JPS59227719A - Recovery of caustic soda - Google Patents

Recovery of caustic soda

Info

Publication number
JPS59227719A
JPS59227719A JP58100136A JP10013683A JPS59227719A JP S59227719 A JPS59227719 A JP S59227719A JP 58100136 A JP58100136 A JP 58100136A JP 10013683 A JP10013683 A JP 10013683A JP S59227719 A JPS59227719 A JP S59227719A
Authority
JP
Japan
Prior art keywords
caustic soda
tank
metal oxide
black liquor
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58100136A
Other languages
Japanese (ja)
Inventor
Yasuyuki Nishimura
泰行 西村
Yukio Takahashi
幸男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP58100136A priority Critical patent/JPS59227719A/en
Publication of JPS59227719A publication Critical patent/JPS59227719A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Paper (AREA)

Abstract

PURPOSE:To recover caustic soda efficiently, and to enable circulating use of metal oxide powder, by adding the metal oxide powder to black liquor of by- product of pulp plant, burning it to give a reaction product, hydrolyzing it under grinding action. CONSTITUTION:The wood chip 23 is treated with a chemical consisting essentially of caustic soda by the digesting tank 1 to separate cellulose, black liquor containing lignin and Na component is put into the evaporator 2 and concentrated. The concentrated black liquor is sent through the tank 3, blended with metal oxide powder such as Fe2O3, etc., burned by the combustor 4 to recover heat. The reaction product is introduced to the grinding and hydrolyzing tank 5A such as ball mill, etc., hydrolyzed under grinding preferably at>=80 deg.C, and sent to the solid-liquid separator 18. Caustic soda thus recovered is put in the tank 8 for recovered liquid, used for the digesting tank 1, etc., and a separated solid material is circulated and used for the combustor 4 as the metal oxide powder.

Description

【発明の詳細な説明】 本発明は苛性ソーダの回収方法に係り、特にクラフトパ
ルプ製造工程において副生ずる黒液の燃焼生成物から効
率的に苛性ソーダを回収する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering caustic soda, and more particularly to a method for efficiently recovering caustic soda from combustion products of black liquor produced as a by-product in the kraft pulp manufacturing process.

従来、製紙工場におけるクラフトパルプの製造工程では
、苛性ソーダを中心とする薬品の存在下で木材を処理す
ることによシセルローズ(繊維)とリグニン(樹脂)を
分離し、セルローズのみを取り出す作業が行われている
。その際、上記によシ分離された溶解リグニンとNa成
分を含有する所謂黒液に関してよシ有効な後処理方法が
望まれている。従来のこの種の後処理方法では、第1図
に示すように、蒸解槽1から排出された黒液を蒸発缶2
で濃縮し、必要により濃縮タンク3に貯めたのちライン
13を経て燃焼装置4に供給、燃焼させ、熱回収を行っ
ている。そして、該燃焼により生成したアルカリ性の固
体生成物は次いで、燃焼装置4の底部から抜き出され、
ライン14を経たのち溶解槽5に供給され、ここで水1
5の添加下に溶解される。該溶解液は次いで苛性化槽6
に送られ、後記によシ回収される消石灰(Ca(oH)
 2)の添加を受けI’JIZOHが回収される。
Traditionally, in the kraft pulp manufacturing process at paper mills, wood is treated in the presence of chemicals, mainly caustic soda, to separate cellulose (fiber) and lignin (resin), and extract only cellulose. ing. At this time, a more effective post-treatment method is desired for the so-called black liquor containing the dissolved lignin and Na components separated above. In this type of conventional post-treatment method, as shown in FIG.
After being concentrated in a concentration tank 3 if necessary, it is supplied to a combustion device 4 via a line 13, where it is combusted and heat is recovered. The alkaline solid products produced by the combustion are then extracted from the bottom of the combustion device 4,
After passing through line 14, it is supplied to dissolution tank 5, where water 1
5. The solution is then transferred to a causticizing tank 6.
Slaked lime (Ca(oH)) is sent to
2), I'JIZOH is recovered.

上記により得られるNαOH含有スラリは次いで固液分
離器7に送られて固液分離され、そのうち溶解NaOH
を含む回収液はライン16を経て回収液槽8に貯留され
たのち、スチームおよびNa□S12の添加下にライン
17を経て蒸解槽1に供給され、木材チップ23の処理
のだめに再使用される。一方、分離後の固形物は、ロー
タリキルン9に送られて焼成処理され、その後消和タン
ク10で水の添加下に消石灰の生成処理がなされ、次い
でライン11を経て上記の苛性化槽6に送られ、再使用
されている。
The NαOH-containing slurry obtained above is then sent to the solid-liquid separator 7 for solid-liquid separation.
The recovered liquid containing the recovered liquid is stored in the recovered liquid tank 8 via line 16, and then supplied to the digestion tank 1 via line 17 with the addition of steam and Na□S12, where it is reused for the treatment of wood chips 23. . On the other hand, the solids after separation are sent to the rotary kiln 9 and subjected to firing treatment, then in the slaked tank 10 where water is added to produce slaked lime, and then through the line 11 to the causticization tank 6 mentioned above. sent and reused.

しかし、上記の方法においては、下記するような種々の
問題が避けられない。第1の問題は燃焼に関するもので
、燃焼時にはNaOHの回収に必要な下記の反応を行う
必要があるので、これに対応するためには態位空気を一
次、二次および三次に分けるとともに、これらの制御を
精密に行わねばならないことである。
However, in the above method, various problems as described below cannot be avoided. The first problem is related to combustion. During combustion, it is necessary to carry out the following reactions necessary to recover NaOH, so in order to deal with this, it is necessary to divide the atmospheric air into primary, secondary and tertiary air, and to must be precisely controlled.

燃焼装置の空塔部における反応: NazO+ SCh + 1 / 202→NIZ2S
O4=−= −−(1)Nato + Cot−−−一
−−−−→NtrxCOs −・” ・= ・・−(2
)燃焼装置の炉底部における反応: NazSO4+ 20−一一一一→Na2S+ C02
・・・−(3)Na2COs           N
azo + Cot −−(4)第2の問題は苛性化時
の効率に関するものである。すなわち、苛性化槽6では
前段の溶解槽5から送られる溶解液に対し消石灰が添加
され、下記(5)式の反応に従ってNaOHが生成され
るが、該消石灰の一部は再生不可能な石灰泥となるため
消石灰の補給量が多くなる上、廃棄物の処理を要するこ
とである。さらに、消石灰の溶解度等の関係から苛性化
率は通常85−程度が限度であり、そのため余剰の焦機
物が系内を循環し、燃焼装置の態位性に悪影響を及ぼす
ことである。
Reaction in the sky section of the combustion device: NazO+ SCh + 1/202→NIZ2S
O4=−= −−(1) Nato + Cot−−−−−−→NtrxCOs −・” ・= ・・−(2
) Reaction at the bottom of the combustion device: NazSO4+ 20-1111 → Na2S+ C02
...-(3) Na2COs N
azo + Cot --(4) The second problem concerns efficiency during causticization. That is, in the causticizing tank 6, slaked lime is added to the solution sent from the dissolution tank 5 in the previous stage, and NaOH is produced according to the reaction of equation (5) below, but a part of the slaked lime is non-renewable lime. Since it becomes mud, the amount of slaked lime required to be replenished is large, and the waste must be disposed of. Furthermore, due to the solubility of slaked lime, etc., the causticization rate is usually limited to about 85-1, and therefore excess scorched material circulates within the system, adversely affecting the attitude of the combustion device.

NazCOs + C(Z(OH)2→2 NaOH+
 CaCO5−−−−(5)第3の問題は苛性化に使用
される消石灰の回収に関するものである。上記の消石灰
は、固液分離器7で分離された固形物を一部ライムキル
ン等のロータリキルンで焼成して下記(6)式の反応に
従い生石灰(C,ZO)を生成させ、その後焼成物を消
和タンク7に送り水の添加下に処理して下記(7)式の
反応に従い消石灰を生成させるという複雑な工程を経て
得られている。
NazCOs + C(Z(OH)2→2 NaOH+
CaCO5---(5) The third problem concerns the recovery of slaked lime used for causticization. The above slaked lime is produced by partially calcining the solid matter separated in the solid-liquid separator 7 in a rotary kiln such as a lime kiln to generate quicklime (C, ZO) according to the reaction of equation (6) below, and then producing the calcined product. It is obtained through a complicated process in which slaked lime is produced in accordance with the reaction of formula (7) below by adding water to the slaked tank 7 and treating it.

Caco a−一−−−−→CaO+ CO2・= ・
= ・= −−(6)CaO十HzO−一→Cα(OH
)2  ・・・・・・・・・・・・・・・・・・・−・
(7)このような回収方法においては、ロータリキルン
や消和槽尋の設備が必要となる上、ロータリキルンの運
転には一般に801/パルプ・tの重油を要するので省
エネルギの観点からも好ましくない。なお、上記の重油
に代え安価な石炭を燃料源として使用するととも考えら
れるが、この場合には使用薬品の品質に与える影響が大
きいので好ましくない。
Caco a-1---→CaO+ CO2・=・
= ・= --(6) CaO 1HzO-1 → Cα(OH
)2 ・・・・・・・・・・・・・・・・・・・・・・
(7) Such a recovery method requires equipment such as a rotary kiln or a slaking tank, and generally requires 801/ton of heavy oil to operate the rotary kiln, so it is preferable from an energy saving perspective. do not have. Although it is conceivable to use cheap coal as a fuel source instead of the above-mentioned heavy oil, this is not preferable since it would have a large effect on the quality of the chemicals used.

第4の問題は、臭気を中心とする環境上問題である。こ
れについては臭気発生の元凶でおるNa3を用いない方
法、例えば酸素−アルカリ蒸解法、アンスラキノン添加
アルカリ蒸解法等が開発され、いずれも実用化の段階に
ある。
The fourth problem is an environmental problem centered on odor. For this purpose, methods that do not use Na3, which is the cause of odor generation, such as oxygen-alkali cooking method and anthraquinone-added alkaline cooking method, have been developed, and all of them are at the stage of practical application.

このように、従来の方法には種々の問題があるが、これ
を克服するため、従来、例えばFgzCh、T iOz
またはIJ 20 s等の金属酸化物を苛性化剤として
用いるアルカリパルプ蒸解法が提案されている(特開昭
5O−116702)。この方法は直接苛性化法と呼ば
れるものであり、第2図に示すように、木材チップなN
aOHの添加下に処理してセルロースとリグニン等に分
離する蒸解工程101と、上記により分離されたリグニ
ン等とNα成分を含む黒液を金属酸化物であるFe2e
sの添加下に燃焼するだめの燃焼工程104と、該燃焼
により生じた鉄酸す) IJウム(NaFtOz)を含
む固形物を水の添加下に処理してFgzOsとNaOH
の回収を行う溶解工程105とから主に構成される。上
記の燃焼工程104では、黒液中のNa成分が一部炭酸
ソーダとなり、これが下記(8)式の反応に従い鉄塩ナ
トリウムに転化する。
As described above, conventional methods have various problems, but in order to overcome these problems, conventional methods such as FgzCh, TiOz
Alternatively, an alkaline pulp cooking method using a metal oxide such as IJ 20 s as a causticizing agent has been proposed (Japanese Patent Application Laid-Open No. 50-116702). This method is called the direct causticization method, and as shown in Figure 2, N
A cooking step 101 in which cellulose, lignin, etc. are separated by treatment with the addition of aOH, and the black liquor containing lignin, etc. separated by the above and Nα component is treated with Fe2e, which is a metal oxide.
Combustion step 104 of a tank to be combusted with the addition of s, and the solid material containing iron oxide (NaFtOz) produced by the combustion is treated with the addition of water to produce FgzOs and NaOH.
It mainly consists of a dissolution step 105 for recovering the . In the above combustion step 104, part of the Na component in the black liquor becomes sodium carbonate, which is converted into sodium iron salt according to the reaction of equation (8) below.

NatCOs 十Fe20s→2NizFgOa + 
CO2・・・−−−(8)また、溶解工程105では下
記(9)式の反応が進行する。
NatCOs 10Fe20s→2NizFgOa +
CO2...---(8) Furthermore, in the dissolution step 105, the reaction of the following formula (9) proceeds.

2NaFtO2+ IL+0→2NaOH+ F a 
20 g  −・= ・= −(9)この方法によれば
、第1図に示す方法の問題点は解消されるが、本発明者
等は詳細な検討を行った結果、黒液(その代替としての
Na *COs )とFe2O3は800℃以上で反応
し、低温(800℃)では粉末状であるが、温度が高く
なるにつれて順次塊状および溶融状態の生成物を与える
こと、そして該生成物はX線回折から判断して鉄酸す)
 IJウムであること、また該反応生成物につき加水分
解(80℃)を行うと苛性ソーダの生成率は燃焼温度が
高くなる程低下すること(第3図)、さらに酸化鉄と黒
液(その代替としてのNαzcOs)の混合状態が燃焼
時の反応率に及ぼす影響は、第4図からも明らかなよう
に良好な混合状態となるほど向上すること(第4図中の
Aは酸化鉄とNαxcchを予め混合しない場合、Bは
両者を単に混合した場合、Cは両者を粉砕混合した場合
をそれぞれ示す)等を確認した。
2NaFtO2+ IL+0→2NaOH+ F a
20 g −・= ・= −(9) According to this method, the problems of the method shown in FIG. Na*COs as Judging from X-ray diffraction, iron acid)
Furthermore, when the reaction product is hydrolyzed (at 80°C), the generation rate of caustic soda decreases as the combustion temperature increases (Figure 3). As is clear from Fig. 4, the influence of the mixing state of NαzcOs) on the reaction rate during combustion improves as the mixing state becomes better (A in Fig. 4 indicates that iron oxide and Nαxcch are mixed in advance). When not mixed, B indicates the case where both were simply mixed, and C indicates the case where both were pulverized and mixed).

これらのことから、従来の直接苛性化法においては、下
記のごとき欠点のあることが明らかとなった。その1つ
は、燃m%工程での燃焼温度は熱回収面よシみれば高温
程菫ましいが、該温度が1200℃以上に達すると燃焼
生成物の溶融化が進み、溶解工程での加水分解率低下と
ともに苛性ソーダの生成率も低下することであシ、他の
1つは、溶解工程から得られるF、2Q3は比較的粗粒
でおるため黒液との混合性が悪< 、(s)式の反応が
十分に進行しないことである。
From these facts, it has become clear that the conventional direct causticizing method has the following drawbacks. One of them is that the higher the combustion temperature in the combustion m% process, the more unpleasant it is from a heat recovery perspective, but when the temperature reaches 1200°C or higher, the melting of the combustion products progresses, and the melting process As the hydrolysis rate decreases, the production rate of caustic soda also decreases.Another reason is that the F,2Q3 obtained from the dissolution process has relatively coarse particles and has poor miscibility with black liquor. s) The reaction of formula does not proceed sufficiently.

本発明の目的は、上記の直接苛性化法の欠点をなくシ、
効率的に苛性ソーダを回収することができる方法を提供
することにある。
The object of the present invention is to eliminate the drawbacks of the above-mentioned direct causticizing method,
An object of the present invention is to provide a method that can efficiently recover caustic soda.

本発明は、クラフトパルプ製造工程から副生する黒液に
金属酸化物粉を加えたものを燃焼させ、該燃焼により生
ずる反応生成物から加水分解により苛性ソーダを回収す
るに当り、上記反応生成物の加水分解を粉砕作用下に行
うととを特徴とする。
The present invention involves burning black liquor, a by-product of the kraft pulp manufacturing process, to which metal oxide powder has been added, and recovering caustic soda from the reaction product produced by the combustion by hydrolysis. It is characterized in that the hydrolysis is carried out under grinding action.

上記の4′:Y成とすることにより、燃焼反応生成物の
表面積が増大し、加水分解の促進とこれにともなう苛性
ソーダの生成率上昇が達成される上、加水分解後の生成
物である金属酸化物は微細化されるので、回収後再使用
する際に黒液との混合性が改善され、燃焼時の反応率が
向上する。
By using the above 4':Y composition, the surface area of the combustion reaction products increases, promoting hydrolysis and increasing the production rate of caustic soda. Since the oxide is finely divided, its miscibility with black liquor is improved when it is reused after recovery, and the reaction rate during combustion is improved.

本発明において、黒液に添加される金属酸化物粉として
は、反応性、入手のし易さ、および経済上からFt*O
s、TiOzおよびAlton等の微粉状体が好ましい
In the present invention, the metal oxide powder added to the black liquor is Ft*O from the viewpoint of reactivity, easy availability, and economy.
Fine powders such as S, TiOz and Alton are preferred.

また、燃焼反応生成物の加水分解を粉砕作用下に行う手
段としては、公知の手段が適用可能であルカ、特にボー
ルミルやチューブミル等の湿式ミルが好適である。
Further, as a means for hydrolyzing the combustion reaction product under the action of pulverization, known means can be applied, and mills, particularly wet mills such as ball mills and tube mills, are suitable.

加水分解温度は一般に60℃以上であればよいが、苛性
ソーダの回収率を高く保つためには特に80℃以上とす
ることが望ましい。
Generally, the hydrolysis temperature should be 60°C or higher, but in order to maintain a high recovery rate of caustic soda, it is particularly desirable to set it to 80°C or higher.

以下、図面に示す実施例により本発明をさらに詳しく説
明する。
Hereinafter, the present invention will be explained in more detail with reference to embodiments shown in the drawings.

第5図は、本発明の一実施例を示す苛性ソーダ回収方法
の装置系統図であり、この装置は、同一符号およびその
説明が参照される第1図に示す装置と同様な部分と、燃
焼装置4の炉底部からライン14を経て送られる燃焼生
成物を受入れるとともに、これを第6図に示すライン1
5から供給される水の存在下で粉砕作用下に加水分解を
行う粉砕加水分解装置5Aと、第6図に示すように加水
分解されたスラリを固液分離するだめの固液分離器7、
該分離によシ得られるNaOH含有液を貯蔵するととも
に、これをライン16を経て回収液槽8へ送るための苛
性ソーダタンク19および他方の分熟物である金属酸化
物であるF。o3粉含有ケーキをさらに脱液し、その障
碍られる液を上記の苛性ソーダタンク19へ送るととも
に、固形物についてはライン21を経て燃焼装置4へ供
給可能とする第二次固液分離器2oを備えた固液分離装
置18とから主に構成される。上記2イン21の途中で
ライン13内を送られる濃縮黒液とF、293粉の混合
が行われ、その後ライン22を経て燃焼装置(例えば、
通常の回収ボイラや流動層ボイラ)4に供給される構成
となっている。
FIG. 5 is an equipment system diagram of a caustic soda recovery method showing an embodiment of the present invention, and this equipment includes similar parts to the equipment shown in FIG. The combustion products sent through line 14 from the bottom of furnace 4 are received and transferred to line 1 shown in FIG.
A pulverizing hydrolysis device 5A performs hydrolysis under pulverizing action in the presence of water supplied from 5A, and a solid-liquid separator 7 for separating the hydrolyzed slurry into solid and liquid as shown in FIG.
A caustic soda tank 19 for storing the NaOH-containing liquid obtained by the separation and sending it to the recovery liquid tank 8 via a line 16, and a metal oxide F which is the other mature product. A secondary solid-liquid separator 2o is provided to further deliquify the O3 powder-containing cake, send the impeded liquid to the caustic soda tank 19, and supply solids to the combustion device 4 via a line 21. It mainly consists of a solid-liquid separator 18. In the middle of the 2-in 21, the concentrated black liquor sent through the line 13 is mixed with F, 293 powder, and then passed through the line 22 to the combustion device (e.g.
It is configured to be supplied to a normal recovery boiler or fluidized bed boiler) 4.

このような植成の装置を用いて燃焼を行う場合、黒液と
Fgz03との反応温度は、燃焼装置が回収ボイラの時
は1200 ’C以上の高温であり、また流動層ボイラ
の時は800〜1ooo℃である。しかし、いずれのボ
イラを用いる場合であっても、燃焼反応生成物の加水分
解は粉砕作用下で行われるので、苛性ソーダの回収率は
極めてすぐれたものとなる。ちなみに、本発明実施例の
装置を用いて各種の温度で燃焼生成物の加水分解を行っ
たところ、苛性ソーダの回収率はボイラの種類に関係な
く第7図のEとなシ、比較のために示す無粉砕の加水分
解曲線りに比して大幅に向上することが明らかとなった
。そして、本実施例の場合でも、特に加水分解温度が8
0℃以上になると、苛性ソーダ回収率は95チ以上に達
することも明らかとなった。
When combustion is performed using such a planting device, the reaction temperature between black liquor and Fgz03 is a high temperature of 1200'C or more when the combustion device is a recovery boiler, and 800'C or more when the combustion device is a fluidized bed boiler. ~1ooo°C. However, regardless of which boiler is used, the hydrolysis of the combustion reaction products is carried out under the pulverizing action, so that the recovery rate of caustic soda is extremely excellent. By the way, when the combustion products were hydrolyzed at various temperatures using the apparatus according to the embodiment of the present invention, the recovery rate of caustic soda was the same as E in Figure 7 regardless of the type of boiler. It became clear that the hydrolysis curve was significantly improved compared to the non-pulverized hydrolysis curve shown in FIG. Also in the case of this example, the hydrolysis temperature is 8.
It was also revealed that when the temperature reached 0°C or higher, the caustic soda recovery rate reached 95 cm or higher.

以上、本発明によれは、直接苛性化法における#lIB
m生成物の加水分解工程に粉砕作用下の加水分解法を採
用したことにより、溶焼生成物の表面積を増大させなが
ら加水分解を行うことが可能となり、これにより苛性ソ
ーダの生成率向上と、黒液に対する混合性が良好となシ
、反応率の改善とともに、微細状金属酸化物の回収を達
成することができる。
As described above, according to the present invention, #lIB in the direct causticizing method
By adopting a hydrolysis method under crushing action in the hydrolysis process of m-products, it is possible to perform hydrolysis while increasing the surface area of the sintered products, which improves the production rate of caustic soda and reduces black Good miscibility with the liquid makes it possible to improve the reaction rate and recover fine metal oxides.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のクラフトパルプ製造法に係る黒液処理
装置の系統図、第2図は、従来のクラフトパルプ製造法
に係る黒液処理法のうちの直接苛性化法を説明する系統
図、第3図は、直接苛性化法を適用した場合に反応温度
が燃続生成物の苛性ソーダ生成率に与える影響を説明す
る図、第4図は、直接苛性化法を適用した場合に黒液と
金属酸化物の混合状態が両者の反応に与える影響を説明
する図、第5図は、本発明の一実施例に係る黒液処理装
置の系統図、第6図は、第5図に適用可能な粉砕加水分
解装置および固液分離装置の詳細系γ 銃口、第尋図は、本発明の実施例の効果を比較例ととも
に示す図である。 1・・・蒸解槽、2・・・蒸発缶、3・・・濃縮タンク
、4・・・燃焼装置、5・・・溶解槽、5A・・・粉砕
加水分解装置、7・・・固液分ρ器、8・・・回収液槽
、13.14・・・ライン、15・・・水、16.17
・・・ライン、18・・・同液分除装置、19・・・苛
性ソーダタンク、20・・・第二次固液分離器、21.
22・・・ライン、23・・・木材チップ。 代理人 弁理士  川 北 武 長 第1図 第2図 水、 第3図 反f:r逼度(0C) 第 4 図 反力韮崎MI(min) 第5図 第6図 第 7 図 tya水仕解逼度(’C)
Fig. 1 is a system diagram of a black liquor treatment device related to the conventional kraft pulp manufacturing method, and Fig. 2 is a system diagram explaining the direct causticization method among the black liquor processing methods related to the conventional kraft pulp manufacturing method. , Figure 3 is a diagram explaining the effect of reaction temperature on the caustic soda generation rate as a combustion product when the direct causticizing method is applied, and Figure 4 is a diagram explaining the effect of the reaction temperature on the caustic soda production rate when the direct causticizing method is applied. FIG. 5 is a system diagram of a black liquor processing apparatus according to an embodiment of the present invention, and FIG. Detailed system of possible crushing hydrolysis device and solid-liquid separation device γ Muzzle and fathom diagrams are diagrams showing the effects of the embodiments of the present invention together with comparative examples. DESCRIPTION OF SYMBOLS 1... Digester, 2... Evaporator, 3... Concentration tank, 4... Combustion device, 5... Dissolution tank, 5A... Grinding hydrolysis device, 7... Solid-liquid Separator, 8... Recovery liquid tank, 13.14... Line, 15... Water, 16.17
... line, 18 ... liquid separation device, 19 ... caustic soda tank, 20 ... secondary solid-liquid separator, 21.
22...Line, 23...Wood chip. Agent Patent Attorney Takeshi Kawakita Figure 1 Figure 2 Water, Figure 3 Reaction f:r Tightness (0C) Figure 4 Reaction force Nirasaki MI (min) Figure 5 Figure 6 Figure 7 tya water Solving degree ('C)

Claims (1)

【特許請求の範囲】[Claims] (1)パルプ製造工程から副生する黒液に金属酸化物粉
を加えたものを燃焼させ、該燃焼により生ずる反応生成
物から加水分解により苛性ソーダを回収するに当り、上
記反応生成物の加水分解を粉砕作用下に行うことを特徴
とする苛性ソーダの回収方法。 (2、特許請求の範囲第1項において、上記粉砕作用下
での反応生成物の加水分解を80℃以上で行うことを特
徴とする苛性ソーダの回収方法。
(1) When black liquor, a by-product from the pulp manufacturing process, is mixed with metal oxide powder, and caustic soda is recovered by hydrolysis from the reaction product produced by the combustion, the reaction product is hydrolyzed. A method for recovering caustic soda, characterized in that the method is carried out under crushing action. (2. A method for recovering caustic soda according to claim 1, characterized in that the hydrolysis of the reaction product under the pulverizing action is carried out at 80° C. or higher.
JP58100136A 1983-06-07 1983-06-07 Recovery of caustic soda Pending JPS59227719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58100136A JPS59227719A (en) 1983-06-07 1983-06-07 Recovery of caustic soda

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58100136A JPS59227719A (en) 1983-06-07 1983-06-07 Recovery of caustic soda

Publications (1)

Publication Number Publication Date
JPS59227719A true JPS59227719A (en) 1984-12-21

Family

ID=14265897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58100136A Pending JPS59227719A (en) 1983-06-07 1983-06-07 Recovery of caustic soda

Country Status (1)

Country Link
JP (1) JPS59227719A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5452697A (en) * 1977-10-05 1979-04-25 Nittetsu Kakoki Kk Method of hydrogenating ferric acid alkali

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5452697A (en) * 1977-10-05 1979-04-25 Nittetsu Kakoki Kk Method of hydrogenating ferric acid alkali

Similar Documents

Publication Publication Date Title
JP5509310B2 (en) Method for simultaneous production of potassium sulfate, ammonium sulfate, magnesium hydroxide and / or magnesium oxide from kainite mixed salt and ammonia
JP2016183101A (en) Method for obtaining particulate calcium carbonate
US4303469A (en) Process and apparatus for recovery of spent pulping liquors
JPS59227719A (en) Recovery of caustic soda
US4762590A (en) Causticizing process
US5597445A (en) Method for recovering sodium from a spent cooking liquor
US5545385A (en) Process for recovering alkali metal hydroxide from organic liquors
JPS58132192A (en) Direct caustification using fluidized layer furnace
JP4661308B2 (en) Operation method of causticizing process
US2716589A (en) Process of re-forming magnesium bisulfite solution
JP4398308B2 (en) Waste gypsum board processing method
JPS59162129A (en) Recovery of sodium hydroxide from pulp waste
JPS58126390A (en) Direct causticification with enhanced efficiency
JPS5814369B2 (en) Waste liquid treatment method
JPS58126389A (en) Recovery of chemicals from black liquor
FI73754C (en) Process for the preparation of boiling chemicals for cellulose production.
JPS6317767B2 (en)
JPH0252034B2 (en)
CA1273758A (en) Causticizing process
JPS58132191A (en) Direct caustification method and apparatus in pulping process
JPH0368152B2 (en)
JPS58126391A (en) Direct caustification with enhanced fe203 separating efficiency
JPS59164619A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
JPS60181392A (en) Direct causticizing method using fluidized bed
JPS5988989A (en) Recovery of chemicals from black liquor