JPS62209980A - Light ray photographing device - Google Patents

Light ray photographing device

Info

Publication number
JPS62209980A
JPS62209980A JP61052970A JP5297086A JPS62209980A JP S62209980 A JPS62209980 A JP S62209980A JP 61052970 A JP61052970 A JP 61052970A JP 5297086 A JP5297086 A JP 5297086A JP S62209980 A JPS62209980 A JP S62209980A
Authority
JP
Japan
Prior art keywords
elements
unit
pyroelectric
array sensor
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61052970A
Other languages
Japanese (ja)
Inventor
Motosada Kiri
喜利 元貞
Junichi Kita
純一 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61052970A priority Critical patent/JPS62209980A/en
Publication of JPS62209980A publication Critical patent/JPS62209980A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To improve the S/N and the spatial resolution by constituting a linear detector while arranging plural unit pyroelectric elements with a shift mutually and scanning said detector to a projected image of a body to be photographed in a direction at a right angle to the arranging direction of the unit pyroelectric elements thereby having only to change the arrangement of the elements regardless of the employment of the pyroelectric detection elements. CONSTITUTION:The linear detector array is constituted by arranging 64 sets of, e.g., pyroelectric unit elements 1 in a line and the same two detector arrays are arranged while they are shifted by a half pitch of the unit element arrangement to constitute an array sensor 2. A scanning mirror 4 is shaken to scan an object 5 thereby reflecting the light of the object toward a lens 3. The lens 3 forms the image of the object 5 reflected in the scanning mirror 4 onto the surface of the array sensor 2. The unit elements are arranged in the array sensor 2 in a direction perpendicular to this paper and in extracting sequentially outputs of the unit elements, the scanning is applied in a direction perpendicular to the face of this paper for a 2-dimensional image. That is, the array sensor 2 applies prescribed time of integration to the light ray image of the object 5 and its integration signal is sent to the signal processor 6.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は、光線画像を撮影する技術、特に赤外アレイ状
センサーで測定視野を走査し、各センサー出力を増幅険
ディジタル変換して赤外線を測定する撮影法に閃する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a technology for photographing light ray images, and in particular to scanning a measurement field of view with an infrared array sensor, amplifying and digitally converting the output of each sensor, and converting it into an infrared image. I was inspired by the photography method for measuring.

口、従来の技術 従来赤外線浄を撮影する場合、I nSb、HgCdT
e等の半導体型検出器をIIIIllあるいは数個用い
て2次元走査を行って、赤外線画像を得ていた。しかし
、これらの半導体型検出器はなんらかの方法で冷却する
必要があり、カメラを現場に持ち込んだり、長時間撮影
を行うには不便であった、そこで考えられる検出器とし
て、冷却不要の熱望検出器で時定数が比較的小さい焦電
型検出器があるが、半導体型が入射放射線の強さの瞬時
値に応答するのと異なり、焦電型検出器は入射放射線を
熱に変え、その熱による温度上昇に応答した信号を出す
エネルギー積分型の検出器なので、焦電型検出器を使用
する場合、検出器の数を増やし、各検出器の出力を順次
取出すようにして、個々の検出器の測定時間の確保を計
ることでS/N値を向上させる必要がある。
Conventional technology When photographing conventional infrared light, InSb, HgCdT
Infrared images were obtained by performing two-dimensional scanning using IIIll or several semiconductor type detectors such as E. However, these semiconductor-type detectors need to be cooled in some way, making it inconvenient to bring the camera into the field or take long-term shots.One possible detector is an aspiration detector that does not require cooling. pyroelectric detectors have relatively small time constants, but unlike semiconductor detectors, which respond to the instantaneous value of the intensity of incident radiation, pyroelectric detectors convert incident radiation into heat, and the Since this is an energy-integrating detector that outputs a signal in response to temperature rise, when using a pyroelectric detector, the number of detectors should be increased and the output of each detector should be taken out sequentially to reduce the It is necessary to improve the S/N value by ensuring sufficient measurement time.

焦電型検出器を用いた赤外線画(!%撮影装置としては
、焦電ビジコンという装置があるが、通常のビジコンタ
ーゲットと異なり、ターゲットが正負両極に帯電するた
めに、信号の出力方法や消去方法が難しく、また、ター
ゲット上の一画素に対応する部分ごとに素子を切断しな
いと、熱が拡散して画罹がぼけるが、素子を一画素に対
応する部分ごとに切断することは、作成上非常に困難で
あるという問題点を有している。
Infrared imaging using a pyroelectric detector (!%) There is a device called a pyroelectric vidicon, but unlike a normal vidicon target, the target is charged in both positive and negative polarities, so it is difficult to output the signal and erase it. This method is difficult, and if you do not cut the element into parts corresponding to one pixel on the target, the heat will diffuse and the image will become blurred. However, cutting the element into parts corresponding to one pixel on the target The problem is that it is extremely difficult.

これとは別に焦電型検出器としては、分離した焦電素子
を二次元的に配列した焦TLCCDがあるが、これはS
lで作成したCCD部と焦電センサ一部の接合が困難で
あるという問題点を有している。
Apart from this, there is a pyroelectric detector that has separated pyroelectric elements arranged two-dimensionally, the pyro-TLCCD.
There is a problem in that it is difficult to join the CCD section made by I.1 and a part of the pyroelectric sensor.

また、空間分解能を良くするためには、検出器における
単位素子の面積が小さいことが必要となるが、焦電型検
出器の場合、単位素子の受光面積をある大きさより小さ
くするとノイズが増加してS /’ N値が低下すると
共に、作成上も困難であるという問題点がある。
In addition, in order to improve spatial resolution, the area of the unit element in the detector must be small, but in the case of pyroelectric detectors, if the light-receiving area of the unit element is made smaller than a certain size, noise increases. There are problems in that the S/'N value decreases and it is difficult to create.

ハ1発明が解決しようとする問題点 焦電素子は、受光する光の強度が同じであれば、素子の
面積の大きさに関係なく出力の大きさは同じであるので
、個々の素子の面積を小さくし、同一光量を小さくした
面積に入射させれば、入力密度の上昇と熱容量の低下に
より温度変化が大となって出力が増し、感度が増加する
から、素子の一個当りの面積を小さくすれば、結果的に
はS/N値が良くなる。然し、焦電素子は電気回路の上
ではコンデンサと等価で1個々の素子を小さくしていけ
ば、コンデンサ客足が小さくなるので、インピーダンス
変換に用いるFETの入力キャパシタンスや素子面積に
対するリード線の相対的な太さが無視できなくなって出
力が低下し、外部雑音を平均化する能力が低下して、約
1mm以下に面積を小さくすると、かえってS/N値が
悪くなる。
C1 Problems to be Solved by the Invention In a pyroelectric element, if the intensity of the received light is the same, the output is the same regardless of the area of the element. If you make the same amount of light incident on a smaller area, the temperature change will increase due to the increase in input density and decrease in heat capacity, increasing the output and increasing the sensitivity. Therefore, the area per element can be reduced. As a result, the S/N value will improve. However, a pyroelectric element is equivalent to a capacitor in an electric circuit, and if each element is made smaller, the number of capacitors will decrease, so the input capacitance of the FET used for impedance conversion and the relative lead wire to the element area If the area becomes smaller than about 1 mm, the S/N value will worsen as the thickness becomes non-negligible and the output decreases, and the ability to average external noise decreases.

従って、素子の大きさはl+u+が限度とされている、
本発明は焦電検出素子を用いながら、比較的簡単な構成
で積分時間を確保し得るようにしてS/N値を高め、−
辺がlaw程度の素子を使って1III11以下の空間
分解能を得ようとするものである。
Therefore, the size of the element is limited to l+u+,
While using a pyroelectric detection element, the present invention secures the integration time with a relatively simple configuration, increases the S/N value, and -
This is an attempt to obtain a spatial resolution of 1III11 or less using an element with sides of about 1.

二0問題点解決のための手段 焦電型検出型において、焦電素子を交互に複数月並べて
アレーセンサーを構成した。
20 Means for Solving the Problems In the pyroelectric detection type, pyroelectric elements were arranged alternately for a plurality of months to form an array sensor.

ホ1作用 本発明によれば、多数の焦電素子を交互に並べてアレー
状検出器を構成させることにより、各単位素子の面積を
小さくしないで空間分解能を高め、画像の二次元走査の
うち一方向については、アレーセンサーの各単位素子の
出力の順次取出しにより、各単位素子はこの一方向の走
査の一周期だけの積分時間をとることができるので、S
/N値を向上させることが可能になった。
E1 Effect According to the present invention, by configuring an array detector by arranging a large number of pyroelectric elements alternately, the spatial resolution can be increased without reducing the area of each unit element. Regarding the direction, by sequentially taking out the output of each unit element of the array sensor, each unit element can take an integration time of only one period of scanning in this one direction, so S
/N value can now be improved.

へ、実施例 第1図に本発明の一実施例を示す、第1図において、1
は焦電単位素子で1列に64個を並べて線状アレイとし
た検出器列を構成し、同じ検出器列を2本それぞれ単位
素子配列の半ピッチ分ずらして並ベアレーセンサー2を
構成している0本実施例で使用する単位焦電素子1は1
辺= 1 mmの正方形内に一個配置されるので、ずら
す量は0.5鳳鳳となる。
Embodiment FIG. 1 shows an embodiment of the present invention.
64 pyroelectric unit elements are arranged in a line to form a linear array of detector rows, and two identical detector rows are each shifted by half the pitch of the unit element array to form a parallel bare array sensor 2. The unit pyroelectric element 1 used in this example is 1
Since one piece is placed within a square with side = 1 mm, the amount of shift is 0.5 mm.

第2図に全撮影系統説明図を示す、第2図において、4
は走査ミラーで揺動して被写体5を走査して、被写体の
光をレンズ3に向けて反射する。
Figure 2 shows an explanatory diagram of the entire imaging system.
swings with a scanning mirror to scan the subject 5 and reflects the light from the subject towards the lens 3.

レンズ3は走査ミラー4で反射された被写体5の渫をア
レーセンサー2の表面に結像させる。アレーセンサー2
は単位素子が図の紙面に垂直の方向に並んだもので、単
位素子の出力を順次取出して行くことで、2次元画像の
図の面に垂直な方向の走査を行うものである。即ちアレ
ーセンサ2は被写体5の光線代を一定時間積分を行い、
その積分信号を信号処理装ra6に送る。信号処理装置
6は、その積分信号を単位焦電素子毎に並列的に検出し
て、その信号を時系列的に取出して増幅しA/D変換す
る。A/D変換された信号は画像信号記憶補正装置7の
画素対応アドレスに記憶され、画像信号記憶補正装置7
は同記憶データを素子及びそれに結合する増幅器の特性
の不揃いによる画像の不均一性がなくなるように補正し
、素子の接合部の画像データの欠落を補充する。画像信
号記憶補正装置7より出力される映像信号を適宜な表示
装置で観察を行う。
The lens 3 forms an image of the object 5 reflected by the scanning mirror 4 on the surface of the array sensor 2. array sensor 2
The unit elements are arranged in a direction perpendicular to the plane of the figure, and by sequentially extracting the outputs of the unit elements, scanning of a two-dimensional image is performed in the direction perpendicular to the plane of the figure. That is, the array sensor 2 integrates the light beam cost of the subject 5 over a certain period of time,
The integrated signal is sent to the signal processing device ra6. The signal processing device 6 detects the integrated signal in parallel for each unit pyroelectric element, extracts the signal in time series, amplifies it, and performs A/D conversion. The A/D converted signal is stored in the pixel-corresponding address of the image signal storage correction device 7, and the image signal storage correction device 7
corrects the stored data so as to eliminate image non-uniformity due to uneven characteristics of the element and the amplifier coupled thereto, and fills in missing image data at the junction of the elements. The video signal output from the image signal storage correction device 7 is observed on a suitable display device.

焦電素子による積分時間の確保により、検出信号は積分
時間が長い程、積分信号は大きくなるが、ノイズは積分
されて平均化されるので、積分時間が長い程ノイズの積
分信号は小さくなる。従って積分時間の確保によりS/
N値が向上する。
Since the integration time is ensured by the pyroelectric element, the longer the integration time, the larger the detection signal, but since noise is integrated and averaged, the longer the integration time, the smaller the noise integration signal becomes. Therefore, by securing the integration time, S/
N value improves.

単位素子1同士の間は、熱の拡散を防ぐために、構造的
に雛しておく必要があり、相隣る素子の接合部に当たる
位置の画素入力には検出素子が欠落し、そのために画像
データが脱落する場所が現れるので対策が必要である。
In order to prevent heat diffusion, it is necessary to maintain a structural gap between the unit elements 1, and a detection element is missing at the pixel input position that corresponds to the junction of adjacent elements, which causes image data to be distorted. Countermeasures are necessary because there will be places where the particles will fall off.

これが本発明の要部であるが、単位素子lを第1図のよ
うに互い違いに配置することにより、単位素子検出領域
が互いに重複する部分が存在することにより、1列目に
おける素子と素子との境界で生じる画像データの欠落を
、1列目の素子と素子との境目を素子に中心に位置する
ように配置された2列目の素子の画像データが補うこと
により、f☆の細部の表現が円滑になる効果が現れる。
This is the main part of the present invention, but by arranging the unit elements l alternately as shown in Figure 1, there are parts where the unit element detection areas overlap with each other, so that By compensating for the loss of image data that occurs at the boundary of f☆ with the image data of the second row of elements, which are arranged so that the border between the first row of elements is centered on the element, the details of f☆ can be improved. This has the effect of making expression smoother.

又、単位素子1が互い違いに配置されているので、検出
信号としては検出中心が1列と2列とおいて素子幅の半
ピツチずれて検出される。この2列の検出信号を1列の
出力信号として取り出すことで、検出信号がm位素子幅
の半ピツチ毎の画像信号に相当する信号となり、画像の
分解能が向上するなお、−個の素子で二次元走査をする
場合と異なり、本発明の場合各単位素子とそれに結合す
る増幅器の特性の不揃いによって、画素毎に感度が異な
り、採取した画像に不均一性が現れる。これに対しては
事前又は事後に均一な照度の赤外線を視野全域に与えて
測定した均一画像データを参照して、測定データに補正
計算を施す必要があるが、本発明においては複数列の検
出器アレイの単位素子の隙間を互いに一致しないように
ずらして配置しているので、画素毎の不均一性が平均化
され、補正計算なしでも相当程度良好な均一性の画像が
得られ、測定データの補正計算の効果をより高めること
ができる。
Furthermore, since the unit elements 1 are arranged alternately, the detection center of the detection signal is detected with a shift of half the element width between the first and second columns. By extracting these two columns of detection signals as one column of output signals, the detection signal becomes a signal corresponding to an image signal for every half pitch of m element width, improving image resolution. Unlike the case of two-dimensional scanning, in the case of the present invention, sensitivity differs from pixel to pixel due to unevenness in the characteristics of each unit element and the amplifier coupled thereto, and non-uniformity appears in the captured image. To deal with this, it is necessary to apply correction calculations to the measurement data by referring to uniform image data measured by applying infrared rays with uniform illuminance to the entire field of view before or after, but in the present invention, multiple rows of detection Since the gaps between the unit elements of the device array are shifted so that they do not coincide with each other, the non-uniformity of each pixel is averaged out, and an image with fairly good uniformity can be obtained even without correction calculations. The effect of the correction calculation can be further enhanced.

本実施例では、単位素子1の形状が正方形について説明
しましたが、第3図に示すように長方形、菱形、ハニカ
ム構造でも同じ効果が期待される本実施例は赤外線につ
いて説明しているが、赤外線以外にも可視光線、紫外光
線等の光線を用いた撮影装置においても有効である。
In this example, the shape of the unit element 1 is square. However, as shown in Fig. 3, the same effect can be expected with rectangular, rhombic, and honeycomb structures. It is also effective in photographing devices that use visible light, ultraviolet light, and other light rays in addition to infrared light.

1・、効果 本発明によれば、焦電検出素子を用いながら素子の配置
を変えるだけで、S/N値を向上させ、空間分解能を向
上させ、画質をより円滑にすることが可能になった。
1. Effects According to the present invention, by simply changing the arrangement of the elements while using a pyroelectric detection element, it is possible to improve the S/N value, improve the spatial resolution, and make the image quality smoother. Ta.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の平面図、第2図は装置全体
の側面図、第3図は他の実施例の平面図である。
FIG. 1 is a plan view of one embodiment of the present invention, FIG. 2 is a side view of the entire device, and FIG. 3 is a plan view of another embodiment.

Claims (1)

【特許請求の範囲】[Claims] 単位焦電素子を相互にずらせて複数列並べて一次元的検
出器を構成し、同検出器を被撮影体の投影像に対して、
単位焦電素子の並び方向と直角の方向に走査することを
特徴するアレー状センサー。
A one-dimensional detector is constructed by arranging multiple rows of unit pyroelectric elements offset from each other, and the detector is used to detect the projected image of the subject.
An array sensor that scans in a direction perpendicular to the direction in which unit pyroelectric elements are arranged.
JP61052970A 1986-03-10 1986-03-10 Light ray photographing device Pending JPS62209980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61052970A JPS62209980A (en) 1986-03-10 1986-03-10 Light ray photographing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61052970A JPS62209980A (en) 1986-03-10 1986-03-10 Light ray photographing device

Publications (1)

Publication Number Publication Date
JPS62209980A true JPS62209980A (en) 1987-09-16

Family

ID=12929742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61052970A Pending JPS62209980A (en) 1986-03-10 1986-03-10 Light ray photographing device

Country Status (1)

Country Link
JP (1) JPS62209980A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015083915A (en) * 2013-09-17 2015-04-30 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141178A (en) * 1981-02-26 1982-09-01 Toshiba Corp Solid-state image pickup device
JPS60213057A (en) * 1984-04-09 1985-10-25 Nec Corp Pyroelectric type infrared image pickup device and driving method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141178A (en) * 1981-02-26 1982-09-01 Toshiba Corp Solid-state image pickup device
JPS60213057A (en) * 1984-04-09 1985-10-25 Nec Corp Pyroelectric type infrared image pickup device and driving method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015083915A (en) * 2013-09-17 2015-04-30 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Air conditioner

Similar Documents

Publication Publication Date Title
US9338380B2 (en) Image processing methods for image sensors with phase detection pixels
US9432568B2 (en) Pixel arrangements for image sensors with phase detection pixels
US5416324A (en) Optical imaging device with integrated polarizer
US10419664B2 (en) Image sensors with phase detection pixels and a variable aperture
US4939380A (en) Topographical camera operable by applying a grid-generated Moire image onto a CCD image sensor
US9503698B2 (en) Image sensor with shading detection
WO2019078335A1 (en) Imaging device and method, and image processing device and method
JPH05336423A (en) Digital face-like camera provided with multiple optical system
CN109346492A (en) Line scan image sensor pixel array and body surface defect inspection method
JP2002044371A (en) High speed scanner using plural detectors
US4873442A (en) Method and apparatus for scanning thermal images
JPH0338570B2 (en)
JPS62209980A (en) Light ray photographing device
US5291018A (en) Robigon and sinugon; detector geometries
JPH0637289A (en) Solid-state image sensing device
WO2011055117A1 (en) Detector
JP2018133357A (en) Imaging device, imaging apparatus
Sukovic et al. A method for extending the dynamic range of flat panel imagers for use in cone beam computed tomography
US7795569B2 (en) Focal plane detector with integral processor for object edge determination
JPH01121816A (en) Solid-state image pickup device
JPS5969964A (en) Solid-state image pick-up device
JPH04285826A (en) Infrared one-dimensional linear array
JP2001201400A (en) Dual wavelength image pickup device
JPS61207935A (en) Solid-state image pickup device
EP2833621B1 (en) Image sensor with shading detection