膜を形成する上
記単一金属あるいは合金にかかる強アルカリ水溶液に溶
解しない。従つて、基板16の材料としてシリコン、ア
ルミニウムあるいはタンタルのいずれかを用い導体膜1
8の材料として銅、白金、ニツケルあるいはそれらの合
金を用いれば上記第3の工程において強酸化性水溶液に
よつて導体18を食刻し、上記第4の工程において強ア
ルカリ性水溶液により基板16のみを食刻できることは
上記説明により明らかである。また、第4図に示す工程
に導体膜を堆積、形成する工程を追加すれば、熱電堆式
赤外線検出器を実現し得ることは明らかである。
Furthermore, it is obvious that it is necessary to prevent the light-receiving film 4 from dissolving when etching the substrate 16 in the fourth step. It is not difficult to meet such conditions. The light-receiving film 4 is mainly made of copper, platinum, nickel, or an alloy containing these as its main components, whether it is a thermal resistance type or a thermoelectric pile type.
These can be etched with strongly oxidizing aqueous solutions such as ammonium persulfate or aqua regia. On the other hand, a dense oxide film is formed using a strongly oxidizing aqueous solution. Materials such as silicon, aluminum or tantalum do not dissolve in the aqueous solution. Conversely, the silicon, aluminum, and tantalum can all be etched by a strong alkaline aqueous solution such as caustic potash, and the single metal or alloy forming the light-receiving film does not dissolve in the strong alkaline aqueous solution. . Therefore, the material of the substrate 16 is either silicon, aluminum or tantalum, and the conductor film 1 is made of silicon, aluminum or tantalum.
If copper, platinum, nickel, or an alloy thereof is used as the material 8, the conductor 18 is etched with a strong oxidizing aqueous solution in the third step, and only the substrate 16 is etched with a strong alkaline aqueous solution in the fourth step. It is clear from the above description that it can be etched. Furthermore, it is clear that a thermopile type infrared detector can be realized by adding a step of depositing and forming a conductive film to the steps shown in FIG.

さらに、受光膜4と基板16は、基板16の一部を食刻
することなく熱的に分離することも可能である。かかる
場合の製造工程を第5図に示す。第5図aに示す第1の
程において、基板16上に部材21を形成する。
Furthermore, the light-receiving film 4 and the substrate 16 can be thermally separated without etching a part of the substrate 16. The manufacturing process in such a case is shown in FIG. In the first step shown in FIG. 5a, a member 21 is formed on the substrate 16.

部材21は写真食刻法あるいはマスク蒸着法等の技術に
よつて無機材料を所望形状になし得る。第2の工程にお
いて、第5図bに示すように、導体膜18を部材21及
び基板16の一部を覆うごとく堆積する。第3の工程に
おいて、第5図cに示すように、導体膜18を所望形状
に形成して受光膜4を得る。このとき、部材21の一部
が露出することは第2図より理解できる。従つて、第4
の工程において、部材21のみを溶解させることができ
、第5図dの形状を得ることは明らかである。以上の製
法において、部材21と導体膜18とは、互いに他を溶
解せずに食刻できる材料であれば良いことは明らかであ
る。すなわち、導体膜18として前述のように銅、白金
、ニツケルもしくはそれらを主成分とする合金を使用す
るとき、部材21としてシリコン、アルミニウムもしく
はタンタルを使用できる。また、基板16としては、ソ
ーダガラス、石英、石英ガラス、アルミナを主成分とす
る単結晶、アルミナ、マグネシア、ベリリア、チタニア
等の焼結体等の絶縁体であつて、上記部材21及び導体
膜18の食刻液に溶解しない材料を選ぶことができる。
以上のように、本発明によれば、従来法で使用されてい
た有機樹脂材料に比較して高い融点を持つ無機材料を使
用したことにより、導体膜を堆積させるときの温度を高
めることが可能となり、これにより雑音電圧を発生する
ことのない、高感度かつ応答速度の速い赤外線検出器を
容易に量産できるようになる利点がある。
The member 21 can be formed from an inorganic material into a desired shape by a technique such as photolithography or mask evaporation. In the second step, as shown in FIG. 5b, a conductive film 18 is deposited to cover part of the member 21 and the substrate 16. In the third step, as shown in FIG. 5c, the conductive film 18 is formed into a desired shape to obtain the light-receiving film 4. It can be understood from FIG. 2 that a part of the member 21 is exposed at this time. Therefore, the fourth
It is clear that in the process, only the member 21 can be melted and the shape shown in FIG. 5d can be obtained. In the above manufacturing method, it is clear that the member 21 and the conductive film 18 may be made of any material that can be etched without dissolving the other. That is, when the conductor film 18 is made of copper, platinum, nickel, or an alloy containing these as its main components, as described above, the member 21 can be made of silicon, aluminum, or tantalum. Further, the substrate 16 is an insulator such as soda glass, quartz, quartz glass, a single crystal mainly composed of alumina, a sintered body of alumina, magnesia, beryllia, titania, etc., and includes the member 21 and the conductor film. 18 materials that do not dissolve in the etching solution can be selected.
As described above, according to the present invention, by using an inorganic material that has a higher melting point than the organic resin material used in the conventional method, it is possible to increase the temperature when depositing the conductive film. This has the advantage of making it possible to easily mass-produce infrared detectors that do not generate noise voltage, have high sensitivity, and have a fast response speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法を説明するための断面図、第2図は熱抵
抗式赤外線検出器の平面図、第3図は熱電堆式赤外線検
出器の平面図、第4図は本発明の一実施例を説明する断
面図、第5図は本発明の他の実施例説明用断面図である
。 符号の説明、4・・・・・・受光膜、6・・・・・・支
持体、16・・・・・・基板、17・・・・・・絶縁膜
、18・・・・・・導体膜、21・・・・・・部材。
Fig. 1 is a sectional view for explaining the conventional method, Fig. 2 is a plan view of a thermal resistance type infrared detector, Fig. 3 is a plan view of a thermopile type infrared detector, and Fig. 4 is a plan view of the infrared detector of the present invention. FIG. 5 is a cross-sectional view for explaining another embodiment of the present invention. Explanation of symbols, 4... Light receiving film, 6... Support body, 16... Substrate, 17... Insulating film, 18... Conductor film, 21... member.

Claims (1)

【特許請求の範囲】 1 少なくとも一方の表面が電気的絶縁性の無機物であ
る基板あるいは無機物の電気的絶縁性薄膜を一方の表面
上に設けた基板の表面上に赤外線を吸収することで抵抗
値あるいは熱起電力特性が変化する導電性薄膜を堆積す
る工程と、この導電性薄膜の一部と上記無機物基板とを
熱的に分離する工程とを含む赤外線検出器の製造方法。 2 特許請求の範囲第1項記載の方法において、導電性
薄膜の一部と無機物基板とを熱的に分離する工程が、無
機物基板の一部を食刻する工程であることを特徴とする
赤外線検出器の製造方法。 3 特許請求の範囲第2項記載の方法において、無機物
基板の一部を食刻する工程が、強アルカリ性水溶液を用
いて基板の一部を食刻する工程であることを特徴とする
赤外線検出器の製造方法。 4 特許請求の範囲第1項記載の方法において、導電性
薄膜の一部と無機物基板とを熱的に分離する工程が、導
電性薄膜の裏面の一部と無機物基板の表面の一部との間
に形成された部材を食刻して除去する工程であることを
特徴とする赤外線検出器の製造方法。 5 特許請求の範囲第4項に記載の方法において、部材
を食刻して除去する工程が、強アルカリ性水溶液を用い
て部材を食刻する工程であることを特徴とする赤外線検
出器の製造方法。
[Scope of Claims] 1. A resistance value can be obtained by absorbing infrared rays on the surface of a substrate having at least one surface made of an electrically insulating inorganic material, or a substrate having an electrically insulating thin film of an inorganic material on one surface. Alternatively, a method for manufacturing an infrared detector comprising the steps of depositing a conductive thin film whose thermoelectromotive force characteristics change, and thermally separating a part of the conductive thin film from the inorganic substrate. 2. The method according to claim 1, wherein the step of thermally separating a part of the conductive thin film and the inorganic substrate is a step of etching a part of the inorganic substrate. Detector manufacturing method. 3. An infrared detector according to claim 2, wherein the step of etching a part of the inorganic substrate is a step of etching a part of the substrate using a strong alkaline aqueous solution. manufacturing method. 4. In the method according to claim 1, the step of thermally separating a part of the conductive thin film and the inorganic substrate is performed by separating a part of the back surface of the conductive thin film and a part of the front surface of the inorganic substrate. A method for manufacturing an infrared detector, characterized in that the step includes etching and removing a member formed in between. 5. A method for manufacturing an infrared detector according to claim 4, wherein the step of etching and removing the member is a step of etching the member using a strong alkaline aqueous solution. .
JP12281776A 1976-10-15 1976-10-15 Infrared detector manufacturing method Expired JPS5924370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12281776A JPS5924370B2 (en) 1976-10-15 1976-10-15 Infrared detector manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12281776A JPS5924370B2 (en) 1976-10-15 1976-10-15 Infrared detector manufacturing method

Publications (2)

Publication Number Publication Date
JPS5348791A JPS5348791A (en) 1978-05-02
JPS5924370B2 true JPS5924370B2 (en) 1984-06-08

Family

ID=14845360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12281776A Expired JPS5924370B2 (en) 1976-10-15 1976-10-15 Infrared detector manufacturing method

Country Status (1)

Country Link
JP (1) JPS5924370B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2936862A1 (en) * 1979-09-12 1981-04-02 Battelle-Institut E.V., 6000 Frankfurt BOLOMETRIC RADIATION RECEIVER AND METHOD FOR THE PRODUCTION THEREOF
JPS5798824A (en) * 1980-12-12 1982-06-19 Mitsuteru Kimura Infrared ray detector

Also Published As

Publication number Publication date
JPS5348791A (en) 1978-05-02

Similar Documents

Publication Publication Date Title
Liddiard Thin-film resistance bolometer IR detectors
JP2834202B2 (en) Infrared detector
KR100239494B1 (en) Thermopile sensor and method for fabricating the same
US5021663A (en) Infrared detector
JPH05206526A (en) Bolometer and its manufacture
US7541582B2 (en) Method for production of a device for thermal detection of radiation comprising an active microbolometer and a passive microbolometer
JPH08313359A (en) Focal plane array for hybrid thermal imaging device and manufacture thereof
US3781748A (en) Chalcogenide glass bolometer
US4544441A (en) Method of making a bolometric radiation detector
US3629585A (en) Immersed bolometer using thin film thermistors
JP3258066B2 (en) Manufacturing method of thermopile type infrared sensor
JPS6212454B2 (en)
JPS5924370B2 (en) Infrared detector manufacturing method
CN107068780A (en) Method for oxidation prepares infrared detector of titanium oxide heat-sensitive layer and preparation method thereof
CN106672891A (en) Double-layer uncooled infrared detector structure and preparation method thereof
JPS61181104A (en) Platinum temperature measuring resistor
JP2004045339A (en) Thermal infrared sensor, radiation thermometer, and method for forming infrared absorption film
GB2222908A (en) Sensor device
US3082392A (en) Composite infrared radiation detector
JPS6358249A (en) Humidity detecting element
JP3249174B2 (en) Infrared sensor and method of manufacturing the same
JPH02206733A (en) Infrared ray sensor
JP2564939Y2 (en) Thermopile infrared detector
JPH0590647A (en) Infrared detector
EP1161660A1 (en) Bolometer with a zinc oxide bolometer element