JPS5924265A - Apparatus for measuring current consumption - Google Patents

Apparatus for measuring current consumption

Info

Publication number
JPS5924265A
JPS5924265A JP13297982A JP13297982A JPS5924265A JP S5924265 A JPS5924265 A JP S5924265A JP 13297982 A JP13297982 A JP 13297982A JP 13297982 A JP13297982 A JP 13297982A JP S5924265 A JPS5924265 A JP S5924265A
Authority
JP
Japan
Prior art keywords
liquid crystal
circuit
crystal display
display element
exclusive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13297982A
Other languages
Japanese (ja)
Other versions
JPH0711542B2 (en
Inventor
Kazuhito Isobe
磯部 一仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57132979A priority Critical patent/JPH0711542B2/en
Publication of JPS5924265A publication Critical patent/JPS5924265A/en
Publication of JPH0711542B2 publication Critical patent/JPH0711542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To automatically measure the current consumption of a liquid crystal display element from current difference prior to and posterior to switching, by inputting a drive signal for driving a member to be detected and DC voltage to perform switching after a definite time. CONSTITUTION:DC voltage VP is set in a control part 11 and applied to a measuring circuit comprising exclusive OR circuits 1, 2 or the like through a buffer amplifier 13. The control part 11 issues a signal to an oscillator 14 to set the frequency of a drive square wave signal fp. A switching transistor 15 is subjected to ON-and-OFF operation by the signal fp and its output signal is inputted to the exclusive OR circuit 1. When the ON-and-OFF signal of a liquid crystal display element 3 is applied to the exclusive OR circuit 2 through a switching transistor 16 from the control part 11, current change is generated in the measuring circuit. Voltages at both ends of a resistor 16 are applied to a microprocessor 9 through an operation amplifier 17 and an A/D converter 8 to be subjected to operation treatment to perform display or printing.

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、液晶表示素子の消費電流を自動的に測定す
る装置に関するものである。 液晶表示素子を評価する場合、その応答特性。 駆動電圧対輝度特性、コントラスト特性および角度特性
等の光学的特性の他に、液晶表示素子が低消費電力素子
であるという特長からその消費電流特性も重要な測定項
目となっている。 液晶表示素子の消費電流を測定する手段として、相補形
MOS集積回路(以下、C−MOS  ICと称する)
の排他的OR回路(以下、エクスクル−シブOR回路と
称する)を用いて、その出力端子に液晶表示素子を接続
し、測定回路に流れ込む電流を電流計にて測定するか、
または測定回路に直列に抵抗器を接続して、その電圧降
下を電圧計を用いて測定する方法が考えられる。 ところが、前述のように、液晶表示素子は低消費電力の
ために、液晶表示素子に流れる電流は、マイクロアンペ
アオーダであり、かつ液晶表示素子は交流駆動されてい
るため、ノイズ等による測定誤差を充分考慮しながら測
定することは困難である。 そこで、この発明はC−MOS  ICのエクスクル−
シブOR回路を用いた測定回路を発展させ、マイクロコ
ンピュータ等の演算部を制御に用いることにより、測定
を自動化し、かつ測定条件である液晶表示素子の駆動電
圧および駆動周波数をスイッチの切り換えひとつで行え
る消費電流測定装置を提供することを目的とする。 次にこの発明に係る消費電流測定装置の一実施例をC−
MOS  ICのエクスクル−シブOR回路を用いた消
費電流測定回路と比較しながら詳細に説明する。 第1図はC−MOS  ICのエクスクル−シブOR回
路を用いた液晶表示素子の消費電流測定回路を示す図で
ある。同図において、■および2はC−MOS 工Cの
エクスクル−シブOR回路、3は被検出部材である液晶
表示素子で、前記エクスクル−シブOR回路1および2
の出力端子に接続される。Vpは前記液晶表示素子3の
駆動電圧となる直流電圧で、エクスクル−シブOR回路
1の一方の端子は直流電圧Vpに接続され、他方の端子
は液晶表示素子3の駆動方形波信号fpを発する発振器
(図示せず)に接続される。エクスクル−シブOR回路
2の一方の入力端子は抵抗器4を介して直流電圧Vpに
接続されるとともにスイッチ5を介して接地され、他方
の入力端子はエクスクル−シブOR回路1の出力端子に
接続される。 2つのエクスクル−シブOR回路1.2のグランド端子
は、抵抗器6およびコンデンサ7により接地され、さら
に抵抗器6の両端には直流電圧計8が接続され゛ている
。なお、コンデンサ7は交流成分のバイイパス用である
。 以上がC−MOS  ICのエクスクル−シブOR回路
1.2を用いた液晶表示素子3の消費電流測定回路の構
成であるが、次にその動作について説明する。 いま、スイッチ5を閉じたとすると、エクスクル−シブ
OR回路2の一方の入力は、低レベルとなり、エクスク
ル−シブOR回路2は単なるバッファアンプとして働く
から、入力と出力の論理は同相となり、従って液晶表示
素子3の両端の電圧は等しいということになるから、液
晶表示素子3には電流が流れず、液晶表示素子3は点灯
しない。 次にスイッチ5を開いてエクスクル−シブOR回路2の
一方の入力を高レベルとすると、エクスクル−シブOR
回路2はインバータとして働くから、入力と出力の論理
は反転し、従って液晶表示素子3の両端には直流電圧V
pの2倍の電圧が印加され、液晶表示素子3が点灯する
。このスイッチ5の開閉、すなわち液晶表示素子3のオ
ン、オフを繰り返して行い、その時の抵抗器6の電位差
を直流電圧計8で読み取れば、測定回路に流れる電流か
ら液晶表示素子3に流れる電流を求めることができる。 すなわち、スイッチ5を閉じて、コンデンサ7が充分に
放電を完了してからの直流電圧計8の読みをV off
 とし、次に、スイッチ5を開いてコンデンサ7が充分
に充電を完了してからの直流電圧計8の読みをVonと
すれば、液晶表示素子3に流れる電流ILCは次式で与
えられる。 ここでRは抵抗器6の抵抗値である。 このように、上記の測定回路では、測定者がスイッチ5
を交互に開閉し、そのつと直流電圧計8の値を読み取っ
て、液晶表示素子3に流れる電流を算出する必要がある
。また、測定条件である液晶駆動のための直流電圧Vp
を変えた場合、C−MOS  ICによるエクスクル−
シブOR回路l。 2の入力のしきい電圧レベルが変動するから、直流電圧
Vpの変化に応じて、駆動方形波信号fpの振幅も変化
させる必要があり測定に費やす時間は多大である。 この発明は、かかる測定回路の欠点にかんがみ、被検出
部材を駆動する駆動信号と直流電圧とを入力し、これを
ある一定時間をもってスイッチングさせるようにし、ス
イッチング前後の電流差から消費電流を求めるようにし
たものである。 第2図はこの発明に係る消費電流測定回路の一実施例を
示す図である。同図において、第1図と同一符号を付し
た1〜4は、同一部品、素子を示すので説明は省略する
。同図において、9はマイクロプロセッサ、10はメモ
リ、11は制御部である。12はD/A変換器で、制御
部11において直流電圧Vpを設定すると、その設定値
をアナログ電圧に変換する作用を有する。13はバッフ
ァアンプで、D/A変換器12のアナログ出力電圧をC
−MOS  ICによるエクスクル−シブOR回路1.
2等からなる測定回路に供給するためのものである。1
4は発振器で、液晶駆動周波数を決定する駆動方形波信
号fpを作るものである。 15はスイッチングトランジスタで、前記発振器14か
らの駆動方形波信号fpを受けてオン、オフ動作する。 16はスイッチングトランジスタで、制御部11からの
信号を受けてオン、オフ動作する。17は演算増幅器で
、抵抗器6の降下電圧を増幅するものであり、この演算
増幅器17の応答特性は、液晶表示素子3のオン、オフ
周期に対して十分早ければよいので、液晶表示素子3の
オン。 、オフ周期を短かくとも1秒程度とした場合に、演算増
幅器17の周波数帯域中は、直流から数百ヘルツ程度で
よく、耐ノイズ性等に有利となる。なお、演算増幅器1
7は低レベルの信号を正確に増幅する必要からドリフト
特性には充分気を配らなければならない。18はA/D
変換器で、演算増幅器17で増幅された信号をデジタル
信号に変換し、マイクロプロセッサ9に送る作用を有す
る。 19はディスプレイユニット、20はプリンタである。 以上がこの発明に係る測定装置の一実施例の構成である
が、次にその動作について説明する。制御部11におい
て、直流電圧Vpを設定すると、その設定値がD/A変
換器12によってアナログ電圧に変換され、バッファア
ンプ13を介して、C−MOS  ICによるエクスク
ル−シブOR回路1,2等からなる測定回路に加えられ
る。一方、制御部11は発振器14に信号を発し、駆動
方形波信号fpの周波数を設定する。発振器14から発
せられた駆動方形波信号t’pにより、スイッチングト
ランジスタ15はオン、オフ動作し、その出力信号をエ
クスクル−シブOR回路1の一方の入力端子に入力する
。ここで、発振器14の出力、すなわち液晶表示素子3
の駆動方形波信号fpを第1図の例のように、直接、エ
クスクル−シブOR回路1に入力せずに、スイッチング
トランジスタ15の負荷抵抗を直流電圧Vpに接続して
構成されたスイッチング回路を介して入力することによ
り、直流電圧Vpが変化しても、発振器14は常に一定
のレベル、例えばTTLレベルで動作していればよいこ
とになる。 次に液晶表示素子3のオン、オフ信号はマイクロプロセ
ッサ9の指令により、制御部11からスイッチングトラ
ンジスタ16を介して、エクスクル−シブOR回路2の
一方の入力端子に加えられる。ここにスイッチング回路
を用いるのも、前記駆動方形波信号fpの場合と同じ目
的である。液晶表示素子3のオン、オフはマイクロコン
ピュータのタイミング・コントロールによるが、そのオ
ン、オフ周期には充分考慮する必要がある。すなわち、
液晶表示素子3の応答特性は通常、常温にて数十ミリ秒
程度で温度変化に伴い、その応答性は大幅に変化するの
で、液晶表示素子3の応答時 “間に対して、充分ゆっ
くりした周期でオン、オフコントロールする必要がある
。液晶表示素子3がオン、オフすると、測定回路に電流
変化が生じ、この変化は抵抗器6の両端に電圧降下とな
って現われ、この抵抗器6の両端の電圧を演算増幅器1
7で直流増幅する。このとき、駆動方形波信号fpの交
流成分はコンデンサ7でバイパスされる。 演算増幅器17で増幅された信号はA/D変換器18で
デジタル信号に変換されて、マイクロプロセッサ9で演
算処理される。演算処理結果はディスプレイユニット1
9およびプリンタ20に表示あるいは印字される。 第3図は測定フローチャートを示す。このフローチャー
トを用いて、測定実行の様子を説明する。 まず、スタート(ステップ〔1〕)後、直流電圧Vpお
よび液晶表示素子3の駆動方形波信号fpの周波数をセ
ットしくステップ(2)、、(3))、測定準備ができ
たら測定をスタートする(ステップ〔4〕)。まず、液
晶表示素子3をオフにしくステップ(!5) ) 、液
晶の挙動が充分おさまってから、オフ時における測定回
路に流れる電流Ioff、ここでは抵抗器6の電圧降下
V offを演算処理部に取り込む(ステップ〔6〕)
。この時、ノイズやリップル等に対してS/N比をあげ
るために、多数回サンプリングして平均化してもよい。 演算処理部に取り込まれた電圧降下Voffのデータは
、一旦メモリ10に格納され、次に液晶表示素子3をオ
ン状態にする(ステップ〔7〕)。同様に液晶の挙動が
充分おさまってから、オン時における測定回路に流れる
電流Ion、ここではVonを演算処理部に取り込む(
ステップ〔8〕)。メモリ10に格納したV offデ
ータを再び取り出し、演算処理部において(Von−V
off ) /Rを実行する(ステップ
The present invention relates to a device that automatically measures the current consumption of a liquid crystal display element. When evaluating a liquid crystal display element, its response characteristics. In addition to optical characteristics such as driving voltage versus brightness characteristics, contrast characteristics, and angle characteristics, the current consumption characteristics of liquid crystal display elements are also important measurement items because they are low power consumption devices. A complementary MOS integrated circuit (hereinafter referred to as C-MOS IC) is used as a means to measure the current consumption of a liquid crystal display element.
Using an exclusive OR circuit (hereinafter referred to as exclusive OR circuit), connect a liquid crystal display element to its output terminal, and measure the current flowing into the measurement circuit with an ammeter, or
Another possible method is to connect a resistor in series with the measurement circuit and measure the voltage drop using a voltmeter. However, as mentioned above, because liquid crystal display elements consume low power, the current flowing through the liquid crystal display element is on the order of microamperes, and since the liquid crystal display element is driven by alternating current, measurement errors due to noise etc. It is difficult to measure with sufficient consideration. Therefore, this invention is an exclusive method for C-MOS IC.
By developing a measurement circuit using a sibu-OR circuit and using a calculation unit such as a microcomputer for control, measurements can be automated and the measurement conditions, the drive voltage and drive frequency of the liquid crystal display element, can be changed with a single switch. The purpose of the present invention is to provide a current consumption measuring device that can measure current consumption. Next, an embodiment of the current consumption measuring device according to the present invention will be explained.
This will be explained in detail in comparison with a current consumption measuring circuit using an exclusive OR circuit of a MOS IC. FIG. 1 is a diagram showing a circuit for measuring current consumption of a liquid crystal display element using an exclusive OR circuit of a C-MOS IC. In the figure, ■ and 2 are exclusive OR circuits of C-MOS C, 3 is a liquid crystal display element which is a member to be detected, and the exclusive OR circuits 1 and 2 are
connected to the output terminal of Vp is a DC voltage serving as a driving voltage for the liquid crystal display element 3, one terminal of the exclusive OR circuit 1 is connected to the DC voltage Vp, and the other terminal emits a driving square wave signal fp for the liquid crystal display element 3. Connected to an oscillator (not shown). One input terminal of the exclusive OR circuit 2 is connected to the DC voltage Vp via a resistor 4 and grounded via a switch 5, and the other input terminal is connected to the output terminal of the exclusive OR circuit 1. be done. The ground terminals of the two exclusive OR circuits 1.2 are grounded by a resistor 6 and a capacitor 7, and a DC voltmeter 8 is connected to both ends of the resistor 6. Note that the capacitor 7 is for bypassing the AC component. The configuration of the current consumption measuring circuit of the liquid crystal display element 3 using the exclusive OR circuit 1.2 of the C-MOS IC has been described above, and its operation will now be described. Now, if the switch 5 is closed, one input of the exclusive OR circuit 2 will be at a low level, and the exclusive OR circuit 2 will work as a mere buffer amplifier, so the logic of the input and output will be in phase, and therefore the liquid crystal Since the voltages across the display element 3 are equal, no current flows through the liquid crystal display element 3, and the liquid crystal display element 3 does not light up. Next, when the switch 5 is opened and one input of the exclusive OR circuit 2 is set to high level, the exclusive OR
Since the circuit 2 works as an inverter, the input and output logics are inverted, and therefore a DC voltage V is applied across the liquid crystal display element 3.
A voltage twice as high as p is applied, and the liquid crystal display element 3 lights up. By repeatedly opening and closing this switch 5, that is, turning the liquid crystal display element 3 on and off, and reading the potential difference across the resistor 6 at that time with a DC voltmeter 8, the current flowing through the liquid crystal display element 3 can be determined from the current flowing through the measurement circuit. be able to. That is, the reading on the DC voltmeter 8 after the switch 5 is closed and the capacitor 7 has fully discharged is V off
Then, if the reading of the DC voltmeter 8 after the switch 5 is opened and the capacitor 7 has been sufficiently charged is Von, the current ILC flowing through the liquid crystal display element 3 is given by the following equation. Here, R is the resistance value of the resistor 6. In this way, in the above measurement circuit, the measurer can switch 5
It is necessary to calculate the current flowing through the liquid crystal display element 3 by opening and closing alternately and reading the value of the DC voltmeter 8 each time. In addition, the measurement condition is the DC voltage Vp for driving the liquid crystal.
If you change the
Shibu OR circuit l. Since the threshold voltage level of the second input varies, it is necessary to change the amplitude of the drive square wave signal fp in accordance with the change in the DC voltage Vp, which requires a large amount of time for measurement. In view of the shortcomings of such a measuring circuit, the present invention inputs a drive signal and a DC voltage to drive the member to be detected, switches them over a certain period of time, and calculates the current consumption from the difference in current before and after switching. This is what I did. FIG. 2 is a diagram showing an embodiment of the current consumption measuring circuit according to the present invention. In this figure, 1 to 4 denoted by the same reference numerals as those in FIG. 1 indicate the same parts and elements, and their explanations will be omitted. In the figure, 9 is a microprocessor, 10 is a memory, and 11 is a control section. Reference numeral 12 denotes a D/A converter, which has the function of converting the set value into an analog voltage when the DC voltage Vp is set in the control unit 11. 13 is a buffer amplifier, which converts the analog output voltage of the D/A converter 12 into C.
- Exclusive OR circuit using MOS IC 1.
This is for supplying to a measuring circuit consisting of two components. 1
Reference numeral 4 denotes an oscillator that generates a driving square wave signal fp that determines the liquid crystal driving frequency. A switching transistor 15 is turned on and off in response to a driving square wave signal fp from the oscillator 14. Reference numeral 16 denotes a switching transistor, which operates on and off in response to a signal from the control section 11. Reference numeral 17 denotes an operational amplifier, which amplifies the voltage drop across the resistor 6. The response characteristics of the operational amplifier 17 need only be sufficiently fast with respect to the on/off period of the liquid crystal display element 3. On. When the off-period is set to be at least about 1 second, the frequency band of the operational amplifier 17 may range from DC to several hundred hertz, which is advantageous for noise resistance. In addition, operational amplifier 1
7, it is necessary to accurately amplify low-level signals, so sufficient attention must be paid to drift characteristics. 18 is A/D
The converter has the function of converting the signal amplified by the operational amplifier 17 into a digital signal and sending it to the microprocessor 9. 19 is a display unit, and 20 is a printer. The configuration of one embodiment of the measuring device according to the present invention has been described above, and the operation thereof will be explained next. When the DC voltage Vp is set in the control unit 11, the set value is converted to an analog voltage by the D/A converter 12, and then sent to the exclusive OR circuits 1, 2, etc. by C-MOS IC via the buffer amplifier 13. is added to the measurement circuit consisting of. On the other hand, the control section 11 issues a signal to the oscillator 14 to set the frequency of the drive square wave signal fp. The switching transistor 15 is turned on and off by the driving square wave signal t'p generated from the oscillator 14, and its output signal is inputted to one input terminal of the exclusive OR circuit 1. Here, the output of the oscillator 14, that is, the liquid crystal display element 3
As in the example of FIG. 1, a switching circuit configured by connecting the load resistance of the switching transistor 15 to the DC voltage Vp instead of directly inputting the drive square wave signal fp to the exclusive OR circuit 1 is used. By inputting the voltage through the DC voltage Vp, the oscillator 14 only needs to operate at a constant level, for example, at a TTL level, even if the DC voltage Vp changes. Next, the on/off signal for the liquid crystal display element 3 is applied from the control section 11 to one input terminal of the exclusive OR circuit 2 via the switching transistor 16 according to instructions from the microprocessor 9. The purpose of using the switching circuit here is the same as in the case of the drive square wave signal fp. The turning on and off of the liquid crystal display element 3 is controlled by the timing control of a microcomputer, and it is necessary to give sufficient consideration to the turning on and off periods. That is,
The response characteristics of the liquid crystal display element 3 usually change significantly as the temperature changes within a few tens of milliseconds at room temperature. It is necessary to control on and off periodically.When the liquid crystal display element 3 turns on and off, a current change occurs in the measurement circuit, and this change appears as a voltage drop across the resistor 6. Operational amplifier 1
7 for DC amplification. At this time, the AC component of the drive square wave signal fp is bypassed by the capacitor 7. The signal amplified by the operational amplifier 17 is converted into a digital signal by the A/D converter 18, and then processed by the microprocessor 9. The calculation results are displayed on display unit 1.
9 and the printer 20. FIG. 3 shows a measurement flowchart. The state of measurement execution will be explained using this flowchart. First, after starting (step [1]), set the DC voltage Vp and the frequency of the drive square wave signal fp for the liquid crystal display element 3 (steps (2), (3)), and start the measurement when you are ready for measurement. (Step [4]). First, step (!5)) turns off the liquid crystal display element 3. After the behavior of the liquid crystal has sufficiently subsided, the current Ioff flowing through the measurement circuit when it is off, in this case the voltage drop Voff across the resistor 6, is calculated by the arithmetic processing section. (Step [6])
. At this time, in order to increase the S/N ratio against noise, ripples, etc., sampling may be performed many times and averaged. The voltage drop Voff data taken into the arithmetic processing section is temporarily stored in the memory 10, and then the liquid crystal display element 3 is turned on (step [7]). Similarly, after the behavior of the liquid crystal has sufficiently subsided, the current Ion, here Von, flowing through the measurement circuit when it is on is taken into the arithmetic processing unit (
Step [8]). The V off data stored in the memory 10 is retrieved again and processed in the arithmetic processing section (Von-V
off ) Execute /R (step

〔9〕)。ここ
でRは、抵抗器6の抵抗値である。得られた演算結果を
ディスプレイ19またはプリンタ20にアウトプットし
て、1回の消費電流測定を終了する(ステップ〔10〕
)。 以上の実施例は、測定条件をある駆動電圧Vpおよびあ
る駆動方形波信号fpの周波数に対してのある液晶表示
素子3の消費電流の測定を目的としたが、これらのパラ
メータを変化することによって有効な測定データを得る
こともできる。例えば、液晶表示素子3は駆動方形波信
号fpの周波数を変化させると、直流電圧Vpが一定で
も、その消費電流はかなり変動する。そこで、この発明
における消費電流測定回路を発展させ、発振器14のか
わりに、プログラマブル発振器、またはVCO(電圧制
御発振器)等を用いて、駆動方形波信号fpの周波数を
スキャンしながら、順次消費電流を測定すれば、駆動周
波数対消費電流特性が得られる。また、D/A変換器1
2をコントロールして、駆動電圧対消費電流特性が得ら
れる。 以上詳細に説明したように、この発明は被検出部材を駆
動する駆動信号と直流電圧とを入力する手段と、所定間
隔でスイッチング動作させる手段と、スイッチング前後
の電流差から消費電流を求7帛 ′ヤ(る手段とで構成したので、測定がきわめて簡単・
、EEなり、測定を短時間で行うことができる利点があ
る。
[9]). Here, R is the resistance value of the resistor 6. The obtained calculation result is output to the display 19 or printer 20, and one measurement of current consumption is completed (step [10]
). In the above embodiment, the purpose was to measure the current consumption of a certain liquid crystal display element 3 under the measurement conditions of a certain drive voltage Vp and a certain frequency of a drive square wave signal fp, but by changing these parameters, Valid measurement data can also be obtained. For example, when the frequency of the driving square wave signal fp is changed in the liquid crystal display element 3, the current consumption thereof varies considerably even if the DC voltage Vp is constant. Therefore, the current consumption measuring circuit of the present invention has been developed, and a programmable oscillator or a VCO (voltage controlled oscillator) is used instead of the oscillator 14 to sequentially measure the current consumption while scanning the frequency of the drive square wave signal fp. If measured, the driving frequency vs. current consumption characteristics can be obtained. In addition, the D/A converter 1
By controlling 2, the drive voltage vs. current consumption characteristics can be obtained. As explained in detail above, the present invention includes a means for inputting a drive signal and a DC voltage for driving a member to be detected, a means for performing a switching operation at predetermined intervals, and a method for calculating current consumption from the difference in current before and after switching. Since it is constructed with a means of
, EE has the advantage of being able to perform measurements in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はC−MOS  ICのエクスクル−シブOR回
路を用いた液晶表示素子の消費電流回路、第2図はこの
発明の一実施例を示す消費電流測定装置の回路図、第3
図は測定フローチャートである。 図中、1,2はエクスクル−シブOR回路、3は液晶表
示素子、9はマイクロプロセッサ、10はメモリ、11
は制御部、12はD/A変換器、13はバッファアンプ
、14は発振器、15゜16はスイッチングトランジス
タ、17は演算増幅器、18はA/D変換器、19はデ
ィスプレイユニット、20はプリンタである。 第1図
FIG. 1 is a current consumption circuit of a liquid crystal display element using an exclusive OR circuit of a C-MOS IC, FIG. 2 is a circuit diagram of a current consumption measuring device showing an embodiment of the present invention, and FIG.
The figure is a measurement flowchart. In the figure, 1 and 2 are exclusive OR circuits, 3 is a liquid crystal display element, 9 is a microprocessor, 10 is a memory, and 11
12 is a control unit, 12 is a D/A converter, 13 is a buffer amplifier, 14 is an oscillator, 15° and 16 are switching transistors, 17 is an operational amplifier, 18 is an A/D converter, 19 is a display unit, and 20 is a printer. be. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 被検出部材を駆動する駆動信号と直流電圧とを入力する
手段と、所定間隔でスイッチング動作させる手段と、前
記スイッチング前後の電流差から消費電流を求める手段
とからなることを特徴とする消費電流測定装置。
Current consumption measurement characterized by comprising means for inputting a drive signal and DC voltage to drive the detected member, means for performing a switching operation at predetermined intervals, and means for determining current consumption from the difference in current before and after the switching. Device.
JP57132979A 1982-07-31 1982-07-31 Power consumption measuring device Expired - Lifetime JPH0711542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57132979A JPH0711542B2 (en) 1982-07-31 1982-07-31 Power consumption measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57132979A JPH0711542B2 (en) 1982-07-31 1982-07-31 Power consumption measuring device

Publications (2)

Publication Number Publication Date
JPS5924265A true JPS5924265A (en) 1984-02-07
JPH0711542B2 JPH0711542B2 (en) 1995-02-08

Family

ID=15093950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57132979A Expired - Lifetime JPH0711542B2 (en) 1982-07-31 1982-07-31 Power consumption measuring device

Country Status (1)

Country Link
JP (1) JPH0711542B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125162A (en) * 1974-08-26 1976-03-01 Yokogawa Electric Works Ltd DENATSUSOKUTE ISOCHI
JPS5224079A (en) * 1975-08-19 1977-02-23 Toshiba Corp Measurement method of semiconductor apparatus
JPS5331178A (en) * 1976-09-03 1978-03-24 Hewlett Packard Yokogawa Automatic correction circuit for voltmeter
JPS5559347A (en) * 1978-10-30 1980-05-02 Hitachi Ltd Test system for liquid crystal display element
JPS55127280A (en) * 1979-03-20 1980-10-01 Sumitomo Heavy Ind Ltd Mooring device for surface float body
JPS5738498A (en) * 1980-08-21 1982-03-03 Suwa Seikosha Kk Testing system for active matrix substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125162A (en) * 1974-08-26 1976-03-01 Yokogawa Electric Works Ltd DENATSUSOKUTE ISOCHI
JPS5224079A (en) * 1975-08-19 1977-02-23 Toshiba Corp Measurement method of semiconductor apparatus
JPS5331178A (en) * 1976-09-03 1978-03-24 Hewlett Packard Yokogawa Automatic correction circuit for voltmeter
JPS5559347A (en) * 1978-10-30 1980-05-02 Hitachi Ltd Test system for liquid crystal display element
JPS55127280A (en) * 1979-03-20 1980-10-01 Sumitomo Heavy Ind Ltd Mooring device for surface float body
JPS5738498A (en) * 1980-08-21 1982-03-03 Suwa Seikosha Kk Testing system for active matrix substrate

Also Published As

Publication number Publication date
JPH0711542B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
US6816796B2 (en) Resistance measuring circuit
US5973571A (en) Semiconductor integrated circuit having a phase locked loop
JPS5924265A (en) Apparatus for measuring current consumption
JP3330704B2 (en) Battery AC constant current charge / discharge circuit and battery test apparatus using the same
JPH04191678A (en) Apparatus for inspecting integrated circuit
JPS6238374A (en) Evaluation system for electronic circuit
JPH05188123A (en) Battery measuring apparatus
JPH022953A (en) Ic testing apparatus
JP3160185B2 (en) Hysteresis inspection method for comparator circuit
RU2163007C2 (en) Temperature-to-digital code converter
JPH0635195Y2 (en) Time interval measuring circuit
JPS5999368A (en) Method and apparatus for measuring inverse voltage of semiconductor element
JP2001124865A (en) Infrared detector
JPH11153641A (en) Semiconductor device testing device
JP2002062333A (en) Measuring apparatus
JPS63133071A (en) Current-frequency converter
JPH08170974A (en) Period and average current measuring instrument
JPH05297039A (en) Method and apparatus for detecting variation of capacitance using computer
JPS606520B2 (en) Integrated circuit device with liquid crystal display drive circuit
JPH04115169A (en) Jitter analyser
JPH08210924A (en) Temperature detecting device using thermistor
JPH0678878U (en) Transistor testing equipment
JPH0972790A (en) Temperature measuring device
JP2003033882A (en) Current measuring device and control device for resistance welding
JPH02275378A (en) Semiconductor integrated circuit