JPS5923852B2 - Adsorption methods for ionic and polar substances - Google Patents

Adsorption methods for ionic and polar substances

Info

Publication number
JPS5923852B2
JPS5923852B2 JP51040838A JP4083876A JPS5923852B2 JP S5923852 B2 JPS5923852 B2 JP S5923852B2 JP 51040838 A JP51040838 A JP 51040838A JP 4083876 A JP4083876 A JP 4083876A JP S5923852 B2 JPS5923852 B2 JP S5923852B2
Authority
JP
Japan
Prior art keywords
fiber
exchange
substances
ion
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51040838A
Other languages
Japanese (ja)
Other versions
JPS52123986A (en
Inventor
敏雄 吉岡
和雄 寺本
政治 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP51040838A priority Critical patent/JPS5923852B2/en
Publication of JPS52123986A publication Critical patent/JPS52123986A/en
Publication of JPS5923852B2 publication Critical patent/JPS5923852B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Nonmetal Cutting Devices (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 本発明は多芯型複合繊維を基材としたイオン交換繊維に
よつて、イオン性物質および極性物質を吸着する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for adsorbing ionic substances and polar substances using ion exchange fibers based on multifilamentary composite fibers.

イオン性物質や極性物質を吸着する工程は、有用物質の
分離回収、有害物質あるいは不純物の除去等を必要とす
る工業分野において非常に重要である。
The process of adsorbing ionic and polar substances is very important in industrial fields that require separation and recovery of useful substances, removal of harmful substances or impurities, and the like.

イオン性物質および極性物質の吸着方法としては、イオ
ン交換樹脂による方法が知られており、広範囲に利用さ
れている。
As a method for adsorbing ionic substances and polar substances, a method using an ion exchange resin is known and is widely used.

しかし、イオン交換樹脂の交換基は樹脂粒子の表面に比
較して網目構造の内部に極めて多く存在しているため、
吸着速度が遅い欠点がある。特に、高分子量のイオン性
物質や極性物質は粒子内部への拡散速度が非常に小さい
ので、一定時間におけるその交換容量は小さくなる。通
常のイオン交換樹脂の場合、分子量250程度が限界で
あり、また多孔性のイオン交換樹脂の場合でも分子量1
000程度が限界であり(F、XoMcGarvey3
A、C、Reents3Chem。Eng、2205(
Sept、1954))、逆にそのような樹脂は膨潤収
縮性が大きく取り扱いが面倒である。上記のごとく、イ
オン交換樹脂による方法は高分子量のイオン性物質や極
性物質に対する吸着容量が小さい欠点を有している。一
方、イオン交換樹脂繊維による方法は、樹脂法に比較し
てその活性表面積が大きいため反応速度が速く、高分子
量のイオン性物質や極性物質に対する吸着容量が大きい
However, since the exchange groups of ion exchange resins are much more present inside the network structure than on the surface of the resin particles,
The disadvantage is that the adsorption speed is slow. In particular, high molecular weight ionic substances and polar substances have a very low diffusion rate into the particles, so their exchange capacity over a certain period of time becomes small. In the case of ordinary ion exchange resins, the molecular weight is about 250, and even in the case of porous ion exchange resins, the molecular weight is 1.
000 is the limit (F, XoMcGarvey3
A, C, Reents3Chem. Eng, 2205 (
Sept., 1954)) On the contrary, such resins have a large swelling and shrinking property and are troublesome to handle. As mentioned above, the method using an ion exchange resin has the disadvantage that the adsorption capacity for high molecular weight ionic substances and polar substances is small. On the other hand, the method using ion exchange resin fibers has a larger active surface area than the resin method, so the reaction rate is faster and the adsorption capacity for high molecular weight ionic substances and polar substances is large.

その中でも、イオン交換用ポリマーと補強用ポリマーか
らなる多芯型混合繊維、および補強用ポリマーを芯成分
とし、イオン交換用ポリマーを鞘成分とする芯鞘型複合
繊維を基材としたイオン交換繊維は、糸強度と交換容量
が大きく、耐薬品性、耐溶剤住にすぐれている。しかし
、前者の混合重合体繊維を基材とするイオン交換繊維は
、イオン交換基を有しない補強用ポリマーが繊維表面近
傍にも混合比の割合で多数分布しているためにそれだけ
反応速度が遅くなり、高分子量のイオン性物質や極性物
質に対する吸着効果が十分に発揮しがたい。
Among them, multifilamentary mixed fibers consisting of ion-exchange polymers and reinforcing polymers, and ion-exchange fibers based on core-sheath type composite fibers in which the reinforcing polymer is the core component and the ion-exchange polymer is the sheath component. has high yarn strength and exchange capacity, and has excellent chemical and solvent resistance. However, the former ion-exchange fibers based on mixed polymer fibers have a large number of reinforcing polymers that do not have ion-exchange groups distributed near the fiber surface at a proportion of the mixing ratio, which slows down the reaction rate. Therefore, it is difficult to fully exhibit the adsorption effect on high molecular weight ionic substances and polar substances.

又、糸強度も十分に満足なものとはいえない。Furthermore, the yarn strength is not fully satisfactory.

補強用ポリマーの混合比率を小さくすると、交換容量、
高分子量のイオン性物質や極性物質に対する吸着性が向
上するが、糸強度が小さくなり使用に耐えない繊維とな
る。逆に補強用ポリマーの混合率を大きくすると、糸強
度は大きくなるが、反応速度が遅くなり高分子量のイオ
ン性物質や極性物質に対する吸着性が極めて低下してし
まう。一方、芯鞘型複合繊維(同心型、偏心型)を基材
としたイオン交換繊維は、繊維表面近傍がイオン交換性
ポリマーで構成されているため、反応速度が速く、高分
子量のイオン性物質や極性物質の吸着性に優れているが
、イオン交換用ポリマーと補強用ポリマーとの接合面積
が小さいため、イオン交換基の導入にともなう剥離がお
こり、外部からの機械的な刺激によつて溶液が過大に濁
るという欠点を有している。本発明者らは、これらの欠
点を改良すべく鋭意検討した結果、本発明に到達したも
のである。
When the mixing ratio of the reinforcing polymer is reduced, the exchange capacity,
The adsorption ability for high molecular weight ionic substances and polar substances is improved, but the yarn strength is reduced and the fiber becomes unusable. Conversely, if the mixing ratio of the reinforcing polymer is increased, the yarn strength will increase, but the reaction rate will be slow and the adsorption ability for high molecular weight ionic substances and polar substances will be extremely reduced. On the other hand, ion-exchange fibers based on core-sheath type composite fibers (concentric type, eccentric type) are composed of ion-exchangeable polymer near the fiber surface, so the reaction rate is fast, and high molecular weight ionic substances However, because the bonding area between the ion-exchange polymer and the reinforcing polymer is small, peeling occurs as ion-exchange groups are introduced, and mechanical stimulation from the outside can cause problems in the solution. has the disadvantage of being excessively cloudy. The present inventors have arrived at the present invention as a result of intensive studies aimed at improving these drawbacks.

すなわち、本発明は2種以上の成分からなる複合繊維で
あつて、A成分がイオン交換用ポリマーを主体としてな
り、B成分が繊維補強用ポリマーであり、B成分がA成
分中に複数分散し、かつ、それらが繊維軸方向に連続し
た多芯構造を有する多芯型複合繊維を基材とした架橋不
溶化されたイオン交換繊維に、分子量250以上のイオ
ン性物質または/および極性物質を含む液を接触させて
該物質を吸着させることを特徴とするイオン性物質およ
び極性物質の吸着法に関するものである。以下、本発明
を詳細に述べる。本発明に用いる多芯型複合繊維を基材
としたイオン交換繊維は、繊維軸方向にいずれの繊維断
面を切つても同じ多芯構造を有している。
That is, the present invention is a composite fiber consisting of two or more components, in which the A component is mainly an ion exchange polymer, the B component is a fiber reinforcing polymer, and a plurality of B components are dispersed in the A component. , and a solution containing an ionic substance and/or a polar substance with a molecular weight of 250 or more in cross-linked and insolubilized ion exchange fibers based on multifilamentary composite fibers having a multifilamentary structure continuous in the fiber axis direction. This invention relates to a method for adsorbing ionic substances and polar substances, which is characterized in that the substances are adsorbed by bringing them into contact with each other. The present invention will be described in detail below. The ion exchange fiber based on the multicore composite fiber used in the present invention has the same multicore structure no matter which fiber cross section is cut in the fiber axis direction.

すなわち、本発明法の基材となる多芯型複合繊維とは、
成分ポリマーを溶剤に溶解して湿式紡糸または乾式紡糸
する方法、1成分を他の成分溶液中にエマルジヨン化し
てエマルジヨン紡糸する方法、あるいは両者をチツプ混
合して溶融紡糸する方法によつて得られる繊維断面にお
けるポリマーの混合状態、形状が不特定な多芯混合繊維
とは全く異なる。本発明法中でも、特にイオン交換用ポ
リマーを海成分の主成分とし、補強用ポリマーを島成分
の主成分とする多芯海島型複合繊維を基材としたイオン
交換繊維は耐久性、耐剥離性にすぐれ最も好ましく用い
られる。多芯海島型複合繊維における補強用ポリマーを
主成分とする島成分の割合は通常10〜90%程′度で
あるが、割合が10%より低いと機械的強度が小さくな
り、90%より高いとイオン交換基量が低下するため、
特に20〜80%が望ましい。
In other words, the multifilamentary composite fiber that is the base material of the method of the present invention is
Fibers obtained by dissolving component polymers in a solvent and wet spinning or dry spinning, emulsifying one component in a solution of another component and spinning emulsion, or mixing both in chips and melt spinning. This is completely different from multicore mixed fibers, which have unspecified polymer mixing state and shape in cross section. Among the methods of the present invention, in particular, ion-exchange fibers based on multicore sea-island type composite fibers in which the ion-exchange polymer is the main component of the sea component and the reinforcing polymer is the main component of the island component have excellent durability and peeling resistance. It is most preferably used because of its excellent properties. The proportion of the island component whose main component is a reinforcing polymer in a multifilamentary sea-island composite fiber is usually about 10 to 90%, but if the proportion is lower than 10%, the mechanical strength will be low, and if it is higher than 90%. and the amount of ion exchange groups decreases,
In particular, 20 to 80% is desirable.

島の個数には特に限定はないが、酎久性、耐剥離性の面
から多い方が望ましく、特に5個以上が好ましい。補強
用ポリマーとしては、ポリエステル、ポリアミド、ポリ
一α−オレフイン等のホモ重合体、又はこれらの共重合
体、ブレンド体が用いられる。
Although there is no particular limitation on the number of islands, it is desirable to have a large number from the viewpoint of durability and peeling resistance, and particularly preferably 5 or more. As the reinforcing polymer, homopolymers such as polyester, polyamide, and poly-α-olefin, or copolymers and blends thereof are used.

そのなかでも耐薬品性にすぐれたポリα−オレフインが
最も好ましく用いられる。ポリα−オレフインとしては
ポリプロピレン、ポリエチレン、ポリ−3−メチルブテ
ン−1、ポリ−4−メチルベンゼン−1などが好ましく
用いられる。海成分の主成分となるイオン交換用ポリマ
ーとしては、イオン交換基を導入し得るポリマーが用い
られ、特にポリ(モノビニル芳香族化合物)が好ましく
用いられる。
Among these, polyα-olefin, which has excellent chemical resistance, is most preferably used. As the poly-α-olefin, polypropylene, polyethylene, poly-3-methylbutene-1, poly-4-methylbenzene-1, etc. are preferably used. As the ion exchange polymer which is the main component of the sea component, a polymer into which ion exchange groups can be introduced is used, and poly(monovinyl aromatic compound) is particularly preferably used.

ポリ(モノビニル芳香族化合物)としてはスチレン、α
−メチルスチレン、ビニルトルエン、ビニルキシレン、
クロルメチルスチレンなどのホモ重合体もしくはこれら
の2種以上の共重合体、およびグラフト重合体又はこれ
らのブレンド体が好ましく用いられる。
Poly(monovinyl aromatic compounds) include styrene, α
-methylstyrene, vinyltoluene, vinylxylene,
Homopolymers such as chloromethylstyrene or copolymers of two or more thereof, and graft polymers or blends thereof are preferably used.

さらに、海成分についてはこれらのポリ(モノビニル芳
香族化合物)以外に、前記補強用ポリマーとのブレンド
体であつてもよい。この場合、補強用ポリマーのブレン
ド比が大きくなるはど繊維にしまりができ、耐剥離性、
耐久性、強靭性にすぐれた繊維が得られるが、逆に反応
速度、吸着性が低下するため、ブレンド比は50%以下
、特に5〜40%程度が好ましい。本発明法のイオン交
換繊維とは、任意の方法によつて紡糸、延伸した前記複
合繊維を架橋不溶化し、これに、イオン交換基を導入し
た繊維を意味する。本発明法の複合繊維を架橋不溶化す
る方法は任意であるが、ホルムアルデヒド源が含有され
ている硫酸一水もしくは硫酸一飽和脂肪酸中で架橋不溶
化する方法が望ましい。
Furthermore, the sea component may be a blend with the above-mentioned reinforcing polymer in addition to these poly(monovinyl aromatic compounds). In this case, as the blend ratio of the reinforcing polymer increases, the fibers become tight, resulting in poor peeling resistance and
Although fibers with excellent durability and toughness can be obtained, the reaction rate and adsorption properties are reduced, so the blend ratio is preferably 50% or less, particularly about 5 to 40%. The ion-exchange fiber according to the present invention refers to a fiber obtained by crosslinking and insolubilizing the composite fiber spun and drawn by any method and introducing an ion-exchange group therein. Although the method of crosslinking and insolubilizing the composite fibers of the present invention is arbitrary, a method of crosslinking and insolubilizing them in sulfuric acid monohydrate or sulfuric acid monosaturated fatty acid containing a formaldehyde source is preferable.

特にホルムアルデヒド源が含有されている硫酸一飽和脂
肪酸中で架橋不溶化する方法は副反応がほとんどなく最
も好ましい。イオン交換基とはカチオン交換基、アニオ
ン交換基等を意味し、その導入方法は任意である。
In particular, the method of crosslinking and insolubilizing in a sulfuric acid monosaturated fatty acid containing a formaldehyde source is most preferable since there are almost no side reactions. The ion exchange group means a cation exchange group, an anion exchange group, etc., and the introduction method thereof is arbitrary.

イオン交換基は吸着の対象となるイオン性物質や極性物
質の種類によつて適宜決められる。アニオン交換基とし
ては、ハロアルキル化糸をトリメチルアミン、ジメチル
アミノエタノール等の第3級アミンで処理することによ
つて得られる強塩基性アニオン交換基、及びイソプロピ
ルアミン、ジエチルアミン、ピペラジン、モルホリン等
の2級以下のアミンで処理することによつて得られる弱
塩基性アニオン交換基が好ましく用いられる。カチオン
交換基としては、クロルスルホン酸、濃硫酸、発煙硫酸
等でスルホン化することによつて得られる強酸性基、三
塩化リンと反応した後加水分解することによつて得られ
るホスホン酸型の中酸性カチオン交換基、あるいはカル
ボン酸型の弱酸性カチオン交換基が好ましく用いられる
。本発明法のイオン交換繊維の繊維断面は円形のほか、
非円形断面も表面積が大きくなるので好ましく用いられ
る。
The ion exchange group is appropriately determined depending on the type of ionic substance or polar substance to be adsorbed. Examples of anion exchange groups include strongly basic anion exchange groups obtained by treating haloalkylated threads with tertiary amines such as trimethylamine and dimethylaminoethanol, and secondary anion exchange groups such as isopropylamine, diethylamine, piperazine, and morpholine. Weakly basic anion exchange groups obtained by treatment with the following amines are preferably used. Examples of cation exchange groups include strongly acidic groups obtained by sulfonation with chlorosulfonic acid, concentrated sulfuric acid, fuming sulfuric acid, etc., and phosphonic acid-type groups obtained by hydrolysis after reaction with phosphorus trichloride. A moderately acidic cation exchange group or a carboxylic acid type weakly acidic cation exchange group is preferably used. The fiber cross section of the ion-exchange fiber of the present invention is circular, and
A non-circular cross section is also preferably used since it increases the surface area.

本発明に用いられるイオン交換繊維の繊度は通常0.1
〜500d程度であるが、細すぎると糸強力が小さくな
り、取り扱いが難しい欠点を生じ、太すぎると交換速度
、吸着性が低下するため特に1〜50dが望ましい。
The fineness of the ion exchange fiber used in the present invention is usually 0.1.
It is preferably about 1 to 50 d, but if it is too thin, the thread strength will be low and it will be difficult to handle, and if it is too thick, the exchange rate and adsorption properties will be reduced, so it is particularly desirable to have a diameter of 1 to 50 d.

また、その繊維強度は、小さすぎると糸切れを生じ粉末
化するため、0.59/d上が好ましく用いられる。使
用形態には限定がなく、フイラメント糸、パンチフエル
ト、織物、編物、不織布、繊維束、詰め綿、短繊維等種
種の形態で用いることができる。本発明法は、イオン性
物質および極性物質の分子量が小さすぎると交換容量当
りの吸着容量がイオン交換樹脂と同程度になるので、通
常、分子量が250以上の物質の吸着にすぐれており、
特に1000以上の物質の吸着性が大きい。
Furthermore, if the fiber strength is too low, thread breakage occurs and the fiber is powdered, so a fiber strength of 0.59/d or higher is preferably used. The form of use is not limited, and it can be used in various forms such as filament yarn, punched felt, woven fabric, knitted fabric, nonwoven fabric, fiber bundle, stuffed cotton, and short fibers. The method of the present invention is usually excellent in adsorbing substances with a molecular weight of 250 or more, because if the molecular weight of ionic substances and polar substances is too small, the adsorption capacity per exchange capacity will be comparable to that of ion exchange resin.
In particular, it has a high adsorption ability for substances of 1000 or more.

特に、分子量が約250以上の物質の吸着に好ましく用
いられ、さらに好ましくは約1000以上の物質の吸着
に用いられる。本発明法は、分子量が250以上である
色素たとえばポリヨウ素、種々の糖液、血液や血漿なら
びに染料など、抗生物質たとえばストレプトマイシン、
ペニシリンなど、タンパク質たとえば糖タンパク、核タ
ンパク、リポタンパク、ペプチド、酵素、抗原、抗体、
パイロジエンなど、核酸たとえばウイルスなど、さらに
分子量が250以上の界面活性剤、ホルモン、ヌクレオ
チド、アルカロイド、脂質、ステロイド、その他の有機
物質たとえば有機酸、有機塩基など、さらには細胞たと
えば菌体、微生物細胞、植物細胞、動物細胞、赤血球、
白血球、血小板など、無機質または有機質コロイドたと
えば酸化鉄、水酸化鉄、シリカなど250以上の高分子
量を有するイオン性、極性物質の吸着、固定化に極めて
すぐれた効果を発揮するものである。
In particular, it is preferably used to adsorb substances with a molecular weight of about 250 or more, more preferably about 1000 or more. The method of the present invention can be applied to dyes having a molecular weight of 250 or more, such as polyiodine, various sugar solutions, blood and plasma, and dyes, antibiotics such as streptomycin,
penicillin, proteins such as glycoproteins, nuclear proteins, lipoproteins, peptides, enzymes, antigens, antibodies,
pyrodiene, nucleic acids such as viruses, surfactants with a molecular weight of 250 or more, hormones, nucleotides, alkaloids, lipids, steroids, other organic substances such as organic acids, organic bases, cells such as bacterial cells, microbial cells, plant cells, animal cells, red blood cells,
It exhibits extremely excellent adsorption and immobilization effects on ionic and polar substances having a high molecular weight of 250 or more, such as leukocytes and platelets, inorganic or organic colloids, such as iron oxide, iron hydroxide, and silica.

本発明はこれらの物質のなかでも、さらに高分子量の分
子量1000以上の物質に対して特にすぐれた効果を発
揮するものである。また、本発明法で吸着したイオン性
物質や極性物質は適宜鉱酸溶液、アルカリ溶液、水溶性
塩類、有機溶媒等の再生剤によつて脱着される。本発明
法の多芯海島型複合繊維を基材としたイオン交換繊維は
、繊維表面近傍の主成分がイオン交換性ポリマーによつ
て構成されているため、交換速度が大きく、高分子量の
イオン性物質や極性物質の吸着性に優れている。
Among these substances, the present invention exhibits particularly excellent effects on substances with even higher molecular weights, ie, substances with a molecular weight of 1000 or more. Further, the ionic substances and polar substances adsorbed by the method of the present invention are desorbed using a regenerating agent such as a mineral acid solution, an alkaline solution, a water-soluble salt, or an organic solvent. The ion-exchange fiber based on the multicore sea-island type composite fiber of the present invention has a high exchange rate and high molecular weight ionic properties because the main component near the fiber surface is composed of an ion-exchange polymer. Excellent adsorption of substances and polar substances.

その上、補強用ポリマーを主成分とする島成分が繊維軸
方向に連続的に配夕1ルているため、有効に繊維補強に
寄与し、大きな糸強度を有している。又、補強用ポリマ
ーからなる芯成分が複数存在するため、イオン交換性ポ
リマーとの接合面積が大きく、通常の芯鞘型複合繊維を
基材としたイオン交換繊維よりも遥かに耐剥離性、耐久
性に優れている。本発明法の多芯海島型複合繊維を基材
としたイオン交換繊維は、上記の如く第1に交換速度が
大きいこと、第2に高分子量のイオン性物質や極性物質
の吸着性に優れていること、第3に糸強度が強いこと、
第4に耐剥離性、耐久性に優れていること、第5に使用
形態が自由に選べること等を特徴としている。
Furthermore, since the island component, which is mainly composed of a reinforcing polymer, is arranged continuously in the fiber axis direction, it effectively contributes to fiber reinforcement and has high yarn strength. In addition, since there are multiple core components made of reinforcing polymers, the bonding area with the ion-exchange polymer is large, making it far more resistant to peeling and durable than ion-exchange fibers based on normal core-sheath type composite fibers. Excellent in sex. As mentioned above, the ion-exchange fiber based on the multicore sea-island composite fiber of the present invention has two advantages: firstly, it has a high exchange rate, and secondly, it has excellent adsorption properties for high molecular weight ionic substances and polar substances. Thirdly, the thread strength is strong.
Fourthly, it has excellent peeling resistance and durability, and fifthly, it can be used in any manner.

本発明の実施法としては固定床式イオン交換法、連続式
イオン交換法、バツチ法いずれでも実施しうるものであ
る。
The present invention can be carried out by any of the fixed bed ion exchange method, continuous ion exchange method, and batch method.

以下に実施例を示すが、これに限定されるものではない
Examples are shown below, but the invention is not limited thereto.

実施例 1 0.02Mのセチルピリジニウムクロライド水溶液を2
00m1の共栓付き三角フラスコに200m1入れ、水
素型の強酸性カチオン交換体を2ミリ当量加えアジテー
タ一で2時間激しく撹拌した。
Example 1 0.02M cetylpyridinium chloride aqueous solution
200 ml of the mixture was placed in a 00 ml Erlenmeyer flask with a stopper, and 2 milliequivalents of a hydrogen-type strongly acidic cation exchanger was added thereto, and the mixture was vigorously stirred with an agitator for 2 hours.

生成した塩酸をカセイソーダで中和滴定してセチルピリ
ジニウムイオン(分子量358)の吸着量を求めた。強
酸性カチオン交換体として、下記の方法で作製した本発
明法の多芯海島型複合カチオン交換繊維(50/0)/
50、(49/12)/39、及び比較例としてイオン
交換樹脂アンバーライトIR−120B,IR−200
(MR型)を用いた場合の結果を第1表に示す。多芯海
島型複合カチオン交換繊維は、 (1)ポリスチレンを海成分、ポリプロピレンを島成分
として、海島比が50:50になるように250℃で溶
融複合紡糸(島数16)した後、5〜6倍に延伸するこ
とによつて多芯海島型複合繊維を得た。
The generated hydrochloric acid was neutralized and titrated with caustic soda to determine the adsorption amount of cetylpyridinium ions (molecular weight 358). As a strongly acidic cation exchanger, a multicore sea-island type composite cation exchange fiber (50/0) produced by the method of the present invention (50/0)/
50, (49/12)/39, and ion exchange resin Amberlite IR-120B, IR-200 as a comparative example.
Table 1 shows the results when using (MR type). Multifilamentary sea-island type composite cation exchange fiber is produced by (1) polystyrene as a sea component and polypropylene as an island component, melt composite spun at 250°C with a sea-island ratio of 50:50 (number of islands: 16), and then A multicore sea-island type composite fiber was obtained by stretching the fiber 6 times.

延伸糸をパラホルムアルデヒド5部、酢酸25部、濃硫
酸70部からなる架橋液に浸して80℃で4時間架橋処
理した後、クロルスルホン酸の5%トリクレン溶液中に
浸して、15℃で2時間反応処理し、酢酸、メタノルで
洗浄した。次に、2Nの水酸化ナトリウム水溶液中に浸
して、50℃で1時間加水分解することによつて強酸性
多芯海島型複合カチオン交換繊維を得た。交換容量は2
.8ミリ当量/g、繊度は6.3d1糸強度は1.4f
!/dであり、剥離性は小さかつた。(2)ポリスチレ
ン49部とポリプロピレン12部のブレンド体が海成分
、ポリプロピレン39部が島成分になるように250℃
で溶融複合紡糸(島数16)した後、5〜6倍に延伸す
ることによつて多芯海島型複合繊維(49/12)/3
9を得た。
The drawn yarn was immersed in a crosslinking solution consisting of 5 parts of paraformaldehyde, 25 parts of acetic acid, and 70 parts of concentrated sulfuric acid and crosslinked at 80°C for 4 hours, then immersed in a 5% solution of chlorsulfonic acid in trichlene and crosslinked at 15°C for 2 hours. The mixture was reacted for a period of time and washed with acetic acid and methanol. Next, the fiber was immersed in a 2N aqueous sodium hydroxide solution and hydrolyzed at 50° C. for 1 hour to obtain a strongly acidic multicore sea-island type composite cation exchange fiber. Exchange capacity is 2
.. 8 milliequivalent/g, fineness is 6.3d1 yarn strength is 1.4f
! /d, and the releasability was low. (2) 250°C so that the blend of 49 parts of polystyrene and 12 parts of polypropylene becomes the sea component and 39 parts of polypropylene becomes the island component.
After melt-spinning (16 islands), multicore sea-island type composite fiber (49/12)/3 is drawn by 5 to 6 times.
I got a 9.

延伸糸をパラホルムアルデヒド5部、酢酸25部、濃硫
酸70部からなる架橋液に浸して80℃で4時間架橋処
理した後、クロルスルホン酸の5%トリクレン溶液中に
浸して、15℃で2時間反応処理し、酢酸、メタノール
で洗浄した。次に、2Nの水酸化ナトリウム水溶液中に
浸して、50℃で1時間加水分解することによつて強酸
性多芯海島型複合カチオン交換繊維(49/12)/3
9を得た。交換容量は2.7ミリ当量/9、繊度は6.
2d1糸強度は1.3g/dであり、剥離は認められな
かつた。セチルピリジニウムイオンの分子量は358で
あり、本発明法の有効交換率が95%以上であるのに対
して、イオン交換樹脂法では15〜25%程度であるに
すぎず、樹脂内部の交換基が有効に寄与していないこと
がわかる。実施例 2 2.13ミリ当量のマラカイトグリーン(塩基性染料)
を含むマラカイトグリーンシユウ酸塩水溶液250WL
Iを500W11の共栓付き三角フラスコに入れ、水素
型の強酸性カチオン交換体を2ミリ当量加えてアジテー
タ一で2時間激しく撹拌した。
The drawn yarn was immersed in a crosslinking solution consisting of 5 parts of paraformaldehyde, 25 parts of acetic acid, and 70 parts of concentrated sulfuric acid and crosslinked at 80°C for 4 hours, then immersed in a 5% solution of chlorsulfonic acid in trichlene and crosslinked at 15°C for 2 hours. The mixture was reacted for a period of time and washed with acetic acid and methanol. Next, the strongly acidic multicore sea-island type composite cation exchange fiber (49/12)/3 was immersed in a 2N aqueous sodium hydroxide solution and hydrolyzed at 50°C for 1 hour.
I got a 9. Exchange capacity is 2.7 meq/9, fineness is 6.
The 2d1 yarn strength was 1.3 g/d, and no peeling was observed. The molecular weight of cetylpyridinium ion is 358, and while the effective exchange rate of the method of the present invention is over 95%, the effective exchange rate of the ion exchange resin method is only about 15 to 25%, and the exchange rate inside the resin is It can be seen that it is not contributing effectively. Example 2 2.13 milliequivalents of malachite green (basic dye)
Malachite green oxalate aqueous solution 250WL containing
I was placed in a 500W11 Erlenmeyer flask with a stopper, 2 milliequivalents of a hydrogen-type strongly acidic cation exchanger was added, and the mixture was vigorously stirred with an agitator for 2 hours.

溶液中のマラカイトグリーンの濃度を617mμの吸光
度値で定量して吸着量を求めた。強酸性カチオン交換体
として、実施例1の方法で作製した多芯海島型複合カチ
オン交換繊維(49/12)/39、及び比較例として
イオン交換樹脂アンバーライトR−200(MR型)を
用いた場合の結果を第5表に示す。マラカイトグリーン
の分子量は330であり、本発明法の有効交換率は86
%であるのに対して、イオン交換樹脂法では22.5%
にすぎない。本発明法が塩基性染料の吸着性に優れてい
ることがわかる。実施例 3 フリー型の弱塩基性アニオン交換体をカラム(2.5C
T!Lφ)に充填し、17.5ミリ当量のクレゾーレツ
ドを含むメタノール溶液41を流出速度200d/Hr
(SV2)の割合で流した。
The adsorption amount was determined by quantifying the concentration of malachite green in the solution using an absorbance value of 617 mμ. As the strongly acidic cation exchanger, the multicore sea-island type composite cation exchange fiber (49/12)/39 produced by the method of Example 1 and the ion exchange resin Amberlite R-200 (MR type) were used as a comparative example. The results are shown in Table 5. The molecular weight of malachite green is 330, and the effective exchange rate of the method of the present invention is 86.
%, whereas in the ion exchange resin method it is 22.5%.
It's nothing more than that. It can be seen that the method of the present invention has excellent adsorption properties for basic dyes. Example 3 Free weakly basic anion exchanger was added to a column (2.5C
T! methanol solution 41 containing 17.5 meq.
(SV2).

流出液の572mμの吸光度値を測定して、クレゾール
レツド(分子量382)の吸着量を求めた。弱塩基性ア
ニオン交換体として、本発明法の多芯海島型複合アニオ
ン交換繊維(49/12)/39を50ミリ当量、及び
比較例としてイオン交換樹脂アンバーライトIR−45
を200ミリ当量使用した場合の結果を第3表に示す。
本発明法では使用量が少ないにもかかわらず吸着量がイ
オン交換樹脂法より大きい。
The absorbance value of the effluent at 572 mμ was measured to determine the adsorption amount of cresol red (molecular weight 382). As a weakly basic anion exchanger, 50 meq. of the multicore sea-island type composite anion exchange fiber (49/12)/39 of the present invention was used, and as a comparative example, ion exchange resin Amberlite IR-45 was used.
Table 3 shows the results when 200 meq.
In the method of the present invention, the amount of adsorption is greater than that of the ion exchange resin method, although the amount used is small.

すなわち、本発明法は酸性染料の吸着性にも優れている
ことがわかる。なお多芯海島型複合アニオン交換樹脂(
49/12)/39は次に述べる方法に従つて作製した
ものである。
That is, it can be seen that the method of the present invention is also excellent in adsorption of acidic dyes. In addition, multicore sea-island type composite anion exchange resin (
49/12)/39 was produced according to the method described below.

実施例1の方法で得た延伸糸(49/12)/39をパ
ラホルムアルデヒド5部、酢酸25部、濃硫酸70部か
らなる架橋液に浸し80℃で2時間架橋処理した。
The drawn yarn (49/12)/39 obtained by the method of Example 1 was immersed in a crosslinking solution consisting of 5 parts of paraformaldehyde, 25 parts of acetic acid, and 70 parts of concentrated sulfuric acid, and crosslinked at 80°C for 2 hours.

次にクロルメチルエーテル85部と塩化第2スズ15部
からなる溶液に架橋糸を浸して、30℃で1時間反応し
た。反応終了後、10%塩酸、蒸留水、アセトンで洗浄
した。クロルメチル化糸を無水ピペラジン20部、ジオ
キサン80部からなる溶液に浸して、3時間加熱還流す
ることによつて弱塩基性多芯海島型複合アニオン交換繊
維(49/12)/39を得た。交換容量は2.6ミリ
当量/9、繊度は6.1d1糸強度1.69/dであり
、剥離性は認められなかつた。実施例 4水素型の強酸
性カチオン交換体をカラム(2.0鑞φ)に充填し、分
散染料CellltOnFastiOletBを80P
F含む水溶液を流出速度100m1/Hr(SV2)の
割合で流した。
Next, the crosslinked yarn was immersed in a solution consisting of 85 parts of chloromethyl ether and 15 parts of stannic chloride, and reacted at 30° C. for 1 hour. After the reaction was completed, it was washed with 10% hydrochloric acid, distilled water, and acetone. The chloromethylated yarn was immersed in a solution consisting of 20 parts of anhydrous piperazine and 80 parts of dioxane and heated under reflux for 3 hours to obtain a weakly basic multicore sea-island type composite anion exchange fiber (49/12)/39. The exchange capacity was 2.6 meq/9, the fineness was 6.1 d1, the yarn strength was 1.69/d, and no peelability was observed. Example 4 Hydrogen type strongly acidic cation exchanger was packed in a column (2.0 φ), and disperse dye CelltOnFastiOletB was added to 80P.
An aqueous solution containing F was flowed at a flow rate of 100 ml/Hr (SV2).

流出液を200m1ずつ取り出し、593mμの吸光度
値を測定して、脱色率の変化を調べた。強酸性カチオン
交換体として実施例1の方法で作製した多芯海島複合カ
チオン交換繊維(49/12)/39を12ミリ当量、
及び比較例としてイオン交換樹脂アンバーライトIR−
200を50ミリ当量使用した場合の結果を第4表に示
す。この分散染料の分子量は283であり、本発明法で
は使用量が少ないにもかかわらず高い脱色率を示してい
ることがわかる。
The effluent was taken out in 200 ml portions and the absorbance value at 593 mμ was measured to examine changes in decolorization rate. As a strongly acidic cation exchanger, 12 milliequivalents of the multicore sea-island composite cation exchange fiber (49/12)/39 produced by the method of Example 1,
and ion exchange resin Amberlite IR- as a comparative example.
Table 4 shows the results when 50 milliequivalents of 200 were used. The molecular weight of this disperse dye is 283, and it can be seen that the method of the present invention shows a high decolorization rate despite the small amount used.

すなわち、本発明法は分散染料の吸着性にもすぐれてい
る。実施例 5 塩素型の強塩基性アニオン交換体を70℃の恒温カラム
(2?φ)に充填し、濃度58ブリツクスの蔗糖液に廃
糖蜜を少量添加した糖液(410mμの吸光度値4.2
,10CfLのセルを使用)を流出速度250m1/H
r(SVlO)の割合で流した。
That is, the method of the present invention also has excellent adsorption properties for disperse dyes. Example 5 A chlorine-type strongly basic anion exchanger was packed in a constant temperature column (2?φ) at 70°C, and a sugar solution (absorbance value at 410 mμ of 4.2
, using a cell of 10 CfL) at an outflow rate of 250 m1/H.
It was flowed at a rate of r(SVlO).

流出液を250m1ずつ取り出し、410mμの吸光度
値を測定して、脱色率の変化を調べた。強塩基性アニオ
ン交換体として本発明法の多芯海島型アニオン交換繊維
(49/12)/39を7.5ミリ当量、及び比較例と
してイオン交換樹脂アンバーライトIRA−401を2
0ミリ当量使用した場合の結果を第5表に示す。廃糖蜜
中には多数の色素が含まれており、その分子量は不確定
であるが比較的大きな色素が多い。
Each 250 ml of the effluent was taken out and the absorbance value at 410 mμ was measured to examine changes in the decolorization rate. As a strong basic anion exchanger, 7.5 milliequivalents of the multicore sea-island type anion exchange fiber (49/12)/39 of the present invention, and 2 mL of ion exchange resin Amberlite IRA-401 as a comparative example.
Table 5 shows the results when 0 milliequivalent amount was used. Molasses contains many pigments, and although their molecular weights are uncertain, many of them are relatively large.

本発明法では使用量が少量にもかかわらず、通常のイオ
ン交換樹脂法により高い脱色率を示している。すなわち
、本発明法は糖液の脱色性にすぐれていることがわかる
。なお多芯海島型アニオン交換繊維(49/12)/3
9は実施例6の方法で試作したクロルメチル化糸を30
%トリメチル水溶液に浸して、30℃で1時間アミノ化
することによつて得たものである。
Although the method of the present invention uses a small amount, it shows a high decolorization rate compared to the conventional ion exchange resin method. In other words, it can be seen that the method of the present invention has excellent decolorizing properties for sugar solutions. In addition, multicore sea-island type anion exchange fiber (49/12)/3
9 is a chloromethylated yarn prototyped by the method of Example 6.
% trimethyl aqueous solution and aminated at 30° C. for 1 hour.

交換容量は2.5ミリ当量/g1繊度は6.3d1糸強
度は1.4g/dであり、剥離性は認められなかつた。
実施例 6 塩素型の強塩基性アニオン交換体を70℃の恒温カラム
(2cTnφ)に充填し、濃度50ブリツクスの蔗糖液
に市販のカラメル色素を少量添加した糖液(410mμ
の吸光度値3.4,10?のセルを使用)を流出速度5
0TfL1/Hr(S2)の割合で流した。
The exchange capacity was 2.5 milliequivalents/g1, the fineness was 6.3 d1, the yarn strength was 1.4 g/d, and no peelability was observed.
Example 6 A chlorine-type strongly basic anion exchanger was packed into a constant temperature column (2 cTnφ) at 70°C, and a sugar solution (410 mμ) containing a small amount of commercially available caramel color added to a sucrose solution with a concentration of 50 Bri
Absorbance value of 3.4, 10? cell) with an outflow rate of 5
It was flowed at a ratio of 0TfL1/Hr (S2).

流出液を757n1ずつ取り出し、410mμの吸光度
値を測定して、脱色率の変化を調べた。強塩基性アニオ
ン交換体として本発明法の多芯海島型アニオン交換繊維
(50/0)/50を7.5ミリ当量、及び比較例とし
てイオン交換樹脂アンバーライトIRA−401を20
ミリ当量使用した場合の結果を第6表に示す。市販のカ
ラメル色素中には高分子量の有機アニオンが多数含まれ
ている。
The effluent was taken out in 757n1 portions and the absorbance value at 410 mμ was measured to examine changes in decolorization rate. As a strong basic anion exchanger, 7.5 milliequivalents of multicore sea-island type anion exchange fiber (50/0)/50 according to the present invention, and as a comparative example, 200 mg of ion exchange resin Amberlite IRA-401 were used.
Table 6 shows the results when milliequivalents were used. Commercially available caramel dyes contain many high molecular weight organic anions.

本発明法では使用量が少量であるにもかかわらず脱色率
の低下が小さいのに対して、イオン交換樹脂法では低下
が非常に大きい。すなわち、本発明法は高分子量の有機
イ’オンの吸着性にすぐれていることがわかる。なお多
芯海島型アニオン交換繊維(50/0)/50は実施例
1の延伸糸を実施例3の方法で架橋、クロルメチル化し
、実施例5の方法でアミノ化することによつて得たもの
である。交換容量2.6ミリ当量/g)繊度は6.2d
、糸強度は1.6g/dであり、剥離性は小さかつた。
実施例 7 カタラーゼ0.04gを含む水溶液に実施例1の方法で
作製したナトリウム型の強酸性多芯海島型複合カチオン
交換繊維( 49/12)/ 39.1.0gを入れ、
アジテーヌ一で十分撹拌した。
In the method of the present invention, the reduction in decolorization rate is small despite the small amount used, whereas in the ion exchange resin method, the reduction is very large. That is, it can be seen that the method of the present invention has excellent adsorption properties for high molecular weight organic ions. Note that the multicore sea-island type anion exchange fiber (50/0)/50 was obtained by crosslinking and chloromethylating the drawn yarn of Example 1 using the method of Example 3, and aminating it using the method of Example 5. It is. Exchange capacity: 2.6 milliequivalents/g) Fineness: 6.2 d
The yarn strength was 1.6 g/d, and the peelability was low.
Example 7 39.1.0 g of sodium-type strongly acidic multicore sea-island composite cation exchange fiber (49/12) prepared by the method of Example 1 was added to an aqueous solution containing 0.04 g of catalase.
Thoroughly stirred with agitine.

水溶液中の酵素量を277mμの吸光度値で定量して、
酵素の吸着量を調べたところ24.1mg/ g繊維で
あつた。次に、0.1138Nの過酸化水素水溶液20
m1)中性リン酸緩衝液(PH7)140m1、水40
m1を500m1の三角フラスコに入れ、恒温になつた
後担体を入れ、15分間反応させたのち←8N−H2S
O4を50m1投じて失格させた。担体を取り除いた後
、残存過酸化水素をKJ(2.0)−0.INNa2s
203法で定量した。担体として上記カタラーゼ酵素を
吸着した繊維、及び比較例としてカタラーゼ酵素水溶液
(含む酵素1.01〜)を用いた場合の結果を第7表に
示す。本発明法では、酵素が表面積の大きい繊維に吸着
固定化され、また酵素活性を有していることがわかる。
The amount of enzyme in the aqueous solution is quantified by the absorbance value of 277 mμ,
When the amount of enzyme adsorption was examined, it was 24.1 mg/g fiber. Next, 0.1138N hydrogen peroxide aqueous solution 20
m1) Neutral phosphate buffer (PH7) 140ml, water 40ml
ml was placed in a 500ml Erlenmeyer flask, and after the temperature reached constant temperature, the carrier was added and reacted for 15 minutes, then ←8N-H2S
O4 was disqualified after throwing 50m1. After removing the carrier, the remaining hydrogen peroxide was dissolved in KJ(2.0)-0. INNa2s
It was quantified using the 203 method. Table 7 shows the results when fibers adsorbed with the above catalase enzyme were used as carriers, and a catalase enzyme aqueous solution (containing enzyme of 1.01 or more) was used as a comparative example. It can be seen that in the method of the present invention, enzymes are adsorbed and immobilized on fibers with a large surface area, and also have enzyme activity.

すなわち、本発明法は酵素のような高分子量の極性物質
を多量吸着固定化することができる。実施例 8 実施例1の方法で作製したアンモニウム型の強酸性多芯
海島型複合カチオン交換繊維(49/12)/392.
0gをカラム( 2c1rLφ)に詰め、菌体(菌種名
:アクロモバクタ一、番号:タルタロゲネスNOv.a
p.TORAYl246、微生研菌寄第2507号)を
磨砕、精製して得たd一酒石酸エポキシターゼ酵素水溶
液(2.5〜/ml)を20TILI通液した後、水1
80TfL1で洗浄した。
That is, the method of the present invention can adsorb and immobilize a large amount of high molecular weight polar substances such as enzymes. Example 8 Ammonium type strongly acidic multicore sea-island type composite cation exchange fiber (49/12)/392. produced by the method of Example 1.
Fill a column (2c1rLφ) with 0 g of bacteria (species name: Achromobacter 1, number: Tartarogenes NOv.a).
p. After passing 20 TILI of d monotartrate epoxidase enzyme aqueous solution (2.5~/ml) obtained by grinding and purifying TORAY1246, Microbiological Research Institute No. 2507), 1 liter of water was added.
Washed with 80TfL1.

流出液中の酵素量を280mμの吸光度値で定量して繊
維への吸着量を求めたところ、34W1f/g一繊維で
あつた。本発明法によつて多量の酵素が吸着されている
ことがわかる。実施例 9 実施例1の方法で作製したアンモニウム型の強酸性多芯
海島型複合カチオン交換繊維(50/0)/502.0
gをカラム(2CTILφ)に詰め、菌液(菌種名:ア
クロモバクタ一、番号:タルタロゲネスNO.ap.T
ORAYl246、微生研菌寄第2507号)IOTI
LI!を通液した後、水490m1で洗浄した。
The amount of enzyme in the effluent was quantified using the absorbance value at 280 mμ to determine the amount adsorbed onto the fibers, and it was found to be 34W1f/g per fiber. It can be seen that a large amount of enzyme was adsorbed by the method of the present invention. Example 9 Ammonium type strongly acidic multicore sea-island type composite cation exchange fiber (50/0)/502.0 produced by the method of Example 1
Pack g into a column (2CTILφ), and add bacterial solution (bacterial species name: Achromobacter 1, number: Tartarogenes NO.ap.T
ORAYl246, Microbiological Research Institute No. 2507) IOTI
LI! After passing through the solution, it was washed with 490 ml of water.

流出液中の菌濃度を550mμの吸光度値(濁度)より
定量して繊維への吸着量を求めたところ10η/g−繊
維であつた。本発明法によつて菌体のようなコロイド物
質も多量吸着されることがわかる。比較実施例 1 0.04Mの塩化ナトリウム水溶液を100m1の共栓
付き三角フラスコに100m1入れ、水素型の強酸性カ
チオン交換体を2ミリ当量加えてアジテータ一で2時間
激しく撹拌した。
The bacterial concentration in the effluent was determined from the absorbance value (turbidity) at 550 mμ to determine the amount of adsorption onto the fibers, which was 10 η/g-fiber. It can be seen that a large amount of colloidal substances such as bacterial cells can be adsorbed by the method of the present invention. Comparative Example 1 100 ml of a 0.04 M aqueous sodium chloride solution was placed in a 100 ml Erlenmeyer flask with a stopper, 2 milliequivalents of a hydrogen type strongly acidic cation exchanger was added, and the mixture was vigorously stirred with an agitator for 2 hours.

Claims (1)

【特許請求の範囲】[Claims] 1 2種以上の成分からなる複合繊維であつて、A成分
がイオン交換用ポリマーを主体としてなり、B成分が繊
維補強用ポリマーであり、B成分がA成分中に複数分散
し、かつ、それらが繊維軸方向に連続した多芯構造を有
する多芯型複合繊維を基材とした架橋不溶化されたイオ
ン交換繊維に、分子量250以上のイオン性物質または
/および極性物質を含む液を接触させて該物質を吸着さ
せることを特徴とするイオン性物質および極性物質の吸
着法。
1 A composite fiber consisting of two or more components, in which the A component is mainly an ion exchange polymer, the B component is a fiber reinforcing polymer, and multiple B components are dispersed in the A component, and A crosslinked and insolubilized ion exchange fiber based on a multifilamentary composite fiber having a multifilamentary structure continuous in the fiber axis direction is contacted with a liquid containing an ionic substance and/or a polar substance with a molecular weight of 250 or more. A method for adsorbing ionic substances and polar substances, which comprises adsorbing the substances.
JP51040838A 1976-04-13 1976-04-13 Adsorption methods for ionic and polar substances Expired JPS5923852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51040838A JPS5923852B2 (en) 1976-04-13 1976-04-13 Adsorption methods for ionic and polar substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51040838A JPS5923852B2 (en) 1976-04-13 1976-04-13 Adsorption methods for ionic and polar substances

Publications (2)

Publication Number Publication Date
JPS52123986A JPS52123986A (en) 1977-10-18
JPS5923852B2 true JPS5923852B2 (en) 1984-06-05

Family

ID=12591748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51040838A Expired JPS5923852B2 (en) 1976-04-13 1976-04-13 Adsorption methods for ionic and polar substances

Country Status (1)

Country Link
JP (1) JPS5923852B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738880B2 (en) * 1983-06-24 1995-05-01 東レ株式会社 Endotoxemia treatment
US5378802A (en) * 1991-09-03 1995-01-03 Ocg Microelectronic Materials, Inc. Method for removing impurities from resist components and novolak resins
GB0025502D0 (en) * 2000-10-18 2000-11-29 Johnson Matthey Plc Metal scavenging
JP2009113034A (en) * 2007-10-16 2009-05-28 Kochi Prefecture Ion sorbent material and methods of manufacturing and using the same
WO2018159724A1 (en) * 2017-02-28 2018-09-07 東レ株式会社 Organic-inorganic mixture, use thereof, and method for producing same

Also Published As

Publication number Publication date
JPS52123986A (en) 1977-10-18

Similar Documents

Publication Publication Date Title
WO1986001744A1 (en) Method for ion-exchange or adsorption
JPH10509611A (en) Absorbable material
EP0449151B1 (en) Material of adsorbing pyrogen
JPS5923852B2 (en) Adsorption methods for ionic and polar substances
CN1040994A (en) Ion exchange resins having short diffusion paths
SU806692A1 (en) Method of producing cellulose fibrous ion-exchange resins
JP3232466B2 (en) Ultrapure water production method
JPH01282390A (en) Ultra-fine ion-exchange fiber and production thereof
JPS6344988A (en) Method for making ultrapure water
JPS6135830B2 (en)
JPH0153118B2 (en)
JPH0310388B2 (en)
EP0045823A1 (en) Fibrous ion exchange materials, their production and use
JPS589699B2 (en) Acid-base catalytic reaction method
JPS6218218B2 (en)
JPH02289628A (en) Ultrafine ion-exchange fiber and production thereof
JPH02228332A (en) Ion-exchange fiber and preparation thereof
JPS60246766A (en) Blood treating agent
JPH07116307B2 (en) Method for producing strongly acidic cation exchange fiber
JPS6340578B2 (en)
Masaharu et al. Polystyrene-Based Functional Fibers
JP3248259B2 (en) Ion exchange felt
JPH06126278A (en) Water purifying apparatus
JPS607654B2 (en) Ion-exchangeable fibrous material and its manufacturing method
JPS5831990A (en) Carrier for immobilizing physiologically active substance and its immobilization