JPS59228215A - Detecting method of interval between end surfaces of optical fibers - Google Patents

Detecting method of interval between end surfaces of optical fibers

Info

Publication number
JPS59228215A
JPS59228215A JP10346683A JP10346683A JPS59228215A JP S59228215 A JPS59228215 A JP S59228215A JP 10346683 A JP10346683 A JP 10346683A JP 10346683 A JP10346683 A JP 10346683A JP S59228215 A JPS59228215 A JP S59228215A
Authority
JP
Japan
Prior art keywords
light
optical fiber
face
light receiving
photodetection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10346683A
Other languages
Japanese (ja)
Inventor
Hisaharu Yanagawa
柳川 久治
Shigeru Tategami
舘上 滋
Hirohisa Sekiguchi
関口 博久
Isao Minamida
南田 勲
Kazuki Watanabe
万記 渡辺
Yasuyuki Kato
康之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Furukawa Electric Co Ltd
Priority to JP10346683A priority Critical patent/JPS59228215A/en
Publication of JPS59228215A publication Critical patent/JPS59228215A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3801Permanent connections, i.e. wherein fibres are kept aligned by mechanical means
    • G02B6/3803Adjustment or alignment devices for alignment prior to splicing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To detect the interval of a couple of end surfaces of optical fibers accurately from the quantity of transmitted light between the optical fiber end surfaces by setting the end surfaces in facing relation, and arranging end parts of a transmission and a photodetection part at right angles to their abutting axial line with both optical fiber end surfaces between. CONSTITUTION:The optical fiber end parts 10A and 10B are held movably on a couple of fiber mounts and face each other on the abutting axial line L1, and there is an end surface gap G left between both end surfaces. A rod lens 18 as the light transmission terminal part of the light transmission system 12 and a photodetection terminal part equipped with the light shield plate 12 of the photodetection part 13 are arranged on a measurement axial line L2 running in the end surface gap G while crossing the abutting axial line L1; and light is sent from the light transmission part 12 to the photodetection part 13, and both optical fiber end parts are moved relatively in said state so that they abut on each other, detecting the gap between both optical fiber end surfaces 11A and 11B being minimum from the minimum photodetection level of the quantity of photodetection of the photodetection system 13.

Description

【発明の詳細な説明】 本発明は光フアイバ融着接続時の光ファイバ端面間隔を
検知するのに好適な検知方法に関する0 光ファイバを放電加熱、レーザ加熱等により長手方向に
融着接続するとき、接続すべき1対の光フアイバ端部は
、これらの端面間隔が適正値となるよう、相対的に位置
決めされ、その適正端面間隔を得た後、融着加熱が開始
されるとともに両党ファイバ端部はこれらの突き合わせ
方向へ相対移動され、融着される。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a detection method suitable for detecting the distance between optical fiber end faces during optical fiber fusion splicing. , the ends of a pair of optical fibers to be connected are positioned relative to each other so that the distance between their end faces is an appropriate value, and after obtaining the appropriate end face distance, fusion heating is started and both fibers are connected. The ends are moved relative to each other in the direction in which they meet and are fused together.

上記における適正な端面間隔は、低損失の接続部をつく
るのに必要であり、一般的な端而間隔は数十μm程度で
ある。
The appropriate end face spacing mentioned above is necessary to create a low-loss connection, and the typical end face spacing is about several tens of μm.

端面間隔の精度としては、シングルモードファイバの接
続例で±5μm程度以下が要求されているが、これは端
面間隔設定時に用いられる光フアイバ端部の送り機構が
高精度(誤差±2−μm以下)となっており、したがっ
て±5μmの精度で上記端面間隔を設定することは実現
可能な範囲であるといえる。
The accuracy of the end face spacing is required to be approximately ±5 μm or less in the example of connecting single mode fibers, but this is because the feeding mechanism of the optical fiber end used when setting the end face distance is highly accurate (error of ±2 μm or less). ) Therefore, it can be said that setting the end face spacing with an accuracy of ±5 μm is within a feasible range.

しかし、通常広く用いられている顕微鏡観察法により端
面間隔の適否をチェックするとき、これが人為的な作業
であることと相俟って±10μm程度の誤差が生じてお
り、それ故、上記±5μm以下の精度が検知できなくな
っている。
However, when checking the adequacy of the end face spacing using the commonly used microscopic observation method, an error of about ±10 μm occurs due to the fact that this is a manual process. The following accuracy is no longer detectable.

これを解消するため、第1図に示す光ファイバの端面検
知方法がすでに提案されている。
To solve this problem, an optical fiber end face detection method shown in FIG. 1 has already been proposed.

第1図の方法では、ノ(ンドルファイ・(1の一側端を
光入射端部2、光出射端部3に分岐するとともにその他
側端を送受光端部4とし、上記光入射端部2には光発生
器5を、上記光出射端部3には受光器6をそれぞれ光学
的に接続するといった検知構成において、光発生器5に
よる光を光入射端部2からバンドルファイバ1中の所定
光ファイバへ入射させ、これによシ送受光端部4から光
束Wの光を出射状態とし、被覆除去された元ファイバ端
部7を第1図の矢印X方向へ移動させている。
In the method shown in FIG. In a detection configuration in which a light generator 5 is optically connected to the light output end 3 and a light receiver 6 is optically connected to the light output end 3, the light from the light generator 5 is transmitted from the light input end 2 to a predetermined location in the bundle fiber 1. The light is made to enter the optical fiber, thereby causing the light beam W to be emitted from the transmitting/receiving end 4, and the original fiber end 7 from which the coating has been removed is moved in the direction of the arrow X in FIG.

第1図において光フアイバ端部7の端面8が21点にあ
るとき、送受光端部4における光の状況に変化ばないが
、上記端面8が22点に到来したとき、すなわち端面8
が光束Wの右端にかかったとき、送受光端部4から出射
された光の一部が光フアイバ端部7の周面に当たって反
射し、反射した光は送受光端部4から光出射端部3を経
て受光器6へ入射される。
In FIG. 1, when the end face 8 of the optical fiber end 7 is at the 21st point, the light situation at the light transmitting/receiving end 4 does not change;
When applied to the right end of the light beam W, a part of the light emitted from the light transmitting/receiving end 4 hits the circumferential surface of the optical fiber end 7 and is reflected, and the reflected light is transferred from the light transmitting/receiving end 4 to the light emitting end. 3 and enters the light receiver 6.

光フアイバ端部7の端部8が22点に到来したとき、受
光器6へ入力される反射光のレベルは最小値であり、以
下、元ファイバ端部7が22点から矢印X方向へ移動す
るにしたがい、受光器6の受光レベルはアップする。
When the end 8 of the optical fiber end 7 reaches the 22nd point, the level of the reflected light input to the receiver 6 is the minimum value, and the original fiber end 7 moves from the 22nd point in the direction of the arrow X. Accordingly, the level of light received by the light receiver 6 increases.

そして光フアイバ端部7の端面8が光束Wの左端と一致
する23点に到ったとき、受光器6の受光レベルは最大
値となり、その後、端面8が23点から24点へ移行し
ても受光レベルは変化しないこととなる。
When the end face 8 of the optical fiber end 7 reaches the 23rd point that coincides with the left end of the luminous flux W, the light reception level of the light receiver 6 reaches its maximum value, and then the end face 8 shifts from the 23rd point to the 24th point. However, the received light level remains unchanged.

したがって第1図の方法によるとき、受光器6側に上記
端面位置P2あるいはP3を検知すべき電気的、電子的
な検知装置を組みこんでおけばよく、こうした端部検知
に基づき、所期の端面間隔が設定できることになる。
Therefore, when using the method shown in FIG. 1, it is sufficient to incorporate an electrical or electronic detection device to detect the end face position P2 or P3 on the receiver 6 side, and based on such end face detection, the desired position can be detected. This allows you to set the end face spacing.

しかし上記第1図の方法は、不確定な作業者の技量が介
在しない点でよいといえるが、以下に述べる2つの問題
がまだ残されている。
However, although the method shown in FIG. 1 can be said to be good in that it does not involve the involvement of uncertain worker skills, the following two problems still remain.

その1つは被覆除去された光フアイバ端部と反射光との
関係であり、きれいに被覆除去するといえども、光フア
イバ端部の外周に被覆の一部が残存していることが少な
からずあり、こうした場合には光フアイバ端部で乱反射
が起こり、前述した22点、23点が正確に把握できな
くなる。
One of them is the relationship between the end of the optical fiber from which the coating has been removed and the reflected light. Even if the coating is removed cleanly, there is often a portion of the coating left on the outer periphery of the end of the optical fiber. In such a case, diffuse reflection occurs at the end of the optical fiber, making it impossible to accurately grasp the points 22 and 23 mentioned above.

他の1つは光ファイバの寸法、制質であり、光ファイバ
の外径が大きいほど、また、屈折率が高いほど、   
  ゛市  ゛ 前述した反射光量が多くなり、したが
って受光器θ側に組みこまれる検知装置では、22点、
23点などを検知すべき基準値を各種光ファイバに応じ
て設定しなければならず、しかも多種ある光7フイバに
つき、1つ1つデータ採取して基準値を設定しておかね
ばならないから、かなりの面倒が生じる。
Another factor is the size and quality of the optical fiber; the larger the outer diameter of the optical fiber and the higher the refractive index,
゛ City ゛ The amount of reflected light mentioned above increases, so the detection device built into the receiver θ side has 22 points,
The standard values for detecting 23 points etc. must be set according to each type of optical fiber, and the standard values must be set by collecting data one by one for each of the various types of optical fibers. It will cause a lot of trouble.

本発明は上記の問題点に対処すべく、光ファイバ端部間
の透過光量によりその端面間隔が正確に検知できるよう
にしたもので、以下その検知方法を図示の実施例により
説明する。
In order to solve the above-mentioned problems, the present invention is designed to accurately detect the distance between the end faces of optical fibers based on the amount of light transmitted between the ends.The detection method will be explained below with reference to the illustrated embodiment.

第2図において、IQA、10Bはそれぞれ被覆光ファ
イバの端部から被覆除去により露出された1対の光フア
イバ端部であり、これら光フアイバ端部10A、10B
は、図示しない融着接続機に裂傷されている1対のファ
イバ載置台(V溝型あるいはL溝型)上において移動可
能に保持されており、この状態における両党フアイバ端
部10A、10Bは突合軸線L1上で互いに対向してい
るとともにこれらの端面11A111B間には端面間隔
Gが介在している。
In FIG. 2, IQA and 10B are a pair of optical fiber ends exposed by removing the coating from the end of the coated optical fiber, and these optical fiber ends 10A and 10B
is movably held on a pair of fiber mounting stands (V-groove type or L-groove type) that have been torn by a fusion splicer (not shown), and in this state, the ends of both fibers 10A, 10B are These end faces 11A and 111B face each other on the butt axis L1, and there is an end face interval G between them.

さらに第2図において12は送光系、13は受光系、1
4はその受光系13に組みこまれた検一端部である。
Further, in FIG. 2, 12 is a light transmitting system, 13 is a light receiving system, 1
Reference numeral 4 denotes a detection end portion incorporated into the light receiving system 13.

上記における送光系12は変調回路15を備えたLED
またはLDなどの光発生器16、入光端部および出光端
部にそれぞれロッドレンズ17.18が結合されたノ(
ンドルファイノ(19からなる。
The light transmission system 12 in the above is an LED equipped with a modulation circuit 15.
Alternatively, a light generator 16 such as an LD, with rod lenses 17 and 18 coupled to the light input end and the light output end, respectively (
ndolfaino (consisting of 19 pieces)

一方、受光系13のバンドルファイバく20はその受光
端部にスリット21付の遮光板22を備えているととも
にその出光端部にはロッドレンズ23、PDtたはAP
Dなどの受光器24を備えており、さらに該受光器24
に接続された検知部14は、復調回路25、微分回路2
6、比較回路27.28を備え、これら比較回路27.
28には基準電圧E v 1、E V 2がかけられる
ようVCfxつている。
On the other hand, the bundle fiber 20 of the light receiving system 13 is equipped with a light blocking plate 22 with a slit 21 at its light receiving end, and a rod lens 23, PDt or AP at its light emitting end.
It is equipped with a light receiver 24 such as D, and the light receiver 24
The detection unit 14 connected to the demodulation circuit 25 and the differentiation circuit 2
6, comprising comparison circuits 27 and 28, and these comparison circuits 27.
28 is provided with VCfx so that reference voltages E v 1 and E V 2 can be applied thereto.

そして前述した送光系12の送光端部すなわちロッドレ
ンズ18と、受光系13の遮光板22を備えた受光端部
とは、突合軸線L1  と交差して端面間隔Gを通る測
定軸線L2上において両光ファイバ端部10A、10B
を挾むように配置されている。
The above-described light transmitting end of the light transmitting system 12, that is, the rod lens 18, and the light receiving end of the light receiving system 13 equipped with the light shielding plate 22 are located on a measurement axis L2 that intersects the abutment axis L1 and passes through the end face distance G. At both optical fiber ends 10A, 10B
It is arranged to sandwich the.

第2図に示す本発明では、送光系12において変調回路
15により変調をかけながら光発生器16より所定の光
を発生させ、これをロッドレンズ17により平行光線と
してバンドルファイバ19内に入射させるとともにその
送光端部側のロッドレンズ18から端面間隔GK向けて
出射する。
In the present invention shown in FIG. 2, a predetermined light is generated from a light generator 16 while being modulated by a modulation circuit 15 in a light transmission system 12, and is made to enter a bundle fiber 19 as a parallel light beam by a rod lens 17. At the same time, the light is emitted from the rod lens 18 on the light transmitting end side toward the end face distance GK.

受光系13では、上記端面間隔GがG=Oでないかぎり
上述の光を受光するのであり、端面間隔Gを通過した光
は、遮光板22のスリット21、バンドルファイバ2Q
1 ロッドレンズ23を経て受光器24により受光され
、以下は検知部14の復調回路25、微分回路26を経
由して比較回路27に入り、該比較回路27では、電圧
値に変換された受光レベルと、あらかじめ設定しである
基準電圧Evとを電気的、電子的に比較演算処理する。
The light receiving system 13 receives the above-mentioned light unless the end face spacing G is not G=O, and the light that has passed through the end face spacing G passes through the slit 21 of the light shielding plate 22 and the bundle fiber 2Q.
1 The light is received by the light receiver 24 through the rod lens 23, and then enters the comparison circuit 27 via the demodulation circuit 25 and the differentiation circuit 26 of the detection unit 14, and in the comparison circuit 27, the received light level is converted into a voltage value. and a preset reference voltage Ev are electrically and electronically compared and processed.

上記において、両党ファイバ端部10A。In the above, both fiber ends 10A.

10Bはパルス駆動されたDCモータの駆動力を介して
これらの突き合わせ方向へ相対移動される。
10B is relatively moved in the direction of these butts through the driving force of a pulse-driven DC motor.

はじめ、光フアイバ端部10Aを第2図の矢印X方向へ
移動させるが、その端面11Aが受光側バンドルファイ
バ2oの左端20Aにかかったとき、送党側バンドルフ
ァイノく19から出射される光の一部が遮断され、受光
系13ではその分だけ受光レベルが低下することに&る
Initially, the optical fiber end 10A is moved in the direction of the arrow X in FIG. A portion of the light is blocked, and the level of light received by the light receiving system 13 is reduced by that amount.

この受光レベルの変化は検知部14を介して検知できる
のであり、上記端面11Aがバンドルファイバ2oの左
端20Aにかかった時点で光フアイバ端部10Aを停止
させると、その受光レベルは第3図t1のようになる。
This change in the light reception level can be detected via the detection unit 14, and when the optical fiber end 10A is stopped at the time when the end face 11A is applied to the left end 20A of the bundle fiber 2o, the light reception level is changed to t1 in FIG. become that way.

つぎに光フアイバ端部10Bを第2図の矢印X′方向へ
移動させ、その端面11Bがバンドルファイバ19の右
端にかかったとき、前記と同様、該光フアイバ端部11
Bを停止させるのであり、このときの受光レベルは第3
図t2である。
Next, when the optical fiber end 10B is moved in the direction of the arrow X' in FIG.
B is stopped, and the received light level at this time is 3rd level.
This is Figure t2.

その後、光フアイバ端部10A、10Bを上記X方向 
X 1方向へ交互に送るが、上記移動後の端面間隔をG
とすると、これら端部10A。
After that, the optical fiber ends 10A and 10B are connected in the above X direction.
X It is sent alternately in one direction, but the distance between the end faces after the above movement is G
Then, these ends 10A.

づく端部移動により受光レベルは第3図t3〜tnのよ
うに変化する。
Due to the movement of the end, the received light level changes as shown in t3 to tn in FIG. 3.

なお、第3図t5 ・・・・・tnの間は一方の光フア
イバ端部10Aを1μm単位(@記・(ルス駆動された
DCモータの1パルス送り量)でインチング移動させた
ときの受光レベル変化を示しており、さらにtnは各端
面11A、11Bが互いに突き合わされ、受光レベルが
はソ0になった状態を示している。
In addition, between t5 and tn in Fig. 3, the light received when one optical fiber end 10A is inched in 1 μm units (@ (1 pulse feed amount of a Lux-driven DC motor)). It shows a level change, and further, tn shows a state in which the respective end surfaces 11A and 11B are brought into contact with each other and the light reception level becomes 0.

したがって受光系13の検知部14により上記受光レベ
ルtnを検知することにより各端面11A、11Bが互
いに突き合わされた状態すなわち端面間隔Goo(最小
値)が知得でき、その後は光フアイバ端部10A、10
Bのいずれか一方または両方を前記の逆方向へ所定量だ
け移動させることにより、各端面11A、11Bの間隔
が正確に設定され、このときの受光レベルは第3図tn
−+のようになる。
Therefore, by detecting the light reception level tn by the detection unit 14 of the light receiving system 13, it is possible to know the state in which the end faces 11A and 11B are butted against each other, that is, the end face interval Goo (minimum value), and after that, the optical fiber end 10A, 10
By moving one or both of B by a predetermined amount in the opposite direction, the distance between each end surface 11A, 11B is accurately set, and the light reception level at this time is as shown in FIG.
It becomes like -+.

つぎに具体的事項について説明する。Next, specific matters will be explained.

光フアイバ端部10A、10Bの外径が125μm程度
であるとき、バンドルファイバ19.20は外径1陥の
ものが用いられる。
When the outer diameter of the optical fiber ends 10A and 10B is about 125 μm, bundle fibers 19 and 20 with an outer diameter of 1 are used.

遮光板22としてはスリット21の幅、長さがそれぞれ
0.1 mm、2 tanであるものが用いられる。
As the light shielding plate 22, one in which the width and length of the slit 21 are 0.1 mm and 2 tan, respectively, is used.

この遮光板22は光フアイバ端部10A。This light shielding plate 22 is the optical fiber end 10A.

10Bの外側を通った光が受光側バンドルファイバ2o
へ入射するのを防止する。
The light passing through the outside of 10B is sent to the receiving side bundle fiber 2o.
prevent it from entering.

変調回路15は外部迷光の影響を除去するため用いられ
、これにともなって復調回路25も用いられているが、
この対策のための別手段として、ロッドレンズ23の端
面に光源光の波長成分のみを通過させる光干渉フィルタ
を膜状に蒸着してもよい。
The modulation circuit 15 is used to remove the influence of external stray light, and along with this, the demodulation circuit 25 is also used.
As another measure against this, an optical interference filter that allows only the wavelength component of the light source light to pass may be deposited on the end face of the rod lens 23 in the form of a film.

微分回路26は光源出力(光発生器15)が変動するの
を長期にわたって保証するため用いられる。
Differentiator circuit 26 is used to ensure that the light source output (light generator 15) does not fluctuate over time.

第3図におけるΔtは端面位置の認識ずれや送りモーフ
の慣性による送り過剰を示したものであるが、との△t
を10μm 以下に抑えることは現実的に可能であり、
問題にはならない。
Δt in Fig. 3 indicates excessive feed due to misrecognition of the end face position and inertia of the feed morph.
It is realistically possible to suppress the
It's not a problem.

前述した光フアイバ端部10A、10BはDCモータの
駆動力を介して移動されるが、この際の移動量は上記パ
ルス駆動されたDCモータの駆動時間を基準にしてコン
トロールされる。
The aforementioned optical fiber ends 10A and 10B are moved by the driving force of the DC motor, and the amount of movement at this time is controlled based on the driving time of the pulse-driven DC motor.

したがって第3図の横軸は、距離ではなく端面の移動時
間をあられしている。
Therefore, the horizontal axis in FIG. 3 represents the travel time of the end face rather than the distance.

光ファイバ端面11A、11Bが互いに突き合わされる
までの移動量はそれぞれ500μmであり、第3図t、
・・・・・tnのように一方の光フアイバ端部10Aを
インチングする量は約50μm(49μm)である。
The amount of movement of the optical fiber end faces 11A and 11B until they abut each other is 500 μm, respectively.
...The amount by which one optical fiber end 10A is inched, such as tn, is approximately 50 μm (49 μm).

基準電圧Evl はOボルト近くのノイズの影響を避け
るため、完全に0とせず、端面間隔Gが1μmのときの
検知出力電圧に設定しである。
In order to avoid the influence of noise near O volts, the reference voltage Evl is not set to completely 0, but is set to the detection output voltage when the end face spacing G is 1 μm.

したがって第3図tnのときの端面間隔Gは、実際上は
1μmである。
Therefore, the end face spacing G in FIG. 3 tn is actually 1 μm.

第3図tnを検知した後に設定する端面11A、11B
相互の間隔、すなわち光ファイバを融着するのに適切な
間隔が10μmであるとき、光フアイバ端部10Aまた
は10Bを9μm退勤させればよい。
Fig. 3 End faces 11A and 11B set after detecting tn
When the mutual spacing, that is, the appropriate spacing for fusing the optical fibers, is 10 μm, the optical fiber ends 10A or 10B may be separated by 9 μm.

以上説明した通り、本発明方法は端面間隔をおいて1対
の光フアイバ端部を突合軸線上で互いに対向させ、該突
合軸線と交差して上記端面間隔を通る測定軸線上には、
両光ファイバ端部を挾むようにして送光系の送光端部、
受光系の受光端部を配置し、上記端面間隔を光が通過す
るよう、送光系から受光系にわたって光を送9、当該送
光状態において両党ファイバ端部をその突き合わせ方向
へ相対移動させ、上記受光系における最小受光レベルに
より両光ファイバ端部の端面間隔が最小値になったこと
を検知するから、光フアイバ端部の表面状部、外径、材
質などに影響されることなく、端面間隔を通過する光量
の大幅な減少により、所望の端面間隔が正確に検知でき
、これに基づいて光フアイバ融着接続のための端面間隔
も適正に設定できる。
As explained above, in the method of the present invention, a pair of optical fiber ends are opposed to each other on the abutment axis with a gap between the end faces, and on the measurement axis that intersects the abutment axis and passes through the end face spacing,
The light transmitting end of the light transmitting system, sandwiching the ends of both optical fibers,
The light-receiving end of the light-receiving system is arranged, and the light is transmitted from the light-transmitting system to the light-receiving system so that the light passes through the end face spacing, and in the light-transmitting state, the ends of both fibers are moved relative to each other in the abutting direction. Since it is detected that the distance between the end faces of both optical fiber ends has reached the minimum value based on the minimum light receiving level in the light receiving system, it is not affected by the surface shape, outer diameter, material, etc. of the optical fiber ends. Due to the significant reduction in the amount of light passing through the end face spacing, the desired end face spacing can be accurately detected, and based on this, the end face spacing for optical fiber fusion splicing can also be appropriately set.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法の説明図、第2図は本発明方法の説明図
、第3図は本発明方法における受光レベルの説明図であ
る。 10A、10B・・・・・光フアイバ端部11A、11
B・・・・・端 面 12・・・・・受光系 13・・・・・送光系 14・・・・・検知部 16・・・・・光発生器 19・・・・・送光系のバンドルファイバ2o・・・・
・受光系のバンドルファイバ21・・■・スリット 22・・・・・遮光板 24・・・・・受光器 G・・・・・端部開削 り、・・・・突合軸線 L2・・・・測定軸線 特許出願人 代理人 弁理士  井 藤   誠 市原市へ幡海岸通6番地古河電 気工業株式会社千葉電線製造所 内 0発 明 者 加藤康之 茨城県那珂郡東海村大字白方字 白根162番地日本電信電話公社 茨城電気通信研究所内 ■出 願 人 日本電信電話公社
FIG. 1 is an explanatory diagram of the conventional method, FIG. 2 is an explanatory diagram of the method of the present invention, and FIG. 3 is an explanatory diagram of the light reception level in the method of the present invention. 10A, 10B...Optical fiber end portions 11A, 11
B... End surface 12... Light receiving system 13... Light transmitting system 14... Detection section 16... Light generator 19... Light transmitting System bundle fiber 2o...
・Bundle fiber 21 of the light receiving system... ■・Slit 22... Light shielding plate 24... Light receiver G... End cut open,... Butt axis L2... Measuring Axis Patent Applicant Representative Patent Attorney Makoto Ifuji 6, Hatakaigan-dori, Ichihara City, Furukawa Electric Co., Ltd., Chiba Electric Wire Manufacturing Plant Inventor: Yasuyuki Kato, 162 Shirakata, Shirane, Oaza, Shirakata, Tokai Village, Naka District, Ibaraki Prefecture Within Ibaraki Telecommunications Research Institute, Telephone Public Corporation ■Applicant: Nippon Telegraph and Telephone Public Corporation

Claims (1)

【特許請求の範囲】 [1)  端面間隔をおいて1対の光フアイバ端部を突
合軸線上で互いに対向させ、該突合軸線と交差して上記
端面間隔を通る測定軸線上には、両光ファイバ端部を挾
むようにして送光系の送光端部、受光系の受光端部を配
置し、上記端面間隔を光が通過するよう、送光系から受
光系にわたって光を送り、当該送光状態において両党フ
ァイバ端部をその突き合わせ方向へ相対移動させ、上記
受光系における最小受光レベルにより両光ファイバ端部
の端面間隔が最小値になったことを検知する光ファイバ
の端面間隔検知方法。 (2)送光系から受光系にわたって光を送るとき、受光
系にはその受光端部側にスリット付の遮光板を配置して
おき、該遮光板のスリットを通過した光のみを当該受光
系へ入射させる特許請求の範囲第1項記載の光ファイバ
の端面間隔検知方法。 (3)  受光系は、送光系からの光波長成分のみを通
過させる光干渉フィルタを備えている特許請求の範囲第
1項記載の光ファイバの端面間隔検知方法。
[Scope of Claims] [1] A pair of optical fiber ends are opposed to each other on an abutment axis with an end face interval, and on a measurement axis that intersects the abutment axis and passes through the end face interval, both optical fibers are arranged. The light transmitting end of the light transmitting system and the light receiving end of the light receiving system are arranged so as to sandwich the fiber ends, and the light is sent from the light transmitting system to the light receiving system so that the light passes through the end face spacing, and the light transmitting state is adjusted. A method for detecting an end face spacing of an optical fiber, comprising: relatively moving the ends of both optical fibers in a direction in which they abut, and detecting that the end face spacing between the ends of both optical fibers has reached a minimum value based on the minimum light reception level in the light receiving system. (2) When sending light from the light transmitting system to the light receiving system, a light shielding plate with slits is placed on the light receiving end side of the light receiving system, and only the light that has passed through the slit of the light shielding plate is transmitted to the light receiving system. A method for detecting an end face distance of an optical fiber according to claim 1, wherein the optical fiber is incident on the optical fiber. (3) The method for detecting the distance between end faces of an optical fiber according to claim 1, wherein the light receiving system includes an optical interference filter that allows only the light wavelength component from the light transmitting system to pass through.
JP10346683A 1983-06-09 1983-06-09 Detecting method of interval between end surfaces of optical fibers Pending JPS59228215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10346683A JPS59228215A (en) 1983-06-09 1983-06-09 Detecting method of interval between end surfaces of optical fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10346683A JPS59228215A (en) 1983-06-09 1983-06-09 Detecting method of interval between end surfaces of optical fibers

Publications (1)

Publication Number Publication Date
JPS59228215A true JPS59228215A (en) 1984-12-21

Family

ID=14354784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10346683A Pending JPS59228215A (en) 1983-06-09 1983-06-09 Detecting method of interval between end surfaces of optical fibers

Country Status (1)

Country Link
JP (1) JPS59228215A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203104A (en) * 1986-03-03 1987-09-07 Nippon Telegr & Teleph Corp <Ntt> Setting method for gap between optical fiber end surfaces
JPS63116110A (en) * 1986-11-04 1988-05-20 Nippon Telegr & Teleph Corp <Ntt> Positioning and aligning device for wore rod

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203104A (en) * 1986-03-03 1987-09-07 Nippon Telegr & Teleph Corp <Ntt> Setting method for gap between optical fiber end surfaces
JPS63116110A (en) * 1986-11-04 1988-05-20 Nippon Telegr & Teleph Corp <Ntt> Positioning and aligning device for wore rod

Similar Documents

Publication Publication Date Title
US6984077B2 (en) System for joining polarization-maintaining optical fiber waveguides
US5453827A (en) Fiberoptic in-line filter and technique for measuring the transmission quality of an optical fiber through the use of a fiberoptic in-line filter
US4978201A (en) Method for measuring splice loss of an optical fiber
US4618212A (en) Optical fiber splicing using leaky mode detector
US5417733A (en) Alignment system and method for splicing of polarization-maintaining single mode optical fiber
US6203214B1 (en) Alignment system for splicing of polarization-maintaining single mode optical fiber
NL193292C (en) Device for centering optical fibers.
US4552454A (en) System and method for detecting a plurality of targets
US4830490A (en) Apparatus for aligning optical fibers
JP3654904B2 (en) Connecting optical fiber with twin core and fiber with single core
GB2058398A (en) Ring interferometers
JPS59228215A (en) Detecting method of interval between end surfaces of optical fibers
JPH04362906A (en) Axial misalignment inspecting method for multiple connector
US4565593A (en) Connection and inspection of optical fibres by fusion splicing
EP0695961B1 (en) Method of manufacturing fiber-optic collimators
US6611642B1 (en) Optical coupling arrangement
JP3343756B2 (en) Manufacturing method of collimator for optical circuit
JPH0534646B2 (en)
JPH0352604B2 (en)
GB2189048A (en) Determining alignment in optical fibre fusion splicing
JP2842627B2 (en) Multi-core fusion splicing method for optical fibers
EP0532291B1 (en) Measuring geometry of optical fibre coatings
JPS60237409A (en) Setting method of space between end faces of optical fibers in method for welding and connecting optical fibers
JPS60237408A (en) Control method of electric discharge in method for welding and connecting optical fibers
JPH0233107A (en) Welding connection device for optical fiber