JPS58126389A - Recovery of chemicals from black liquor - Google Patents

Recovery of chemicals from black liquor

Info

Publication number
JPS58126389A
JPS58126389A JP402982A JP402982A JPS58126389A JP S58126389 A JPS58126389 A JP S58126389A JP 402982 A JP402982 A JP 402982A JP 402982 A JP402982 A JP 402982A JP S58126389 A JPS58126389 A JP S58126389A
Authority
JP
Japan
Prior art keywords
black liquor
chemicals
nafeo2
temperature
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP402982A
Other languages
Japanese (ja)
Inventor
岸上 邦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP402982A priority Critical patent/JPS58126389A/en
Publication of JPS58126389A publication Critical patent/JPS58126389A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明はパルプ製造工程において生ずる黒液と称する
廃液を燃焼させることにより保有エネルギーを回収する
と共に蒸解過程で使用した薬品を回収し再使用する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of recovering retained energy by burning a waste liquid called black liquor produced in a pulp manufacturing process, and also recovering and reusing chemicals used in a cooking process.

製紙工場においてパルプ製造工程では木材成分のセルロ
ーズ(繊維)とリグニン(樹脂)を分離してセルローズ
のみ取り出すためNaOHを中心とした薬品を用いる。
In the pulp manufacturing process at paper mills, chemicals such as NaOH are used to separate the wood components cellulose (fiber) and lignin (resin) and extract only the cellulose.

蒸解工程を経た溶解リグニンとN a、IN&を含有す
る溶液は黒液と称する廃液として排出されるが、この黒
液を燃焼させることにより熱回収を行ない、かつ同時に
NaOHを回収して再使用する方法が従来から実施され
ている。
The solution containing dissolved lignin and Na, IN& after the cooking process is discharged as a waste liquid called black liquor. Heat is recovered by burning this black liquor, and at the same time, NaOH is recovered and reused. Methods are conventionally practiced.

第1図は従来の黒液燃焼およびNaOH回収方法を示す
系統図である。図において木材チップは蒸解工程1にお
いてNaOHにより含有するリグニンが除去され、Na
#、金とリグニンの混合液は黒液として排出され、黒液
回収ボイラ等の専用の燃焼装置において燃焼2aが行な
われ、熱回収が図られると共に次式に示す如き反応が行
なわれてNaOH回収の前提となるべき反応が行なわれ
る。つまり燃焼装置の空塔部においては主として次式(
:L)(2)に示す反応が行なわれる。
FIG. 1 is a system diagram showing a conventional black liquor combustion and NaOH recovery method. In the figure, the lignin contained in wood chips is removed by NaOH in the cooking process 1, and the lignin contained in the wood chips is removed by NaOH.
#, The mixed liquid of gold and lignin is discharged as black liquor, and combustion 2a is performed in a dedicated combustion device such as a black liquor recovery boiler to recover heat, and the reaction shown in the following equation is carried out to recover NaOH. The reaction that should be the prerequisite for this is carried out. In other words, in the empty tower part of the combustion device, the following formula (
:L) The reaction shown in (2) is carried out.

Na2O+SO2+”l○2 →Na25o4・・・・
・(1)Na O+CO−一−Na2C03・旧・・(
2)2     2 また炉底部ではチャーの燃焼により次式(3)(4)に
示す反応が主として行なわれる。
Na2O+SO2+"l○2 →Na25o4...
・(1) Na O+CO-1-Na2C03・Old...(
2) 2 2 Furthermore, at the bottom of the furnace, the reactions shown in the following equations (3) and (4) mainly take place due to the combustion of char.

Na25o4−1−2c  、−+Na2s+co2 
・(3)Na2C03−一一−Na2O+CO2・・・
(4)すなわち従来方法では燃焼装置内で上述の如き複
雑な反応を行なわせねばならず、これらの反応を良好に
行なわせるため燃焼装置に供給する燃焼用空気も一次、
二次、三次に分け、さらにこれらの空気の制御を精密に
行なわねばならない。次に燃焼において生じたNa2C
O3は溶解工程3aにおいて水を加えられ、苛性化工程
4に送られる。この工程において次式(5)に示すとお
り0a(OH)2と反応してNaOHを回収し、再使用
する。
Na25o4-1-2c, -+Na2s+co2
・(3) Na2C03-11-Na2O+CO2...
(4) In other words, in the conventional method, the above-mentioned complex reactions must be carried out in the combustion device, and in order to make these reactions occur well, the combustion air supplied to the combustion device is also primary,
It is necessary to separate the air into secondary and tertiary air, and to precisely control these air types. Next, Na2C generated in combustion
O3 is added with water in the dissolution step 3a and sent to the causticization step 4. In this step, NaOH is recovered by reacting with Oa(OH)2 as shown in the following formula (5) and is reused.

N a 2003 +a a (OH)2−+2 Na
OH+0aO03・・(5)しかし上述の式(5)にお
いて使用する0a(OH)pは苛性化工程4で生じた0
aCO3を加熱し、かつその復水を加えて消石灰(Oa
 (0)()2 )を生成するという複雑な工程を経ね
ばならず、設備費の増加、エネルギー消費量の増大とい
う問題を生じている。
Na 2003 +a a (OH)2-+2 Na
OH+0aO03...(5) However, 0a(OH)p used in the above equation (5) is 0 generated in the causticizing step 4.
By heating aCO3 and adding its condensate, slaked lime (Oa
(0)()2) must be produced through a complicated process, resulting in problems of increased equipment costs and increased energy consumption.

すなわちか焼工程5においては通常ライムキルンと称す
る焼成装置が使用され、石油等のエネルギーを大量に消
費することにより次式の反応を行なう。
That is, in the calcination step 5, a calcination device usually called a lime kiln is used, and the following reaction is carried out by consuming a large amount of energy such as petroleum.

0aO03→c a o +OO2−=16)さらにこ
れにより生じた生石灰(Oak)は消和工程6において
次式の如く消石灰となり苛性化工程で使用される状態と
する。
0aO03→c a o +OO2−=16) Further, the quicklime (Oak) produced thereby becomes slaked lime as shown in the following formula in the slaking step 6 and is in a state to be used in the causticizing step.

OaO+HO(’L (OH)2−−(7)以上のとお
り従来方法はその反応過程がきわめで複雑であり、従っ
てその制御も複雑かつ困難であり、さらに複雑巨大な設
備を必要とし不経済である。また、特にか焼工程におい
ては多大なエネルギーを燃料として消費し、社会的要請
である省エネルギー化を達成することが極めて困難であ
った。
OaO+HO('L (OH)2--(7)) As mentioned above, the conventional method has an extremely complicated reaction process, and therefore its control is also complicated and difficult, and furthermore, it requires complicated and huge equipment, making it uneconomical. In addition, especially in the calcination process, a large amount of energy is consumed as fuel, making it extremely difficult to achieve energy conservation, which is a social requirement.

この発明の目的は上述した問題点を除去し、蒸解に使用
した薬品の回収が容易に行なえ、設備費を低減できかつ
省エネルギー化を達成できる方法を提供することにある
An object of the present invention is to provide a method that eliminates the above-mentioned problems, allows easy recovery of chemicals used in cooking, reduces equipment costs, and achieves energy savings.

要するにこの発明はFe2O3等の酸化鉄粉を使用する
ことにより黒液燃焼過程から直接N aOH等の薬品を
回収する直接苛性化方法を提供するものであり、さらに
具体的にはこの直接苛性化をより効率良く行なうために
反応湿度を制御する方法を提案するものである。
In short, this invention provides a direct causticizing method for directly recovering chemicals such as NaOH from the black liquor combustion process by using iron oxide powder such as Fe2O3, and more specifically, This paper proposes a method of controlling reaction humidity in order to perform the reaction more efficiently.

以下この発明の実施例を図面を参考に説明する。Embodiments of the present invention will be described below with reference to the drawings.

(5)        −ζ1 先ず第2図によりこの発明に係る方法の概略を説明する
。図において木材チップは蒸解工程1においてNaOH
によりリグニンが分離され、リグニンおよびNatl−
17を含有する黒液は燃焼過程2において酸化鉄粉とし
てFe2O3を添加することにより次式の反応を行なう
(5) -ζ1 First, the outline of the method according to the present invention will be explained with reference to FIG. In the figure, wood chips are treated with NaOH in the cooking process 1.
The lignin is separated and the lignin and Natl-
In the combustion process 2, the black liquor containing 17 undergoes the following reaction by adding Fe2O3 as iron oxide powder.

2NaOH+CO2→Na2003   ・・・・・・
(8)Na2003十F、e、2qrす2NaFeO2
+OO2・・・・・・(9)このうちNaFeO2は次
段階の溶解過程7において加水分解されNaOHを回収
する。
2NaOH+CO2→Na2003 ・・・・・・
(8) Na20030F, e, 2qrs2NaFeO2
+OO2... (9) Of these, NaFeO2 is hydrolyzed in the next dissolution step 7 to recover NaOH.

2NaFe02 +H2O−+−2NaOH−) F’
e203− (l O)つまり直接苛性化法では(8)
(9) (10)  の反応を行なうことによりNaO
Hの回収を行なうことができると共に、この回収に使用
したFe2O3を循環再使用することができる。
2NaFe02 +H2O−+−2NaOH−) F'
e203- (l O) In other words, in the direct causticization method (8)
(9) By performing the reaction (10), NaO
Not only can H be recovered, but also the Fe2O3 used for this recovery can be recycled and reused.

以上の方法の実施に際し注目すべきことは、NaFeO
2はその結晶構造からα、β、γの三種類が確認されて
いるにとから反応式(1o)に示す加水分解を効果的に
行なうためにはβ−NaFe02の生成が好ましい。こ
のβ−NaFe02を反発生q、It        
   L  6 1成させるには雰囲気温度を800〜
1000℃とする必要がある。この発明はこの反応を行
なわせる湿度を上述の範囲に保持するため反応器(燃焼
装置も兼ねる)を流動層炉とし、その特長を利用し層内
温度の制御を精密に行なえるようにしたものである。
What should be noted when implementing the above method is that NaFeO
Since three types of 2, α, β, and γ have been confirmed based on its crystal structure, in order to effectively carry out the hydrolysis shown in reaction formula (1o), it is preferable to produce β-NaFe02. This β-NaFe02 is degenerated q, It
To form L 6 1, the ambient temperature should be 800~
It is necessary to set the temperature to 1000°C. This invention uses a fluidized bed furnace as the reactor (which also serves as a combustion device) in order to maintain the humidity at which this reaction takes place within the above-mentioned range, and makes use of its features to precisely control the temperature inside the bed. It is.

以下第3図および第4図を用いて具体的な説明する。A detailed explanation will be given below using FIGS. 3 and 4.

先ず前述の式(9)に示す反応において、黒液燃焼によ
り生じたNaFe0β中心とする灰の軟化点および溶融
点を示せば次の表のとおりである。
First, in the reaction shown in the above-mentioned formula (9), the softening point and melting point of the ash mainly composed of NaFe0β produced by black liquor combustion are shown in the following table.

なおここで原液とはFe2O3を含まない黒液のことを
意味する。
Note that the stock solution here means a black liquor that does not contain Fe2O3.

表1 以上の場合においてFe2O3とNa  のモル比、よ
り具体的にはFe2O3とNa2co3のモル比(もし
くはF e/N a )は1以上で反応させることが必
要であり黒液燃焼過程において式(9)に基づいて生じ
るNaFeO2の軟化点は前記衣のモル比1の場合には
1100℃であり、これ以下であればモル比を一ヒ昇さ
せてもNaFeO2は軟化せず粉末状を程しており、さ
らに8000C〜1oOo℃の範囲に制御すれば発生し
たNaFeO2の結晶構造は殆んどβ型となることが実
験により確められた。
Table 1 In the above cases, the molar ratio of Fe2O3 and Na, more specifically the molar ratio of Fe2O3 and Na2co3 (or Fe/N a ), needs to be 1 or more for the reaction, and in the black liquor combustion process, the formula ( The softening point of NaFeO2 produced based on 9) is 1100°C when the molar ratio of the batter is 1, and if it is below this point, even if the molar ratio is increased by a moment, NaFeO2 will not soften and become powdery. It has been confirmed through experiments that if the temperature is further controlled within the range of 8000C to 1oOoC, the crystal structure of the generated NaFeO2 becomes almost β type.

第3図は黒液の燃焼と、Fe2O3を加えることにより
黒液中のNa分を回収する反応器としても作用する流動
層燃焼装置を示す。符号1oは流動層燃焼装置を示し、
装置内には酸化アルミニウム粒子等から成る流動層10
aが形成しである。この流動層に対しては層内伝熱管1
0bが配置してあり、伝熱管内の冷却媒体(例えば水)
の通過量を制御することにより層内温度を所定の温度に
制御するようにしている。Fe2O3をあらがじめ混合
された黒液は管路11を経て流動層10aに供給され、
燃焼されると共に式(8)、 (9)の反応を行なう。
FIG. 3 shows a fluidized bed combustion apparatus which also functions as a reactor for burning black liquor and recovering Na content in the black liquor by adding Fe2O3. Code 1o indicates a fluidized bed combustion device,
Inside the device, there is a fluidized bed 10 made of aluminum oxide particles, etc.
a is formed. For this fluidized bed, an intrabed heat exchanger tube 1
0b is placed, and the cooling medium (e.g. water) inside the heat transfer tube
By controlling the amount of water passing through the layer, the temperature inside the layer is controlled to a predetermined temperature. The black liquor pre-mixed with Fe2O3 is supplied to the fluidized bed 10a through the pipe 11,
As it is burned, the reactions of equations (8) and (9) occur.

2NaOH−)−002→Na2Co 3・・・−(8
)Na2003+Fa203+2NaFeO2+ Co
2=・・・−(9)上記反応を行なう場合、層内温度を
1100℃以下に保持すればNaFeO2は粉末状態を
保持し、さらに800℃〜1000℃とすればNaFe
O2は殆んどがβ型となり後段の加水分解を効果的に行
なうことができる。このため弁10cを調節して冷却媒
体(水又は蒸気等)の通過量を制御し、かつ場合によっ
ては弁11aを調節して黒液供給量も調節することによ
り流動層10a内の温度を所定の温度に保持し、目的の
反応を効果的に行なわせる。この場合記憶と指令信号を
発する制御箱40により前記制御を自動的に行なうよう
にしてもよい。なお、符号10dは層内温度を検知する
温度検知器であり、この検知結果を制御箱40に入力す
る。また流動層燃焼装置から排出される窒素酸化物(N
Ox)の量を減少させるため流動化空気Aに加えて、も
しくはこれに代えて排ガスGを流動化気体として供給し
、層内温度の制御と流動化を好適に行なわせる。
2NaOH-)-002→Na2Co 3...-(8
)Na2003+Fa203+2NaFeO2+ Co
2=...-(9) When carrying out the above reaction, if the temperature inside the layer is kept below 1100°C, NaFeO2 will remain in a powder state, and if the temperature is kept between 800°C and 1000°C, NaFeO2 will remain in powder form.
Most of the O2 becomes the β type, and the subsequent hydrolysis can be effectively carried out. For this purpose, the temperature in the fluidized bed 10a is maintained at a predetermined level by adjusting the valve 10c to control the amount of cooling medium (water, steam, etc.) passing through, and in some cases adjusting the valve 11a to adjust the amount of black liquor supplied. temperature to allow the desired reaction to occur effectively. In this case, the above-mentioned control may be performed automatically by the control box 40 which stores and issues command signals. Note that reference numeral 10d is a temperature detector that detects the temperature inside the layer, and the detection result is input into the control box 40. In addition, nitrogen oxides (N
In order to reduce the amount of oxygen (Ox), exhaust gas G is supplied as a fluidizing gas in addition to or in place of the fluidizing air A, so that the temperature inside the bed can be controlled and fluidized appropriately.

次に第4図において、燃焼装置10で発生したNaFe
O2は管路15を経て溶解槽16に至り溶解水Wにより
前述の式(10)の如く加水分解を行ない、NaOHと
F E1203を生ずる。この混合液は管路17により
沈降槽19に供給され、沈降分離したFe2O3は管路
39を経て脱水機20に供給される。脱水されたF e
 203ハFθ203ホツハ22に供給され、次回の使
用のために貯蔵される。一方沈降槽18がら溢流したN
aOHは溢流槽23に流入し、さらに管路24を経て濾
過器25に至り、NaOHに含有する製紙には好ましく
ない微粒のFe2O3を除去し管路26を経てNaOH
貯槽27に貯留され、管路28を経て逐次蒸解工程に供
給される。なお、脱水機2oにおいて除去されたNap
)(もて混合槽30に供給され、黒液31と混合された
後、前述のとおり管路11を経て燃焼装置1oに供給さ
れる。好ましくは炉負荷に対応する燃焼黒液量と濃度に
応じ前記モル比の保持を可能にするようにポツバ22の
底部のスクリューフィーダ22aによりF e 203
の供給量を制御する。
Next, in FIG. 4, NaFe generated in the combustion device 10 is
The O2 reaches the dissolution tank 16 via the pipe 15, and is hydrolyzed by the dissolved water W as shown in the above equation (10) to produce NaOH and FE1203. This mixed liquid is supplied to a sedimentation tank 19 through a pipe line 17, and Fe2O3 that has been sedimented and separated is supplied to a dehydrator 20 via a pipe line 39. Dehydrated Fe
203 Fθ 203 is supplied to the wire 22 and stored for next use. On the other hand, N overflowed from sedimentation tank 18.
The aOH flows into the overflow tank 23, passes through the pipe 24, reaches the filter 25, removes fine particles of Fe2O3, which are undesirable for paper making, contained in NaOH, and passes through the pipe 26 to the filter 25.
It is stored in a storage tank 27 and sequentially supplied to the cooking process via a pipe 28. In addition, the Nap removed in the dehydrator 2o
) (After being supplied to the mixing tank 30 and mixed with the black liquor 31, it is supplied to the combustion device 1o via the pipe 11 as described above. Preferably, the amount and concentration of the combustion black liquor corresponds to the furnace load. Fe 203 is fed by the screw feeder 22a at the bottom of the pot 22 so as to maintain the molar ratio as described above.
control the amount of supply.

この発明を実施することにより、黒液燃焼装置兼反応器
を流動層炉としたので温度制御を容易かつ精密に行なえ
、発生したN a F e 02を粉末状態に保持でき
ると共にその殆んどをβ型結晶構造とすることができN
aOH及びF e 203!17)回収効率を高めるこ
とができる。
By carrying out this invention, since the black liquor combustion device/reactor is a fluidized bed furnace, the temperature can be controlled easily and precisely, and the generated N a F e 02 can be kept in a powder state, and most of it can be It can have a β-type crystal structure.N
aOH and F e 203!17) Recovery efficiency can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のNaOH回収方法を示す系統図、第2図
はこの発明に係る回収方法を示す系統図、第3図はこの
発明に使用する流動層燃焼装置の断面図、第4図はこの
発明に係る方法の全体の系統を示す系統図である。 10  ・・・・・・流動層燃焼装置 i0a・・・・・・流動層 10b・・・・・・層内伝熱管 40  ・・・・・・制御箱 (11) 第1図 手続補正書 (自発) 昭和57年2月zz日 特許庁長官 島田春樹 殿 1 事件の表示 昭和57年 特 許 願第 4029  号2、発明の
名称   黒液中の薬品を回収する方法3 補正をする
者 事件との関係  特許出願人 住 所     東京都千代田区大手町2丁目6番2号
氏 名(名称)    (544)バブコック日立株式
会社4、代理人 氏 名   NK渋谷コータース 電話 (469)4
7708 補正の内容 補正の内容 明細書の「発明の詳細な説明」の欄を下記の通りに訂正
する。 (記) 1、明細書第8頁上から第1行目〜第3行目「以上の場
合において・・・・・・ことが必要で・・・・・・」と
あるものを、「以上の場合において、FeとNaとのモ
ル比、より具体的にはF e 203々N a 200
3とのモル比を1以」−で反応させることが必要で・・
・・・・」と訂正する。
Fig. 1 is a system diagram showing the conventional NaOH recovery method, Fig. 2 is a system diagram showing the recovery method according to the present invention, Fig. 3 is a cross-sectional view of the fluidized bed combustion apparatus used in the present invention, and Fig. 4 is FIG. 1 is a system diagram showing the entire system of the method according to the present invention. 10...Fluidized bed combustion device i0a...Fluidized bed 10b...In-bed heat exchanger tube 40...Control box (11) Figure 1 Procedure amendment ( (Voluntary) February zz, 1980 Haruki Shimada, Commissioner of the Patent Office 1 Indication of the case 1982 Patent Application No. 4029 2 Title of the invention Method for recovering chemicals in black liquor 3 Amendment with the case Related Patent Applicant Address 2-6-2 Otemachi, Chiyoda-ku, Tokyo Name (544) Babcock Hitachi Co., Ltd. 4 Agent Name NK Shibuya Courters Telephone (469) 4
7708 The "Detailed Description of the Invention" column of the description of the contents of the amendment is corrected as follows. (Note) 1. In the 1st to 3rd lines from the top of page 8 of the specification, the phrase ``In the above cases, it is necessary to...'' is replaced with ``The above... In the case of , the molar ratio of Fe and Na, more specifically, Fe 203 × Na 200
It is necessary to react at a molar ratio of 3 to 1 or more.
"..." I corrected myself.

Claims (1)

【特許請求の範囲】 1゜ 酸化鉄粉を黒液に供給しNaOHを回収する方法
において、黒液中の可燃物を燃焼させかつNaFeO2
を反応生成させる燃焼装置を流動層燃焼装置とし、流動
層内に配置した層内伝熱管内を通過する冷却媒体の流量
調節及びまたは黒液供給量の調節をすることにより層内
温度を前記NaFeO2が粉末状態を保持する温度に制
御することを特徴とする黒液中の薬品を回収する方法。 2、 前記層内温度を1100°C以下に保持すること
を特徴とする特許請求の範囲第1項記載の黒液中の薬品
を回収する方法。 3、 前記層内温度を約800℃から約1000℃の間
とすることにより発生するNaFeO2の結晶構造をβ
型としたことを特徴とする特許請求の範囲第1項または
第2項記載の黒液中の薬品を回収する方法。 4、前記制御を記憶と指令信号を発する制御箱により自
動的に行なうことを特徴とする特許請求の範囲第1項な
いし第3項のいづれかに記載の黒液中の薬品を回収する
方法。
[Claims] 1゜ In a method of supplying iron oxide powder to black liquor and recovering NaOH, combustible substances in the black liquor are burned and NaFeO2
The combustion apparatus that reacts and generates NaFeO2 is a fluidized bed combustion apparatus. A method for recovering chemicals in black liquor, characterized by controlling the temperature to maintain a powder state. 2. The method for recovering chemicals in black liquor according to claim 1, characterized in that the temperature inside the layer is maintained at 1100°C or less. 3. The crystal structure of NaFeO2 generated by setting the temperature in the layer between about 800°C and about 1000°C is β.
A method for recovering chemicals in black liquor according to claim 1 or 2, characterized in that the method is made into a mold. 4. A method for recovering chemicals in black liquor according to any one of claims 1 to 3, characterized in that the control is automatically carried out by a control box that stores and issues command signals.
JP402982A 1982-01-16 1982-01-16 Recovery of chemicals from black liquor Pending JPS58126389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP402982A JPS58126389A (en) 1982-01-16 1982-01-16 Recovery of chemicals from black liquor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP402982A JPS58126389A (en) 1982-01-16 1982-01-16 Recovery of chemicals from black liquor

Publications (1)

Publication Number Publication Date
JPS58126389A true JPS58126389A (en) 1983-07-27

Family

ID=11573531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP402982A Pending JPS58126389A (en) 1982-01-16 1982-01-16 Recovery of chemicals from black liquor

Country Status (1)

Country Link
JP (1) JPS58126389A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132193A (en) * 1982-02-02 1983-08-06 バブコツク日立株式会社 Recovery of caustic soda using fluidized layer
CN105789579A (en) * 2016-03-17 2016-07-20 齐鲁工业大学 Bionic synthesizing method of lithium ion cell anode material FeO4/Fe2O3/Fe/C

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145396A (en) * 1978-04-20 1979-11-13 Australian Paper Manufacturers Recovery of oxide or hydroxide of alkali or alkali earth metal
JPS55112392A (en) * 1979-02-20 1980-08-29 Nittetsu Kakoki Kk Treating of waste liquor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145396A (en) * 1978-04-20 1979-11-13 Australian Paper Manufacturers Recovery of oxide or hydroxide of alkali or alkali earth metal
JPS55112392A (en) * 1979-02-20 1980-08-29 Nittetsu Kakoki Kk Treating of waste liquor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132193A (en) * 1982-02-02 1983-08-06 バブコツク日立株式会社 Recovery of caustic soda using fluidized layer
CN105789579A (en) * 2016-03-17 2016-07-20 齐鲁工业大学 Bionic synthesizing method of lithium ion cell anode material FeO4/Fe2O3/Fe/C
CN105789579B (en) * 2016-03-17 2018-06-05 齐鲁工业大学 A kind of lithium ion battery negative material Fe3O4/Fe2O3The biomimetic synthesis method of/Fe/C

Similar Documents

Publication Publication Date Title
US5284550A (en) Black liquier gasification process operating at low pressures using a circulating fluidized bed
US4244779A (en) Method of treating spent pulping liquor in a fluidized bed reactor
GB1561237A (en) Method of treating materials in a fluidized bed reactor
CA1169607A (en) Process and apparatus for recovery of spent pulping liquors
US4526760A (en) Recovery of heat and chemical values from spent pulping liquors
US3323858A (en) Process for recovering the alkali metal content of spent pulping liquor
US5174860A (en) Low temperature recovery of kraft black liquor
JPS58126389A (en) Recovery of chemicals from black liquor
CN101845766B (en) Method and device for gasifying pulping black liquor and reclaiming directly causticized alkali
US4441959A (en) Recovery of heat and chemical values from spent pulping liquors
CN101857266B (en) Recovery method of alkali from pulping black liquor by direct causticization with rotary kiln gasifier
CN201678895U (en) Alkali recovery device for gasifying and directly causticizing pulping black liquor
US3414468A (en) Process of regenerating pulping liquor from cellulose digestion waste liquor
JPS58132192A (en) Direct caustification using fluidized layer furnace
JPS58126390A (en) Direct causticification with enhanced efficiency
JPS58132193A (en) Recovery of caustic soda using fluidized layer
JPS60171254A (en) Burning method for lime sludge recalcining kiln by solid fuel
JPS58132191A (en) Direct caustification method and apparatus in pulping process
JPH0368152B2 (en)
JPS5988989A (en) Recovery of chemicals from black liquor
US5518582A (en) Method of affecting the sulphur content and/or sulphur compound composition of a melt in a recovery boiler
JPH07237921A (en) Production of gypsum hemihydrate from hydrogen sulfide
JPS58126391A (en) Direct caustification with enhanced fe203 separating efficiency
JPS60151395A (en) Direct causticization apparatus
JPS59227719A (en) Recovery of caustic soda