JPS59230151A - Co sensor - Google Patents

Co sensor

Info

Publication number
JPS59230151A
JPS59230151A JP10514983A JP10514983A JPS59230151A JP S59230151 A JPS59230151 A JP S59230151A JP 10514983 A JP10514983 A JP 10514983A JP 10514983 A JP10514983 A JP 10514983A JP S59230151 A JPS59230151 A JP S59230151A
Authority
JP
Japan
Prior art keywords
gas
cdo
sensitive body
cuo
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10514983A
Other languages
Japanese (ja)
Other versions
JPH0230662B2 (en
Inventor
Masayuki Sakai
界 政行
Yoshihiko Nakatani
吉彦 中谷
Yoshiko Muneno
宗野 淑子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10514983A priority Critical patent/JPH0230662B2/en
Publication of JPS59230151A publication Critical patent/JPS59230151A/en
Publication of JPH0230662B2 publication Critical patent/JPH0230662B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a CO sensor having high sensitivity especially to gaseous CO and a long life by using a sensitive body obtained by adding one or both of Cu and Cd to an alpha type ferric oxide in the specified range of ratios. CONSTITUTION:A gas sensitive body 1, contg. 0.1-50mol% total amt. of additives consisting of >=1 kind of Cu and Cd which are expressed in terms of CuO and CdO in alpha-Fe2O3, is manufactured by compression molding a mixture of alpha- Fe2O3 and >=1 kind of powdered CuO and CdO, and then sintering, or by printing a paste on a board, and calcining to form a sintered film. The sensitivity to CO of the sensitive body 1 can be improved by adding further 0.1-10wt% Au to the powder. When the sintering method is used, Pt wires for electrodes 3 and 4 are buried in the raw paste. A heater 2 is provided to the rear surface of the sensitive body 1, and the electrodes 3 and 4 are connected to pins 9 and 10 fixed to a header 13 and the lead wire of the heater 2 to pins 11 and 12. Finally a stainless steel net 14 is provided.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は可燃性ガスの検知に使用する複合金属酸化物半
導体を用いたCoセンナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a Co senna using a composite metal oxide semiconductor for use in detecting combustible gases.

従来例の構成とその問題点 近年、可燃性ガスの検知素子材料について種々の研究開
発が活発化してきている。これは、一般家庭を中心に各
種工場などで可燃性ガスによる爆発事故や中毒事故が多
発し、大きな社会問題となっていることに強く起因して
いる。
Conventional Structures and Their Problems In recent years, various research and developments have become active regarding materials for sensing elements for flammable gases. This is strongly attributable to the fact that explosions and poisoning accidents caused by flammable gases occur frequently, mainly in households and in various factories, and have become a major social problem.

特にこれらの中でも、プロパンガス、あるいは都市ガス
を検知するものについては、感度、信勅件のいずれにお
いてもかなシ高いレベルのものが開発され実用化される
に至っている。これらは。
Among these, in particular, those that detect propane gas or city gas have been developed and put into practical use with extremely high levels of both sensitivity and reliability. these are.

例えば各種のガス漏れ警報器などに広く応用されている
For example, it is widely applied to various gas leak alarms.

一方、い1ひとつのガス防災の社会ニーズとして、CO
の検知が話題になってきている。これは種々のガス機器
の普及と住宅構造の気密化が大きな背景となっている。
On the other hand, as a social need for gas disaster prevention, CO
detection has become a hot topic. This is largely due to the spread of various gas appliances and the airtightness of housing structures.

すなわち、ガス器具の不完全燃焼あるいは火災の初期に
新建材などから発生するGOによる中毒の問題である。
In other words, there is the problem of incomplete combustion of gas appliances or poisoning due to GO generated from new building materials in the early stages of a fire.

特に後者においては、火災による死因の大部分がこれに
属するため、極めて重要な社会問題となっている。とこ
ろが現在の時点においては−COを的確に検知出来る安
価で簡便なガスセンサがないのが実状であり、前述の社
会ニーズに十分応えていない状況にある。
In particular, the latter is an extremely important social problem because it accounts for the majority of deaths caused by fire. However, at present, there is no inexpensive and simple gas sensor that can accurately detect -CO, and the above-mentioned social needs are not fully met.

その理由は、一般的な可燃性ガスを対象としたセンサの
場合には検知されるべき可燃性ガスの濃度が爆発下限界
の数分の1以上という程度であるのに対して−CO用セ
ンサの場合には極めて微量のCOを検知せねばならない
ことによる。すなわち−他の可燃性ガス用センザの場合
にはガス爆発を防ぐのが目的であるのに対して、CO用
センサの場合には、CO中毒の予防が主目的であり、そ
の量は爆発下限界に比べると極めて微量な値の検知を対
象としなければならないことによる。
The reason for this is that in the case of a sensor for general combustible gases, the concentration of combustible gas to be detected is more than a fraction of the lower explosive limit; This is because in this case, extremely small amounts of CO must be detected. In other words, in the case of sensors for other combustible gases, the purpose is to prevent gas explosions, whereas in the case of CO sensors, the main purpose is to prevent CO poisoning, and the amount of CO is This is because the detection target must be an extremely small amount compared to the limit.

低価格で高い信頼性をもつ可燃性ガスセンサにおいては
高温に保持された酸化物半導体がしばしば用いられ、そ
の抵抗値変化を検知する様にしている。この酸化物半導
体にはCOに高感度で、あるいは選択的に感応する物質
も幾種類か見出されているが、残念ながら信頼性の面で
未だ十分なセンサが得られていないのが現状である。
In low-cost, highly reliable combustible gas sensors, oxide semiconductors that are maintained at high temperatures are often used to detect changes in their resistance. Several types of oxide semiconductors have been found that are highly sensitive or selectively sensitive to CO, but unfortunately, sensors with sufficient reliability have not yet been obtained. be.

発明の目的 本発明はこのような状況に鑑みてなされたもので、GO
に高感度でかつ信頼性の高いCOセンサを実現するもの
である。
Purpose of the Invention The present invention has been made in view of this situation, and is
The objective is to realize a highly sensitive and reliable CO sensor.

発明の構成 本発明はアルファ型酸化第2鉄(α−F+9203 )
をガス感応体として用いたガス検知素子において、これ
に対する添加物の効果について検討している中で見出さ
れたものである。
Structure of the Invention The present invention relates to alpha-type ferric oxide (α-F+9203).
This discovery was made while studying the effects of additives on gas sensing elements that use gas as a gas sensitive material.

すなわち1本発明のCOセンサは、CUおよびCdのう
ち少なくともひとつが、それぞれCUO。
That is, in the CO sensor of the present invention, at least one of CU and Cd is CUO.

CdOに換算して総量で0.1〜60モル%含むα−F
e 203をガス感応体として用いたものであり、また
さらにAu を0.1〜1Q重量%添加することによっ
て−ガス感応特性とその信頼性が飛躍的に向上し、しか
も先述の微少量のCOに対しても実用上十分大きな感度
を実現し得ることを見出したことによってなされたもの
である。
α-F containing 0.1 to 60 mol% in total in terms of CdO
By using e203 as a gas sensitive material and further adding 0.1 to 1Q wt% of Au, the gas sensitive characteristics and its reliability are dramatically improved. This was achieved by discovering that it was possible to achieve a sensitivity high enough for practical use.

実施例の説明 以下に本発明の詳細な説明する。Description of examples The present invention will be explained in detail below.

まず実施例1においては、α−F8203  へのCu
OとCdOの添加量効果について述べる。
First, in Example 1, Cu to α-F8203
The effects of the amounts of O and CdO added will be described.

〔実施例1〕 市販の塩化第2鉄(Feels −6H20) 309
と硫酸第1鉄(FeE30a ・7H20) e o 
jiを11の水に溶かし、60℃に保ちながら攪拌した
。この溶液の温度を50 ’(: K保ちつつ、8規定
の水酸化アンモニウム(NH40H)溶液をe o c
c/minの割合で溶液の水素イオン濃度が7になるま
で滴下した。
[Example 1] Commercially available ferric chloride (Feels-6H20) 309
and ferrous sulfate (FeE30a ・7H20) e o
ji was dissolved in 11 water and stirred while maintaining the temperature at 60°C. While maintaining the temperature of this solution at 50' (K), an 8N ammonium hydroxide (NH40H) solution was added to the e o c
The solution was added dropwise at a rate of c/min until the hydrogen ion concentration of the solution reached 7.

このようにして得られた粉体を空気中で110℃で乾燥
した。この乾燥物を空気中において400℃で1時間の
熱処理を行なった。この熱処理粉体に、第1表に示した
組成になるように市販の酸化銅(CuO)と酸化カドミ
ウムを加えた。そしてそれぞれの粉体をらいかい機で3
時間乾式混合した。
The powder thus obtained was dried in air at 110°C. This dried product was heat-treated at 400° C. for 1 hour in air. Commercially available copper oxide (CuO) and cadmium oxide were added to this heat-treated powder so as to have the composition shown in Table 1. Then, each powder is 3
Dry mixed for an hour.

この粉体に2本の白金線を埋め込んで、直径2mm高さ
3mmの円柱状に加圧成型し一空気中において600℃
で時間の焼成を行なった。得られた多孔質の焼結体を検
知素子用ヘッダーにとりつけ、焼結体のまわシにコイル
状のヒータを配置し、防爆図・において、1は焼結体で
、2本の白金線からなる電極3.4が埋め込まれている
。2は焼結体1を加熱するためのヒータで、ヒータ用ピ
ン11゜12からヒータ用フレーム7.8を通じてヒー
タに電力が供給される。焼結体1の抵抗は電極3゜4か
らフレーム6.6を通してピン9,1oの間で測定され
るよう構成されている。ヒータ用ピン11.12および
ピン9,1oはヘッダー13に固定され、ステンレス鋼
製金網14はヘッダーにとりつけられている。
Two platinum wires were embedded in this powder, which was then pressure-molded into a cylinder shape with a diameter of 2 mm and a height of 3 mm, and heated to 600°C in air.
Firing was performed for several hours. The obtained porous sintered body was attached to a sensing element header, and a coil-shaped heater was placed around the sintered body. An electrode 3.4 is embedded therein. Reference numeral 2 denotes a heater for heating the sintered body 1, and power is supplied to the heater from heater pins 11 and 12 through heater frames 7 and 8. The resistance of the sintered body 1 is arranged to be measured from the electrode 3.4 through the frame 6.6 between the pins 9, 1o. The heater pins 11, 12 and pins 9, 1o are fixed to the header 13, and the stainless steel wire mesh 14 is attached to the header.

以上のようにして得られたCoセセンについて一ガス感
応特性1通常使用温度(400’C)での課電寿命を調
べた。
Regarding the Co sesene obtained as described above, gas sensitivity characteristics 1. The lifespan under application of electricity at a normal operating temperature (400'C) was investigated.

ガス感応特性の測定方法は−あらかじめ検知素子のヒー
タ部に電流を流し、感応体の温度が400℃になるよう
に調整しておき、それを容積の知られている測定箱内に
挿入した後、注射器でテスト用ガス(COガス(co6
.0%とN295,0%との混合ガス)、およびN2ガ
ス(99%以上))を測定箱内に注入し、GOあるいは
N2の濃度が0.01容量%(100pI)m )に達
した時に焼結感応体の抵抗値を測定した。測定するガス
濃度を1100ppに選んだのは−COの労働衛生上の
許容濃度が1100ppであるため一少なくともこの濃
度以下で感応する必要があるからである。
The method for measuring gas sensitivity characteristics is to apply a current to the heater part of the sensing element in advance, adjust the temperature of the sensing element to 400°C, and then insert it into a measuring box with a known volume. , test gas (CO gas (CO6) with a syringe
.. A mixed gas of 0% and N295.0%) and N2 gas (99% or more)) are injected into the measurement box, and when the concentration of GO or N2 reaches 0.01% by volume (100 pI) m). The resistance value of the sintered sensitive body was measured. The gas concentration to be measured was selected to be 1,100 pp because the permissible concentration of -CO for industrial hygiene is 1,100 pp, so it is necessary to respond at least below this concentration.

ガス感応特性は、(1)ガス感度(空気中の抵抗値(R
& )/ガス中の抵抗値(Rg)) + (in抵抗経
時変化率△R(感応体を600℃の温度で2000時間
保持した場合の抵抗値の初期値に対する変化率)で評価
した。第1表には、添加物(CUOあるいはCdO)を
加えた場合のやはりガス感度(Ra78g)と、抵抗経
時変化率(ΔR)を示す。なおΔRは表中の()内に記
載した。また第3図にはCuOの感度と抵抗経時変化率
の添加量依存性(試料%A−1〜A−ts)を−第4図
にはCdO(7)それ(試料NnA−1、A−s〜A−
9)を示した。
Gas sensitivity characteristics include (1) gas sensitivity (resistance value in air (R
& )/resistance value in gas (Rg)) + (in resistance change rate over time ΔR (rate of change in resistance value from the initial value when the sensitive body is held at a temperature of 600°C for 2000 hours). Table 1 also shows the gas sensitivity (Ra78g) and resistance change rate over time (ΔR) when an additive (CUO or CdO) is added. ΔR is written in parentheses in the table. Figure 3 shows the dependence of CuO sensitivity and resistance change rate over time (sample %A-1 to A-ts), and Figure 4 shows CdO (7) and (sample NnA-1, A-ts). A-
9) was shown.

ここで、 CuOあるいはCdOを添加したα−Fe2
05の場合、これにco+H2等の還元性ガスが触れる
と抵抗が大きくなる性質をもっている。
Here, α-Fe2 added with CuO or CdO
In the case of 05, the resistance increases when it comes into contact with a reducing gas such as co+H2.

すなわちガス感度をRa78g  で定義すればこれが
1よシ小さい程感度が大きいと言える。
That is, if gas sensitivity is defined as Ra78g, it can be said that the smaller this value is than 1, the higher the sensitivity.

以下余白 第1表 *比較例 第1表お9°よび第3〜第4図より、α−Fe203に
CuOあるいはCdOを単独あるいは複数で添加するこ
とによりCOに対して極めて高い活性度を示し−しかも
これが経時的に安定なため一結果的に非常に大きなガス
感度と信頼性を実現し得ることがわかる。本発明におい
て添加物総量を。、1〜60モル%に限定したのは0.
1モル%未満ではガス感応特性ならびに信頼性を向上せ
しめる効果が見られず、逆に60モル%を超えると、ガ
ス感応特性に及はす効果が小さくなり、また特性の安定
性に欠けるからである。
Margin Table 1 * Comparative Example Table 1 and Figures 3 and 4 show that adding CuO or CdO to α-Fe203, singly or in combination, shows extremely high activity towards CO. Moreover, since this is stable over time, it can be seen that extremely high gas sensitivity and reliability can be achieved as a result. In the present invention, the total amount of additives. , 0.0 was limited to 1 to 60 mol%.
If it is less than 1 mol%, the effect of improving gas sensitivity characteristics and reliability will not be observed, and if it exceeds 60 mol%, the effect on gas sensitivity characteristics will be small and the stability of the characteristics will be lacking. be.

次に実施例2では、CuOあるいはCdOを単独である
いは複数で含むα−Fe203へのAuの添加量効果に
ついて述べる。
Next, in Example 2, the effect of the amount of Au added to α-Fe203 containing one or more of CuO or CdO will be described.

〔実施例2〕 出発原料は市販の塩化絹2鉄(F8G/96H20)3
0gと硫酸第1鉄(FeSO4・7H20) e o 
9を用い、実施例1と同様の方法で共沈物を得た。これ
を乾燥−熱処理を行ない−これに第2表(添加銅(Cu
O)および酸化カドミウム(CdO)  を添加し、さ
らに市販の塩化金酸(HAuJ14・4H20)を水に
溶かしてこの濃度が100■/me に調製した溶液を
第2表(Au量)の割合だけ添加し、それぞれの粉体を
らいかい機で3時間乾式混合した。
[Example 2] The starting material was commercially available silk diiron chloride (F8G/96H20)3
0g and ferrous sulfate (FeSO4・7H20) e o
A coprecipitate was obtained in the same manner as in Example 1 using Example 9. This was dried, subjected to heat treatment, and added to it as shown in Table 2 (added copper (Cu)
A solution prepared by adding O) and cadmium oxide (CdO) and dissolving commercially available chloroauric acid (HAuJ14.4H20) in water to a concentration of 100 μm/me was mixed in the proportion shown in Table 2 (Au amount). and dry mixing each powder for 3 hours using a miller.

この粉体を、実°施例1と同様の方法で成型、焼成し、
ガス検知素子を作成した。
This powder was molded and fired in the same manner as in Example 1,
A gas detection element was created.

それぞれの検知素子のガス感応特性を実施例1の場合と
同様の方法で測定した。
The gas sensitivity characteristics of each sensing element were measured in the same manner as in Example 1.

以下余白 第2表 *比較例 第2表にCuOとCdOの一種以上を含むα−Fe2e
sにAuを添加した時のガス感度(Ra/Rg )と抵
抗変化率(ΔR)を示す。
Margin Table 2 below * Comparative Example Table 2 shows α-Fe2e containing one or more of CuO and CdO
The gas sensitivity (Ra/Rg) and resistance change rate (ΔR) when Au is added to s are shown.

第5図には、CuOとCdOがそれぞれ1.0モル%含
むα−Fe2esへのAHの添加量効果(試料隘A−1
1,B−7〜B−1o)を示す。
Figure 5 shows the effect of the amount of AH added to α-Fe2es containing 1.0 mol% each of CuO and CdO (sample A-1).
1, B-7 to B-1o).

第2表及び第6図から明らかなように、 Au を0.
1〜10重量%添加することにより、さらにC0に対し
て極めて高い活性度を示し、しかも、経時的にもさらに
安定になるため、結果的に非常に大きなガス感度と信頼
性を実現し得ることがわかる。
As is clear from Table 2 and FIG. 6, when Au is 0.
By adding 1 to 10% by weight, it exhibits extremely high activity against CO and becomes even more stable over time, resulting in extremely high gas sensitivity and reliability. I understand.

しかしAu量が20 wt%になるとその効果がほとん
ど無くなった。
However, when the amount of Au reached 20 wt%, this effect almost disappeared.

実施例1,2では感応体が焼結体の場合で示したが一実
施例3では感応体が焼結膜の場合でのAu の添加量効
果について述べる。
In Examples 1 and 2, the case where the sensitive body is a sintered body was shown, but in Example 3, the effect of the amount of Au added will be described in the case where the sensitive body is a sintered film.

〔実施例3〕 出発原料は市販の塩化第2鉄(FeCA3・6H20)
30gと硫酸第1鉄(FeSO4・7H20)  60
 jjを用い、実施例1と同様の方法で共沈物を得た。
[Example 3] Starting material is commercially available ferric chloride (FeCA3.6H20)
30g and ferrous sulfate (FeSO4・7H20) 60
A coprecipitate was obtained in the same manner as in Example 1 using JJJ.

これを乾燥、熱処理を行ない−これに第3表(添加物−
CuO、CdO)の組成になるように市販の酸化銅((
UO)および酸化カドミウム(CdO)を添加し、さら
に市販の塩化金酸(HAu(J4・4H20)を水に溶
かしてこの濃度が100 mg/lulに調製した溶液
を第3表(Au量)の割合だけ添加し、それぞれの粉体
をらいかい機で3時間乾式混合した。
This is dried and heat treated - Table 3 (Additives -
Commercially available copper oxide ((
A solution prepared by adding UO) and cadmium oxide (CdO) and then dissolving commercially available chloroauric acid (HAu (J4.4H20) in water to a concentration of 100 mg/lul) was prepared according to Table 3 (Au amount). The powders were added in proportions, and each powder was dry-mixed for 3 hours using a mixer.

この粉体を50〜100μに整粒し−トリエタノールア
ミンを加えてペースト化した。これを用いて作成して焼
結膜型COセンサの構造を第2図に示した。図において
、ガス検知素子の基板として縦、横それぞれ5mm、厚
みo、smmのアルミナ基板1の表面に0.5mmの間
隔に一対の櫛形の金電極2を形成した。裏面には抵抗体
用の金電極3も同時に形成し、この間にグレーズ抵抗体
4を印刷し。
This powder was sized to a size of 50 to 100μ and triethanolamine was added to form a paste. The structure of a sintered film type CO sensor made using this is shown in FIG. In the figure, a pair of comb-shaped gold electrodes 2 were formed at an interval of 0.5 mm on the surface of an alumina substrate 1 having length and width of 5 mm and thickness o and s mm, respectively, as a substrate for a gas sensing element. A gold electrode 3 for a resistor was also formed on the back side at the same time, and a glaze resistor 4 was printed during this time.

焼きつけてヒータとした。I baked it and used it as a heater.

次に一上述のペーストを基板の表面に約70μの厚みに
印刷し、室温で自然乾燥させた後−eo。
Next, the above-mentioned paste was printed on the surface of the substrate to a thickness of about 70μ, and after air drying at room temperature -eo.

℃の温度になるまで徐々に加熱し、この温度で1時間保
持した。この段階でペーストが蒸発し、焼結膜6になっ
た。このガス感応体の厚みは約56μであった。このよ
うにしてガス検知素子を得た。
The mixture was gradually heated to a temperature of 0.degree. C. and held at this temperature for 1 hour. At this stage, the paste evaporated and became a sintered film 6. The thickness of this gas sensitive member was approximately 56μ. A gas sensing element was thus obtained.

以下余白 第3表 *比較例 それぞれのCOセンサのガス感応特性を実施例1の場合
と同様の方法で測定した。第3表にCuOとCdOf:
含むα−F8205にAuを添加した時のガス感度(R
a/Rg )と抵抗変化率(ΔR)を示す。
Table 3 (margin below) *Comparative Examples The gas sensitivity characteristics of each CO sensor were measured in the same manner as in Example 1. Table 3 shows CuO and CdOf:
Gas sensitivity (R
a/Rg) and resistance change rate (ΔR).

第6図〜第7図にはCuOとCdOが6モル%含まれる
α−Fe2esへのAHの添加量効果(試料N、C−1
〜C−5)及び20モル%含まれるその効果(試料隔C
−6〜G−1o)を示す。
Figures 6 and 7 show the effect of the amount of AH added to α-Fe2es containing 6 mol% of CuO and CdO (sample N, C-1
~ C-5) and its effect containing 20 mol% (sample interval C
-6 to G-1o).

第3表及び第6図〜7図から明らかなように、感応体が
焼結膜であっても、またCdOを沈澱法で作製した粉体
を用いた場合でも一実施例1及び2で得られたのとはゾ
同じ特性が得られている。また抵抗値の経時変化率も実
施例1及び2と同様非常に小きい。
As is clear from Table 3 and Figures 6 to 7, the results obtained in Example 1 and 2 can be obtained even when the sensitive body is a sintered film or when a powder prepared by CdO precipitation method is used. It has the same characteristics as the other one. Further, the rate of change in resistance value over time is also very small, as in Examples 1 and 2.

まだ第3表及び第6図〜7図から−Au の添加量が0
.1重量%未満ではその効果はなく1本発明の効果が期
待できない。また逆に添加量が10.。
From Table 3 and Figures 6 and 7, the amount of Au added is still 0.
.. If the amount is less than 1% by weight, there will be no such effect and the effects of the present invention cannot be expected. Conversely, the amount added is 10. .

重量%を超えるとガス感度の低下あるいは特性の安定性
の面で実用性に欠けるようになる。本発明のガス検知素
子に含まれるAu量を、CdOに対して添加する量で0
.1〜10重量%に限定したのは上述した理由による。
If it exceeds % by weight, it becomes impractical in terms of reduced gas sensitivity or stability of properties. The amount of Au contained in the gas sensing element of the present invention is 0 in the amount added to CdO.
.. The reason for limiting the content to 1 to 10% by weight is as stated above.

ところで実施例では酸化鉄の出発原料に塩化第2鉄と硫
酸第1鉄を、銅、カドミウム及び金については市販の酸
化銅、酸化カドミウム、塩化金酸を用いたものについて
述べたが、本発明は最終的に感応体の組成が前述した範
囲内のものであればよく、何ら出発原料や製造工程を限
定するものではない。
By the way, in the examples, ferric chloride and ferrous sulfate were used as starting materials for iron oxide, and commercially available copper oxide, cadmium oxide, and chloroauric acid were used for copper, cadmium, and gold, but the present invention The final composition of the reactor may be within the above-mentioned range, and the starting materials and manufacturing process are not limited in any way.

発明の詳細 な説明したように1本発明のCOセンサは。Details of the invention As explained above, the CO sensor of the present invention is as follows.

α−F8205にCuO及びCdOの一種以上を加えた
もの、あるいはこれにさらにAuを添加した焼結体ある
いは焼結膜を感応体として用いたものであり。
A sintered body or film obtained by adding one or more of CuO and CdO to α-F8205, or further adding Au to α-F8205 is used as a sensitive body.

これによって微量検知が難しいとされてきたCOガスに
対して大きい感度を実現し得るものである0これはガス
器具の不完全燃焼あるいは火災の初期に発生するCOに
よる中毒事故が多発する傾向にある昨今、これを未然に
防ぐCOセンサの要求が大きくなりつつある社会ニーズ
に的確に対応するものであり、その効果は極めて犬なる
ものがある。
This makes it possible to achieve high sensitivity for CO gas, which has been considered difficult to detect in trace amounts.This is because poisoning accidents due to CO generated during incomplete combustion of gas appliances or in the early stages of a fire tend to occur frequently. In recent years, there has been a demand for CO sensors that can prevent this from occurring, which accurately responds to growing social needs, and its effects are extremely impressive.

また一本発明のいまひとつの効果は寿命特性、特に通電
による抵抗値の経時変化の大幅な軽減である。これは換
言すればあらゆる検知素子の眉も重要な要素である素子
の信頼性の向上に極めて大きな寄与をもたらすものであ
る。
Another effect of the present invention is a significant reduction in the life characteristics, especially the change in resistance value over time due to energization. In other words, this makes an extremely large contribution to improving the reliability of any sensing element, which is also an important element.

構造の一例を示す図、第3〜第7図は本発明の一実施例
における添加物量と、COおよびH2に対する感度(”
/Rg )ならびに抵抗経時変化率(ΔR)との関係を
示した特性図である。
Figures 3 to 7, which are diagrams showing an example of the structure, show the amount of additives and the sensitivity to CO and H2 ("
/Rg) and the resistance change rate over time (ΔR).

1・・・・・・焼結体1... Sintered body

Claims (3)

【特許請求の範囲】[Claims] (1)アルファ型酸化第2鉄(a−Fe20s)に、添
加物として銅(Cu )、カドミウム(Cd)のうち少
なくともひとつが、それぞれOuOおよびCdOに換算
して添加物総量で0.1〜60モル%含むものをガス感
応体として用いることを特徴とするCOセンサ〇
(1) At least one of copper (Cu) and cadmium (Cd) is added as an additive to alpha-type ferric oxide (a-Fe20s), with a total additive amount of 0.1 to A CO sensor characterized by using a substance containing 60 mol% as a gas sensitive body.
(2)  ガス感応体が金(Au)を0.1〜10重量
%含むことを特徴とする特許請求の範囲第(1ン項記載
のc6センサ。
(2) The c6 sensor according to claim 1, wherein the gas sensitive material contains 0.1 to 10% by weight of gold (Au).
(3)  ガス感応体が加圧成型し、焼成して得られる
焼結体、またはペーストを印刷して焼成して得
(3) A sintered body obtained by pressure molding and firing the gas sensitive body, or a sintered body obtained by printing and firing a paste.
JP10514983A 1983-06-13 1983-06-13 COSENSA Expired - Lifetime JPH0230662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10514983A JPH0230662B2 (en) 1983-06-13 1983-06-13 COSENSA

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10514983A JPH0230662B2 (en) 1983-06-13 1983-06-13 COSENSA

Publications (2)

Publication Number Publication Date
JPS59230151A true JPS59230151A (en) 1984-12-24
JPH0230662B2 JPH0230662B2 (en) 1990-07-09

Family

ID=14399663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10514983A Expired - Lifetime JPH0230662B2 (en) 1983-06-13 1983-06-13 COSENSA

Country Status (1)

Country Link
JP (1) JPH0230662B2 (en)

Also Published As

Publication number Publication date
JPH0230662B2 (en) 1990-07-09

Similar Documents

Publication Publication Date Title
JPS6054259B2 (en) Moisture sensitive ceramic
JPH06507013A (en) tin oxide gas sensor
US3955929A (en) Gas detecting sensor
JP3053865B2 (en) Sensor for detecting carbon monoxide
US4732738A (en) Combustible gas detecting element
JPH05505465A (en) gas sensor
JPS59230151A (en) Co sensor
JPS59230152A (en) Gas detecting element
JPH0230661B2 (en) GASUKENCHISOSHI
JPH022099B2 (en)
JPS5853741B2 (en) Kanenseigaskenchisoshi
JPH022534B2 (en)
JPH0572162A (en) Gas sensor
JPS5853737B2 (en) Kanenseigaskenchisoshi
JPS60170760A (en) Combustible gas detecting element
JPH027025B2 (en)
JPS5950352A (en) Detection element for nox
JP3355834B2 (en) Carbon dioxide sensor and method of manufacturing the same
JP3919305B2 (en) Hot wire semiconductor gas detector for air pollution detection
JPS628137B2 (en)
JP3424893B2 (en) NOx gas detection element
JPS60170759A (en) Combustible gas detecting element
JPS628744B2 (en)
JPS6129660B2 (en)
JPS628138B2 (en)