JPS592430B2 - infrared imaging device - Google Patents

infrared imaging device

Info

Publication number
JPS592430B2
JPS592430B2 JP53070558A JP7055878A JPS592430B2 JP S592430 B2 JPS592430 B2 JP S592430B2 JP 53070558 A JP53070558 A JP 53070558A JP 7055878 A JP7055878 A JP 7055878A JP S592430 B2 JPS592430 B2 JP S592430B2
Authority
JP
Japan
Prior art keywords
detector
infrared
infrared detector
imaging device
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53070558A
Other languages
Japanese (ja)
Other versions
JPS54161228A (en
Inventor
倫正 近藤
克能 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP53070558A priority Critical patent/JPS592430B2/en
Publication of JPS54161228A publication Critical patent/JPS54161228A/en
Publication of JPS592430B2 publication Critical patent/JPS592430B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 この発明は2次元走査装置と、多素子検出器を用い、検
出器の出力信号を時系列的に処理してラスタパターンで
映像を表示するシリアル走査形赤外線撮像装置の改良に
関するものである。
Detailed Description of the Invention The present invention relates to a serial scanning infrared imaging device that uses a two-dimensional scanning device and a multi-element detector, processes the output signal of the detector in time series, and displays an image in a raster pattern. It is about improvement.

第1図は従来のシリアル走査形赤外線撮像装置の構成図
である。
FIG. 1 is a block diagram of a conventional serial scanning infrared imaging device.

第1図において入射した赤外線は、望遠鏡1を通り、2
次元走査装置3で走査され、集光光学系4で集光されて
赤外線検出器5に達する。赤外線検出器は例えば多素子
アレーであり、複数の検出素子が水平走査線方向に1列
に等間隔で並んでいる。赤外線検出器5の出力信号はプ
リアンプ6で増幅されたのちポイント遅延素子Tに入力
される。プリアンプ6およびポイント遅延素子7は検出
素子a、b、c、・・・・・・の各々に別個のものが6
a、6b、6c、Ta、Tb、?cのように接続されて
いる。ポイント遅延素子Tの出力は加算器8で合成され
たのちポストアンプ9で増幅整形され表示器10により
映像として表示される。ポイント遅延素子□は赤外線検
出器5の各検出素子の配列位置に対応した遅延素子で走
査装置の水平方向の視野の走査速度および赤外線検出器
5の各素子の配列の間隔に依存する時間だけ入力信号を
遅延させて出力する。この結果、赤外線検出器5の各素
子a、b、c、・・・・・・が装置の視野内の同一点を
見た時の信号が加算器8に入力される。よく知られるよ
うに雑音成分に相関性のない同一信号をn個加算すると
、信号対雑音比力V賠たけ改善される。
In Fig. 1, the incident infrared rays pass through telescope 1 and then pass through telescope 2.
The light is scanned by a dimensional scanning device 3, focused by a condensing optical system 4, and reaches an infrared detector 5. The infrared detector is, for example, a multi-element array, in which a plurality of detection elements are arranged in a row at equal intervals in the horizontal scanning line direction. The output signal of the infrared detector 5 is amplified by a preamplifier 6 and then input to a point delay element T. There are six separate preamplifiers 6 and point delay elements 7 for each of the detection elements a, b, c, . . .
a, 6b, 6c, Ta, Tb,? They are connected as shown in c. The outputs of the point delay elements T are combined in an adder 8, amplified and shaped in a post-amplifier 9, and displayed as an image on a display 10. The point delay element □ is a delay element corresponding to the array position of each detection element of the infrared detector 5, and inputs only a time that depends on the scanning speed of the horizontal field of view of the scanning device and the array interval of each element of the infrared detector 5. Delay and output the signal. As a result, a signal is input to the adder 8 when each element a, b, c, . As is well known, when n uncorrelated identical signals are added to a noise component, the signal-to-noise ratio is improved by V.

そこで加算器8の出力は1素子の赤外線検出器に比較し
て素子数の平方根だけ信号対雑晋比が改善されている。
2次元走査装置3としては例えば第2図のものが用いら
れる。
Therefore, the signal-to-noise ratio of the output of the adder 8 is improved by the square root of the number of elements compared to a one-element infrared detector.
As the two-dimensional scanning device 3, for example, the one shown in FIG. 2 is used.

第2図において12は多角柱高速回転鏡であり水平走査
鏡として用いられ、13は振動平面鏡で垂直走査鏡とし
て用いられる。
In FIG. 2, numeral 12 is a polygonal prism high-speed rotating mirror, which is used as a horizontal scanning mirror, and numeral 13 is a vibrating plane mirror, which is used as a vertical scanning mirror.

この赤外線撮像装置は検出器素子数に応じて撮像感度を
向上させることができるので、連累の撮像、微小な温度
差の景色の撮像等に広く利用されている。しかしながら
第1図の赤外線撮像装置は赤外線検出器5の素子数を増
カロさせるに従つてその占有長が長くなる。例えは一辺
が50μmの正方形の検出素子を50μmの間隔で50
ケ1列に並べると全長は5wmになる。一方良く知られ
るように幾何光学系の結像の良否はその収差および透過
率によつて決る。光学系の結像面においてその収差は通
常中心から周辺へ向かつて増大する。したがつて、検出
器の占有長が長くなればなるほど光学系の収差の影響を
大きく受けることになる。これを解決するためには光学
系の構成レンズの枚数を増加させれば良いが、この場合
は光学系の透過率を悪化させるうえに光学系自体の調整
が難かしくなる。前記全長5能の赤外線検出器にあつて
はすでにこの効果が無視できない。したがつて前記従来
の赤外線撮像装置では、撮像感度をあげると角度分解能
が低下するという欠点があつた。この発明はこれらの欠
点を除去するため赤外線検出器の各素子の配列を1列で
はなくその外接円の半径が、小となるように意図して配
列し、各素子からの複数の出力信号をポイント遅延素子
およびライン遅延線を介して合成したもので、以下図面
について詳細に説明する。
Since this infrared imaging device can improve imaging sensitivity according to the number of detector elements, it is widely used for imaging continuous images, imaging scenery with minute temperature differences, etc. However, in the infrared imaging device shown in FIG. 1, as the number of elements in the infrared detector 5 increases, its occupied length becomes longer. For example, 50 square detection elements with a side of 50 μm are arranged at intervals of 50 μm.
If they are arranged in one row, the total length will be 5wm. On the other hand, as is well known, the quality of image formation of a geometric optical system is determined by its aberration and transmittance. In the imaging plane of an optical system, the aberration usually increases from the center to the periphery. Therefore, the longer the occupied length of the detector, the more it will be affected by the aberrations of the optical system. In order to solve this problem, the number of lenses constituting the optical system may be increased, but in this case, the transmittance of the optical system deteriorates and adjustment of the optical system itself becomes difficult. This effect cannot be ignored in the case of the above-mentioned full-length 5-capacity infrared detector. Therefore, the above-mentioned conventional infrared imaging device has the disadvantage that when the imaging sensitivity is increased, the angular resolution is decreased. In order to eliminate these drawbacks, the present invention arranges the elements of an infrared detector not in one row, but in such a way that the radius of the circumscribed circle thereof is small, and multiple output signals from each element are arranged. It is synthesized through point delay elements and line delay lines, and will be described in detail with reference to the drawings below.

第3図はこの発明の実施例である。FIG. 3 shows an embodiment of this invention.

入射した赤外線は望遠鏡1を通り、2次元走査装置3で
走査され集光光学系4で集光されて面配列赤外線検出器
15に達する。面配列赤外線検出器15は、その素子の
配列面の外接円(第3図において点線の円で示す)の直
径が小になるよう素子配列が考慮されている。前記直径
が一定の素子数に対して最小になるのは円形配列である
が、検出器の製造の容易さを考慮すると、素子配列が正
方形の場合が適当である。素子配列が正方形の場合前記
従来のものの説明で例示した50素子の検出器の一辺は
0.7mとなる。面配列赤外線検出器15の出力は6a
〜61のプリアンプで増幅された後ポイント遅延素子7
?)よびライン遅延線14を介して加算器8で合成され
る。この過程は第3図に詳細に示されている。結局検出
器素子数と同数だけあつた出力信号は最終的に1個の信
号に合成される。ここでポイント遅延素子7は赤外線検
出器5の各検出素子の配列位置に対応した遅延素子で走
査装置3の水平方向の走査速度および面配列赤外線検出
器15の水平走査方向の配列の間隔に対応した時間だけ
信号を遅延させる。またライン遅延線14は水平走査1
回分に相当する遅延線で水平走査1周期に対応した時間
だけ信号を遅延させる。したがつて前記合成信号は全て
の面配列赤外線検出器15の素子が同一点を見た時の信
号を加算したものである。この合成信号はこのあとポス
トアンプ9により増幅されて表示器10で表示される。
この発明は前記のように、面配列赤外線検出器15の各
素子の出力信号を合成して表示するので、高感度である
と共に、光学系の収差の影響が、検出器の占有表の減少
に応じて小さくなつている。前記検出器の例では検出器
の占有長はl/7に減少している。光学系の収差の影響
が軽減されるというメリツトは光学系を簡略化して安価
にするとともに透過率をあげて感度を高めてもよいし、
光学系をそのままにして撮像の鮮明度をあげるように反
映させてもよい。なお以上は、赤外線撮像装置の場合に
ついて説明したが、この発明はこれに限らず、面配列の
複数の検出素子を有する検出器と2次元走査装置を用い
た撮像装置にも使用することができる。
The incident infrared rays pass through the telescope 1, are scanned by a two-dimensional scanning device 3, are condensed by a condensing optical system 4, and reach a surface array infrared detector 15. The element array of the surface array infrared detector 15 is designed so that the diameter of the circumscribed circle (indicated by a dotted circle in FIG. 3) of the array surface of the elements is small. Although a circular array has the smallest diameter for a given number of elements, in consideration of ease of manufacturing the detector, a square element array is suitable. When the element arrangement is square, one side of the 50-element detector exemplified in the description of the conventional one is 0.7 m. The output of the surface array infrared detector 15 is 6a
Point delay element 7 after being amplified by ~61 preamplifier
? ) and a line delay line 14 and are combined by an adder 8. This process is shown in detail in FIG. In the end, the output signals of the same number as the number of detector elements are finally combined into one signal. Here, the point delay element 7 is a delay element corresponding to the arrangement position of each detection element of the infrared detector 5, and corresponds to the horizontal scanning speed of the scanning device 3 and the arrangement interval in the horizontal scanning direction of the surface array infrared detector 15. Delay the signal by the amount of time specified. Also, the line delay line 14 is horizontal scanning 1
The signal is delayed by a time corresponding to one horizontal scanning period using a delay line corresponding to one period of horizontal scanning. Therefore, the composite signal is the sum of the signals when all the elements of the area array infrared detector 15 see the same point. This composite signal is then amplified by a post-amplifier 9 and displayed on a display 10.
As described above, this invention combines and displays the output signals of each element of the surface array infrared detector 15, so it is highly sensitive and the influence of aberrations of the optical system is reduced, reducing the detector occupation table. It is getting smaller accordingly. In the detector example described above, the occupied length of the detector is reduced to 1/7. The advantage of reducing the effects of aberrations in the optical system is that the optical system can be simplified and made cheaper, and the transmittance can be increased to increase sensitivity.
The optical system may be left as it is and reflected to improve the clarity of imaging. Although the above description has been made regarding the case of an infrared imaging device, the present invention is not limited to this, and can also be used in an imaging device using a detector having a plurality of detection elements arranged in a plane and a two-dimensional scanning device. .

以上のようにこの発明に係る赤外線撮像装置では面配列
赤外線検出器によつて高度をあげるとともに光学系の収
差の影響を軽減することができ、鮮明度が高いかもしく
は安価でかつより高感度であるという利点がある。
As described above, the infrared imaging device according to the present invention can increase the altitude by using a surface array infrared detector and reduce the influence of aberrations of the optical system, and can provide high definition, low cost, and high sensitivity. There is an advantage to having one.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の赤外線撮像装置の構成図、第2図は赤外
線撮像装置に用いられる2次元走査装置の構造例を示す
図、第3図はこの発明の一実施例を示す図である。 図中1は望遠鏡、2は同期信号検出器、3は2次元走査
装置、4は集光光学系、6はブリアンプ、7はポイント
遅延素子、8は加算器、9はボストアンプ、10は表示
器、11は同期信号増幅器、14はライン遅延線、15
は面配列赤外線検出器である。
FIG. 1 is a block diagram of a conventional infrared imaging device, FIG. 2 is a diagram showing an example of the structure of a two-dimensional scanning device used in the infrared imaging device, and FIG. 3 is a diagram showing an embodiment of the present invention. In the figure, 1 is a telescope, 2 is a synchronization signal detector, 3 is a two-dimensional scanning device, 4 is a condensing optical system, 6 is a preamplifier, 7 is a point delay element, 8 is an adder, 9 is a Bost amplifier, and 10 is a display , 11 is a synchronous signal amplifier, 14 is a line delay line, 15
is a surface array infrared detector.

Claims (1)

【特許請求の範囲】[Claims] 1 撮像対象視野を垂直および水平の2次元で走査する
走査装置と、入射した赤外線を検出器設置位置に集光結
像させる光学系と、赤外線検出器と、この赤外線検出器
の出力信号を該走査装置の走査速度に同期させて処理し
熱像として表示する装置とからなる赤外線撮像装置にお
いて、上記赤外線検出器として多素子でありかつ各素子
で形成される面の外接円の直径を小ならしめるよう意図
された素子配列を有するものを用い、上記赤外線検出器
の各素子からの複数の出力信号を1個の検出素子の瞬時
視野を見るようにポイント遅延素子およびライン遅延線
を用いて合成したことを特徴とする赤外線撮像装置。
1. A scanning device that scans the field of view to be imaged in two dimensions (vertically and horizontally), an optical system that focuses incident infrared rays on the detector installation position, an infrared detector, and an infrared detector that converts the output signal of this infrared detector into a target image. In an infrared imaging device consisting of a device that performs processing in synchronization with the scanning speed of a scanning device and displays it as a thermal image, the infrared detector has multiple elements and the diameter of the circumscribed circle of the surface formed by each element is small. combining a plurality of output signals from each element of the infrared detector using a point delay element and a line delay line to view the instantaneous field of view of one detector element. An infrared imaging device characterized by:
JP53070558A 1978-06-12 1978-06-12 infrared imaging device Expired JPS592430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53070558A JPS592430B2 (en) 1978-06-12 1978-06-12 infrared imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53070558A JPS592430B2 (en) 1978-06-12 1978-06-12 infrared imaging device

Publications (2)

Publication Number Publication Date
JPS54161228A JPS54161228A (en) 1979-12-20
JPS592430B2 true JPS592430B2 (en) 1984-01-18

Family

ID=13434971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53070558A Expired JPS592430B2 (en) 1978-06-12 1978-06-12 infrared imaging device

Country Status (1)

Country Link
JP (1) JPS592430B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5967392B1 (en) * 2015-02-06 2016-08-10 パナソニックIpマネジメント株式会社 Infrared detector

Also Published As

Publication number Publication date
JPS54161228A (en) 1979-12-20

Similar Documents

Publication Publication Date Title
EP0277696B1 (en) Thermal imager
US6310345B1 (en) Polarization-resolving infrared imager
EP0659269A1 (en) Airborne multiband imaging spectrometer
US3949225A (en) Infrared imaging apparatus
US4204122A (en) Method of and device for scanning pictures
JPS592430B2 (en) infrared imaging device
JPS6142807B2 (en)
US4516159A (en) Elevation step scanner
US5291018A (en) Robigon and sinugon; detector geometries
US4737642A (en) Arrangement for multispectral imaging of objects, preferably targets
US4762989A (en) Image detection with image plane divider
JP2523948B2 (en) Pyroelectric infrared detector
CA1303217C (en) Apparatus including multielement detectors for recording heat images
JP3203684B2 (en) Spectral imaging optical device
JPH0862044A (en) Thermal image detector
WO2011055117A1 (en) Detector
JPH0738720A (en) Image pickup device, detector and detector array
EP1470703B1 (en) Focal plane detector
JPH0399590A (en) Scanning type image pickup device
KR840002371B1 (en) Temperature pattern measuring method and a device therefor
JP2728116B2 (en) Imaging device
JPS5821526A (en) Detecting device using infrared ray
JP2766708B2 (en) Thermography equipment
JPH09318456A (en) Scan type infrared ray optical device
JPS62209980A (en) Light ray photographing device