JPS59225762A - Method and device for induction-charging conductive paint atomized by centrifugal force - Google Patents

Method and device for induction-charging conductive paint atomized by centrifugal force

Info

Publication number
JPS59225762A
JPS59225762A JP59054584A JP5458484A JPS59225762A JP S59225762 A JPS59225762 A JP S59225762A JP 59054584 A JP59054584 A JP 59054584A JP 5458484 A JP5458484 A JP 5458484A JP S59225762 A JPS59225762 A JP S59225762A
Authority
JP
Japan
Prior art keywords
charge
paint
charged
atomized
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59054584A
Other languages
Japanese (ja)
Inventor
リチヤ−ド・ジ−・クライン
イオン・アイ・インキユレツト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nordson Corp
Original Assignee
Nordson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nordson Corp filed Critical Nordson Corp
Publication of JPS59225762A publication Critical patent/JPS59225762A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/04Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
    • B05B5/0403Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces characterised by the rotating member
    • B05B5/0407Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces characterised by the rotating member with a spraying edge, e.g. like a cup or a bell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/043Discharge apparatus, e.g. electrostatic spray guns using induction-charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/04Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
    • B05B5/0426Means for supplying shaping gas

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は静電塗装に係り、特に、導電性塗料のスプレ用
回転式噴霧器を使用する静電塗装装置および方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to electrostatic coating, and more particularly to an electrostatic coating apparatus and method using a rotary atomizer for spraying conductive paint.

導電性回転カップはしばしば「ベル」と称され、多年に
わたって使用されてきている。
Conductive rotating cups are often referred to as "bells" and have been used for many years.

この導電性回転カップは、静電電圧源に接続されると共
に霧化されていない塗料が供給され、とのスプレ用塗料
を上記静電電圧源の電位および極性に静電的に帯電させ
ると同時にその塗料を霧化する。この霧化は遠心作用に
よって行われるもので、円錐形の回転ベルの内面のフィ
ルム状塗料が遠心力によってベルの外縁から放射状外方
へ放出され、霧化微粒子を作成する。遠心霧化が起こる
ベル外縁において、コロナ放電が発生するように、充分
高い静電電圧に回転導電性ベルを保持する。
The conductive rotary cup is connected to an electrostatic voltage source and is supplied with un-atomized paint, and simultaneously electrostatically charges the spray paint to the potential and polarity of the electrostatic voltage source. Atomize the paint. This atomization is performed by centrifugal action, and the film-like paint on the inner surface of the conical rotating bell is ejected radially outward from the outer edge of the bell by centrifugal force, creating atomized fine particles. The rotating conductive bell is held at a sufficiently high electrostatic voltage so that a corona discharge occurs at the outer edge of the bell where centrifugal atomization occurs.

このコロナ放電によって、上記霧化微粒子が静電帯電さ
れる。すなわちこのコロナ放電により生成したイオンが
霧化された塗料微粒子と衝突して上記塗料微粒子を、導
電性霧化ベルに接続の静電高電圧源と同一極性に帯電さ
せる。
The atomized fine particles are electrostatically charged by this corona discharge. That is, the ions generated by this corona discharge collide with the atomized paint particles to charge the paint particles to the same polarity as the electrostatic high voltage source connected to the conductive atomization bell.

この公知の回転式導電性霧化ベルには次に述べる極めて
重大な欠点がある。すなわちベルは、電気エネルギ貯蔵
力が大きいコンデンサとして働いており、その導電性特
性のため極めて短い緩和、すなわちリラクセイション(
relaxation )  時定数を呈する〔導電性
ベル噴霧器のように、容量の形で電気エネルギを貯える
物体のリラクセイション時定数(秒)は、a)その材料
の誘電率(farads /meter )とb)その
材料の抵抗率(ohms −meter )  との積
に比例する。〕。コンデンサのリラクセイション時定数
の大きさは、コンデンサが蓄積エネルギを放電する速度
(rate)に比例するので、短いリラクセイション時
定数を有する導電性霧化ベルのような容量性物体は容量
的に蓄積されたエネルギを高速度で放電する。
This known rotating electrically conductive atomizing bell has the following very serious drawbacks. In other words, the bell acts as a capacitor with a large electrical energy storage capacity, and due to its conductive properties, it undergoes extremely short relaxation (relaxation).
The relaxation time constant (in seconds) of an object that stores electrical energy in the form of a capacitance, such as a conductive bell atomizer, is determined by a) the dielectric constant of its material (farads/meter ) and b) It is proportional to the product of the material's resistivity (ohms-meter). ]. Since the magnitude of a capacitor's relaxation time constant is proportional to the rate at which the capacitor discharges its stored energy, a capacitive object such as a conductive atomizing bell with a short relaxation time constant has a capacitive The energy stored in the device is discharged at high speed.

この結果、もし公知の導電性霧化ベルが、接地された物
体に接触または接近しかつ上記容量的蓄積エネルギが高
送度で放電されるならば、充分なエネルギのスパークが
発生し、溶剤をベースとする塗料を使用しているとき、
塗料雰囲気を点火することがある。その上、操作者が帯
電された導電性ベルに接触した場合には、急速な放電速
度(discharge rate)のためかなシの電
気的ショック、すなわち電撃が生ずる。
As a result, if a known conductive atomizing bell contacts or approaches a grounded object and the capacitively stored energy is discharged at a high rate, a spark of sufficient energy will be generated to displace the solvent. When using a base paint,
May ignite paint atmosphere. Additionally, if an operator were to come into contact with a charged conductive bell, the rapid discharge rate would result in a severe electrical shock.

そこで、本発明の目的は、電撃や着火を引き起こす程、
極めて大きい速度で容量の形で蓄積されたエネルギを放
電しても、危険を生じないような回転式噴霧器を用いた
静電スプレ式塗装装置を提供することである。この目的
は本発明の原理に従い、導電性塗料の供給源と関連して
不導電性回転式霧化ベルを設け、帯電電極を霧化の発生
するベル外縁の近傍に配置し、その帯電電極によυ、こ
れの接続しく11ノ た静電電圧源の極性と逆極性の電荷を霧化された導電性
塗料微粒子に誘導することによシ達成される。
Therefore, the purpose of the present invention is to prevent electric shock or ignition from occurring.
It is an object of the present invention to provide an electrostatic spray coating device using a rotary atomizer, which does not pose a danger even if the energy stored in the form of a capacitance is discharged at an extremely high rate. To this end, in accordance with the principles of the present invention, a non-conductive rotating atomizing bell is provided in conjunction with a source of conductive paint, and a charging electrode is placed near the outer edge of the bell where atomization occurs; This connection is accomplished by inducing a charge of opposite polarity to the electrostatic voltage source into the atomized conductive paint particles.

本発明の塗装装置および方法の非常に重大な利点は、回
転式霧化ベルが不導電性材料によシ構成されているので
、このベルが容量的に蓄積された電気エネルギの放電に
対して大きなリラクセイション時定数を呈することであ
る。この結果、操作者が不注意によシ本発明の回転式不
導電性ベルに接触し、またはそれを接地したとしても、
容量的に蓄積された電気エネルギが電撃や着火を引き起
こすような速度で放電することはない。
A very significant advantage of the coating apparatus and method of the invention is that the rotary atomizing bell is constructed of non-conductive material, so that this bell is resistant to the discharge of capacitively stored electrical energy. It exhibits a large relaxation time constant. As a result, even if an operator inadvertently touches or grounds the rotating non-conductive bell of the present invention,
Capacitively stored electrical energy cannot be discharged at such a rate as to cause electric shock or ignition.

本発明の別の非常に重要な利点は、公知の導電性ベル使
用の静電回転式噴霧器でこれまで使用されていたコロナ
放電の代シに、誘導的微粒子帯電を利用する点に起因す
るものであって、誘導帯電に要する典型的電圧レベルを
コロナ放電の発生電圧レベルよりかなり小さくできるこ
とである。この結果、電圧の2(12) 乗に比例する容量的に蓄積されたエネルギ量が著しく減
少される。これに加えて、誘導的微粒子帯電にあっては
電圧レベルが低いので、静電電圧源や接続ケーブルの製
造費用がかなシ軽減される。
Another very important advantage of the present invention arises from the use of inductive particulate charging in place of the corona discharge previously used in known conductive bell electrostatic rotary atomizers. The typical voltage level required for inductive charging can be significantly lower than the voltage level at which corona discharge occurs. As a result, the amount of capacitively stored energy, which is proportional to the voltage to the 2(12) power, is significantly reduced. In addition, the low voltage levels associated with inductive particulate charging significantly reduce the manufacturing costs of electrostatic voltage sources and connecting cables.

本発明の一実施例では、反発電極は微粒子の帯電や霧化
が起こる霧化ベルのエツジの後方に設けられると共に、
帯電微粒子と同一極性に保持されている。この反発電極
は帯電塗料粒子を反発して、塗料の後方への移動および
噴霧器ハウジングへの付着を抑制する。
In one embodiment of the invention, the repulsion electrode is provided behind the edge of the atomization bell where charging and atomization of the particles occur, and
It is maintained at the same polarity as the charged fine particles. The repelling electrode repels the charged paint particles and prevents them from moving backwards and sticking to the atomizer housing.

本発明の別の実施例によると、導電性塗料を使用してい
るので、その塗料は不導電性霧化ベルに導入される前に
予め帯電される。霧化導電性塗料微粒子の電荷は誘導帯
電用電極により著しく増加され、この誘導帯電用電極は
塗料を予帯電する静電電圧源と同一極性であるが、それ
よシも小さい電位に保持される。
According to another embodiment of the invention, since a conductive paint is used, the paint is pre-charged before being introduced into the non-conductive atomizing bell. The charge on the atomized conductive paint particles is significantly increased by an inductive charging electrode that is held at a potential that is the same polarity as, but less than, the electrostatic voltage source precharging the paint. .

誘導帯電部材の極性は、回転式噴霧器へ導入前の予帯電
導電性塗料と同一であるので、誘導電極によって誘導さ
れた微粒子の電荷は、塗料を最初に帯電した静電電圧源
の電位と電荷誘導電極の接続された静電電位源の電位と
の差に関連したレベルにまで塗料の初期電荷を増加する
。換言すると電荷誘導電極の接続された静電電圧源は大
きさが導電性塗料を最初に帯電した静電電圧源よシも小
さいが、極性はそれと同一であるので、電荷が著しく増
大しても予帯電された塗料微粒子の極性は誘導帯電後変
わることがない。本発明のこの実施例の重要な利点は、
上述した不導電性ベルを用いることによって容量的に蓄
積されたエネルギの放電速度を大きく減少できる外に、
霧化された導電性塗料微粒子の電荷極性が電荷誘導電極
や反発電極と同一極性となり、これにより反発電極や電
荷誘導電極への帯電塗料微粒子の付着を最小にできる点
である。
Since the polarity of the induction charging member is the same as that of the pre-charged conductive paint before it is introduced into the rotary atomizer, the charge on the particulates induced by the induction electrode is equal to the potential of the electrostatic voltage source that originally charged the paint. The initial charge of the paint is increased to a level related to the difference between the potential of the electrostatic potential source to which the inductive electrode is connected. In other words, the electrostatic voltage source connected to the charge-inducing electrode is smaller in size than the electrostatic voltage source that originally charged the conductive paint, but has the same polarity, so even if the charge increases significantly, The polarity of pre-charged paint particles does not change after induction charging. Important advantages of this embodiment of the invention are:
In addition to greatly reducing the rate of discharge of capacitively stored energy by using a non-conductive bell as described above,
The charge polarity of the atomized conductive paint particles becomes the same as that of the charge induction electrode and the repulsion electrode, thereby minimizing the adhesion of the charged paint particles to the repulsion electrode and the charge induction electrode.

本発明の別の特徴によると、電荷誘導電極はベルの口の
内部に配置され、かつドーム形をしているので回転ベル
が作り出す渦流バタt1 院) 一ンによって発生しがちであった電荷誘導電極への帯電
導電性塗料微粒子の付着を低減できる。換言すると、ド
ーム形の電荷誘導電極は渦流の発生を著しく抑えるので
、電荷誘導電極への帯電塗料の付着を最小にできる。
According to another feature of the present invention, the charge induction electrode is placed inside the mouth of the bell and has a dome shape, so that the charge induction that tends to occur due to the whirlpool created by the rotating bell. It is possible to reduce the adhesion of charged conductive paint particles to the electrode. In other words, the dome-shaped charge-inducing electrode significantly suppresses the generation of vortices, thereby minimizing the adhesion of charged paint to the charge-inducing electrode.

本発明の他の特徴によると、電荷誘導電極は霧化ベルと
共に回転するように取付けられているので、電荷誘導電
極が高速で回転すると、その電極上に付着した導電性塗
料は遠心力作用で放出され、その電極上への塗料蓄積が
回避される。
According to another feature of the invention, the charge-inducing electrode is mounted to rotate with the atomizing bell, so that when the charge-inducing electrode rotates at high speed, the conductive paint deposited on it is subject to centrifugal force. discharged and paint buildup on the electrodes is avoided.

本発明の上述したまたはその他の特徴や利点、目的は、
図面を参照して説明される実施例から更に明らかになる
The above-mentioned and other features, advantages and objects of the invention include:
It will become clearer from the embodiments described with reference to the drawings.

本発明のスプレ式塗装システムは、第1図と第2図に示
した好適の一実施例において、回転式噴霧器10を具備
し、この噴霧器は主要素として回転カップすなわちベル
12を有する。この回転カップ12は当業者にとって周
知の方法によって、遠心力の作用で霧化さ/4AS れた塗料微粒子14を放出ゾーン16から流出させる。
The spray coating system of the present invention, in one preferred embodiment shown in FIGS. 1 and 2, includes a rotary atomizer 10 having a rotating cup or bell 12 as its main element. This rotating cup 12 causes the atomized paint particles 14 to flow out of the discharge zone 16 under the action of centrifugal force in a manner well known to those skilled in the art.

この放出ゾーンは回転霧化カップ12の外縁18に隣接
している。また牙1図と第2図の静電スプレ式塗装装置
は、好適な形では内部の微粒子帯電用電極20と外部の
微粒子帯電用電極22とを有する導電性、電荷誘導電極
を具備する。この内部および外部微粒子帯電用電極20
.22は、放出ゾーン16の微粒子流14中の微粒子に
電荷を誘導する。なお、これらの電荷の極性は、電荷誘
導用電極20と22の極性と反対である。微粒子流14
の帯電微粒子は当業者にとって周知のように、被塗装物
体24の方へ静電的に吸引される。この物体24はワイ
ヤ25と接地された静電電圧源27とを介して帯電微粒
子を静電的に吸引して物体24に付着させ得る電位に保
持されている。この電位は当然帯電微粒子の電位と大き
く相違している。
This discharge zone is adjacent the outer edge 18 of the rotating atomizing cup 12. The electrostatic spray coating apparatus of FIGS. 1 and 2 also preferably includes conductive, charge-inducing electrodes having an internal particulate charging electrode 20 and an external particulate charging electrode 22. This internal and external particulate charging electrode 20
.. 22 induces a charge on the particles in the particle stream 14 in the emission zone 16. Note that the polarity of these charges is opposite to the polarity of the charge inducing electrodes 20 and 22. Particulate flow 14
The charged particles are electrostatically attracted toward the object 24 to be coated, as is well known to those skilled in the art. The object 24 is held at a potential that allows charged particles to be electrostatically attracted and attached to the object 24 via a wire 25 and a grounded electrostatic voltage source 27. Naturally, this potential is greatly different from the potential of charged fine particles.

回転噴霧器10を牙1図によシ更に詳細に述べると、こ
の噴霧器10は非回転不導電性j16ノ ハウジング26を具備し、このハウジングはコンベア等
に載置されて移動される物体24にスプレするために静
止状態に取付けてもよいし、またはその代りに固定され
たまたは移動する物体24を手動でスプレするために移
動可能、すなわちポータプル型としてもよい。
To describe the rotary sprayer 10 in more detail with reference to FIG. 1, the sprayer 10 includes a non-rotating, electrically non-conductive housing 26 which is configured to spray an object 24 placed on a conveyor or the like and being moved. It may be stationary mounted for spraying, or alternatively it may be movable, ie, portable, for manually spraying a fixed or moving object 24.

そのハウジング26には軸方向の孔28が設けられ、こ
の孔28内に配置された軸29は一対の軸受30 、6
1により水平軸29aの回りに回転可能に支持されてい
る。その軸29は前記ハウジング26と同様に、不導電
性材料で構成されることが好ましい。極室の構成のター
ビン32は、ハウジング26の端面26aに取付けられ
ると共に、軸29の後端(第1図では左端)に連結され
て回転カップ12が塗料を遠心霧化するのに充分な所定
の速度、例えば30.00 Orpmで軸29を回転す
る。
The housing 26 is provided with an axial hole 28, and a shaft 29 disposed within the hole 28 has a pair of bearings 30, 6.
1 rotatably supported around a horizontal axis 29a. Like the housing 26, the shaft 29 is preferably constructed of a non-conductive material. A turbine 32 having a polar chamber configuration is attached to the end face 26a of the housing 26 and is connected to the rear end (the left end in FIG. 1) of the shaft 29 so that the rotary cup 12 can rotate at a predetermined distance sufficient to centrifugally atomize the paint. The shaft 29 is rotated at a speed of, for example, 30.00 Orpm.

その軸29の前方端には回転式霧化部材であるベル、す
なわちカップ12が内部帯電誘導体20と同嵌に、軸2
9と共に回転可能に取付けられている。後に明らかにさ
れるように、カップ12は不導電性材料から構成され、
また内部誘導体20の外形状はドーム形となっている。
At the front end of the shaft 29, a bell or cup 12, which is a rotary atomizing member, is fitted with an internally charged inductor 20.
9 and is rotatably mounted. As will be revealed later, cup 12 is constructed of a non-conductive material;
Further, the outer shape of the internal conductor 20 is dome-shaped.

カップ12は詳述するとほぼ切頭円錐形(frusto
−conical)の筒壁部40を備え、との筒壁部4
0は一体の垂直円盤状壁42によって前部40aと後部
4[1bとに区分されている。この円盤状壁42には、
複数の開口44が穿設され、これらの開口列44は円に
沿ってすなわち環状に配置されている。液体塗料は壁4
0の後部40bと円盤状壁42とによシ形成された空間
46に射出され、更に、壁42の開口44を通って前方
に進む。なお、上記液体塗料は導電性でなければならず
、例えば溶剤をベースにした不導電性塗料に添加剤を入
れて導電性にしたものや、または添加剤なしで導電性で
ある水をベースにした塗料である。上記開口44を通っ
て前方室50に流入した塗料は前壁部40aの内面上で
フイ(19) ルムF状となり、遠心力により前方に進みながら半径方
向外側に流れ、ついには放出ゾーン16において霧化微
粒子流14となる。この導電性塗料は加圧された塗料供
給タンク54から導管58に供給される。
The cup 12 is specifically generally frustoconical in shape.
-conical) cylinder wall part 40;
0 is divided into a front part 40a and a rear part 4[1b] by an integral vertical disc-shaped wall 42. This disk-shaped wall 42 has
A plurality of openings 44 are drilled, and the rows of openings 44 are arranged along a circle or in an annular manner. liquid paint on wall 4
The liquid is injected into the space 46 formed by the rear part 40b of the 0 and the disc-shaped wall 42, and further advances forward through the opening 44 in the wall 42. The liquid paint must be conductive, for example, a solvent-based non-conductive paint made conductive by adding additives, or a water-based paint that is conductive without additives. It is a paint that has been used. The paint that has flowed into the front chamber 50 through the opening 44 forms a film (19) on the inner surface of the front wall 40a, flows forward in the radial direction due to centrifugal force, and finally reaches the discharge zone 16. This becomes an atomized particulate stream 14. The conductive paint is supplied to conduit 58 from a pressurized paint supply tank 54 .

放出ゾーン16の霧化微粒子流14は横断面がほぼ円形
、すなわち環状となっている。
The atomized particulate stream 14 in the discharge zone 16 has a generally circular or annular cross-section.

望むならば、上記霧化微粒子流14の形状はハウジング
26の前端26bに形成された適宜な形状のノズル60
から放出される空気流の形状によって決定できる。例え
ば霧化微粒子流14の形状を長円形にしたいならば、ノ
ズル60を長円形にすればよい。加圧空気源62は空気
ホース64を介して、上記ノズル60に接続されている
。空気は所定形状となってノズル60から前方向に放出
され、後方より霧化微粒子流14に衝突してその微粒子
流14を所定の形にする。
If desired, the shape of the atomized particulate stream 14 may be determined by a suitably shaped nozzle 60 formed in the front end 26b of the housing 26.
It can be determined by the shape of the airflow emitted from the For example, if the shape of the atomized particulate stream 14 is desired to be oval, the nozzle 60 may be oval. A source of pressurized air 62 is connected to the nozzle 60 via an air hose 64. The air is ejected forward from the nozzle 60 in a predetermined shape, and collides with the atomized particle stream 14 from the rear to shape the particle stream 14 into a predetermined shape.

カップ12の前壁部40aの外面には、外部帯電用誘導
体22が取付けられ、この誘導(20) 体22は導電材料で構成されている。外部帯電用誘導体
22は種々の形状をとシ得るが、好ましくはほぼ切頭円
錐形がよく、その先端22aは霧化微粒子を形成する霧
化カップ12の外縁18のわずかに後方、かつ外側に位
置している。
An external charging dielectric 22 is attached to the outer surface of the front wall 40a of the cup 12, and the dielectric 22 is made of a conductive material. The external charging inductor 22 can have various shapes, but is preferably approximately truncated conical, with its tip 22a positioned slightly behind and outside the outer edge 18 of the atomizing cup 12 that forms the atomized particles. positioned.

内部および外部誘導体20と22は、後述する方法によ
シ静電電圧源70によって、好ましくは正に帯電され、
この極性と逆の極性に放出ゾーン16の導電性塗料微粒
子流14を電気誘導により帯電させる。放出ゾーン16
の微粒子流14を上述のように帯電させると、適宜の電
源27によシ異った電位に保持された物体24への吸引
を促進助長できる外に、更に同極性に帯電された微粒子
が互に反発するので、微粒子流14の霧化の程度を高め
ることができる。
The inner and outer inductors 20 and 22 are preferably positively charged by an electrostatic voltage source 70 in a manner described below.
The conductive paint particulate stream 14 in the discharge zone 16 is charged by electrical induction to a polarity opposite to this polarity. Emission zone 16
When the particle stream 14 is charged as described above, not only can the attraction to the object 24 held at different potentials by the appropriate power source 27 be promoted, but also the particles charged with the same polarity can be mutually charged. Since the particles are repelled by the particles, the degree of atomization of the particle stream 14 can be increased.

内部誘導体20は、ワイヤ78を含む導電路により静電
電圧源70に接続され、このワイヤ78は軸29の前部
に形成された孔内に配置され、そのワイヤ前端が内部誘
導体20に、まだワイヤ後端が導電性リング80にそれ
ぞれ接続されている。このリング80は軸受31の前方
位置において軸29の外面に取付けられている。誘導体
20と電源70との間の導電路中には、導電ブラシ82
が設けられると共に、このブラシ82と電源70との間
に導電体84が設けられている。上記導電ブラシ82は
導電リング80と一致して並ぶように孔28の壁に取付
けられ、そのリング80と接触している。外部誘導体2
2は円盤42と壁部40aとの中にモードされ、絶縁さ
れた導電ワイヤ79によってワイヤ78に、次いで静電
電圧源70にそれぞれ接続されている。
Inner inductor 20 is connected to electrostatic voltage source 70 by a conductive path that includes a wire 78 that is placed in a hole formed in the front of shaft 29 so that the front end of the wire is still connected to inner inductor 20. The rear ends of the wires are each connected to a conductive ring 80. This ring 80 is attached to the outer surface of the shaft 29 at a position in front of the bearing 31. A conductive brush 82 is provided in the conductive path between the inductor 20 and the power source 70.
A conductor 84 is provided between the brush 82 and the power source 70 . The conductive brush 82 is mounted on the wall of the hole 28 in alignment with and in contact with the conductive ring 80. External derivative 2
2 is modeled into the disk 42 and the wall 40a and is connected by an insulated conductive wire 79 to the wire 78 and then to the electrostatic voltage source 70, respectively.

端部が開放されているシリンダ86は、カップ12の一
部を一体的に構成しておシ、円錐形曲板すなわちシェル
40と円盤42との交点付近において、シェル40から
後方に延在している。そのシリンダ86はハウジング2
6の前端26bから前方に延在したシリンダ88と協働
する。同心のシリンダ86と88は、室46を外界から
シールする機能がある。
A cylinder 86 with an open end integrally forms a part of the cup 12 and extends rearward from the shell 40 near the intersection of the conical curved plate, i.e., the shell 40 and the disk 42. ing. The cylinder 86 is the housing 2
The cylinder 88 extends forward from the front end 26b of the cylinder 6. Concentric cylinders 86 and 88 function to seal chamber 46 from the outside world.

導電性の反発電極90は、好ましくはリング形に構成さ
れており、軸方向に配置された複数個の不導電性スポー
ク92によってカップ部40aの外側に取付けられ、上
記スポーク92はハウジング26の前壁26bから前方
に延在している。上記反発電極90は静電電圧源94に
接続され、この電圧源94は微粒子流14の帯電粒子と
同一極性を有し、好丑しくは約−20kVである。リン
グ90と電源94は、導電ワイヤ98によシ接続されて
いる。このリング90は微粒子流14の微粒子電荷と同
一極性に保持されているので、「スプレィバック」とし
て知られる状態の発生を最小にする。この「スプレィバ
ック」とは、微粒子流14の帯電粒子が後方に移動し、
ハウジング26に付着してしまう現象を言う。
The electrically conductive repulsion electrode 90 is preferably configured in a ring shape and is attached to the outside of the cup portion 40a by a plurality of axially disposed electrically non-conductive spokes 92, said spokes 92 being located at the front of the housing 26. It extends forward from wall 26b. The repelling electrode 90 is connected to an electrostatic voltage source 94 having the same polarity as the charged particles of the particulate stream 14, preferably about -20 kV. Ring 90 and power source 94 are connected by conductive wire 98 . This ring 90 is held at the same polarity as the particle charge of the particle stream 14, thus minimizing the occurrence of a condition known as "sprayback." This "sprayback" means that the charged particles in the particulate flow 14 move backward,
This refers to the phenomenon of adhesion to the housing 26.

誘導体20と22はカップ12と共に高速で回転するの
で、誘導体20.22に付着した微粒子は遠心力によシ
放出され、塗料が誘導体に蓄積することを防止する。
Since the dielectrics 20 and 22 rotate at high speed with the cup 12, particulates adhering to the dielectrics 20,22 are released by centrifugal force, preventing paint from accumulating on the dielectrics.

牙6図は、本発明の原理を具体化1−だ導電性塗料用ス
プレ式塗装システムの別の実施例を概略的に示すもので
ある。第1図と第2図に示したシステムの構成部材と構
造上同様の第3図の部材には便宜上、第1図と同一符号
を付しである。従って、第3図のシステムは第1図のシ
ステムと同様に回転噴霧器10を具備し、この噴霧器1
0はタービン32からの軸29によって駆動される霧化
カップ12を有し、放出ゾーン16において霧化微粒子
流14を作る。導電性スプレ塗料微粒子流14の形状は
、ライン64を介して加圧空気源62から加圧空気が供
給されるノズル60によって決定される。反発電極90
は不導電性スポーク92によってカップ12の外側に取
付けられ、そのスポーク92はハウジング壁26bから
前方に延在している。この反発電極90は微粒子が微粒
子流14から噴霧器ハウジング26の方ヘスプレバック
するのを阻+h Lでいる。
Figure 6 schematically depicts another embodiment of a conductive paint spray coating system embodying the principles of the present invention. Components in FIG. 3 that are structurally similar to those of the system shown in FIGS. 1 and 2 are designated by the same reference numerals as in FIG. 1 for convenience. Accordingly, the system of FIG. 3, like the system of FIG. 1, includes a rotary atomizer 10;
0 has an atomizing cup 12 driven by a shaft 29 from a turbine 32 to create an atomized particulate stream 14 in a discharge zone 16. The shape of the conductive spray paint particulate stream 14 is determined by a nozzle 60 that is supplied with pressurized air from a pressurized air source 62 via line 64 . Repulsion electrode 90
are attached to the outside of cup 12 by non-conductive spokes 92 extending forwardly from housing wall 26b. The repulsion electrode 90 prevents particulates from being sprayed back from the particulate stream 14 toward the atomizer housing 26.

第3図のシステムは、第1図と異り単一の誘導体20の
みを具備し、この誘導体20は軸29の前端に取付けら
れそれと一体に回転する。この誘導体の機能は後述する
。牙6図のシステムにおいて、第1図のシステム同様に
、加圧源54から供給される塗料はそれ自身導電性のも
のでもよく、または適当な添加剤の添加により導電性と
なしたものでもよい。
The system of FIG. 3, unlike that of FIG. 1, includes only a single guide 20, which is attached to the front end of a shaft 29 and rotates therewith. The function of this derivative will be described later. In the system of FIG. 6, as in the system of FIG. 1, the paint supplied from the pressure source 54 may itself be electrically conductive, or may be made electrically conductive by the addition of suitable additives. .

この塗料は導電体102を介して適当な高電圧の静電電
圧源100により、例えば−60kV の負電位に保持
される。上記導電体102はタンク54内の塗料と電気
的に接触している。もしタンク54がそれ自身導電性材
料で構成されているならば、そのタンクは絶縁性支持部
54aと54bによって接地電位から電気的に絶縁され
る。塗料を一60kV−のタンク54内に収容すると、
接触帯電によって導電性塗料は霧化前に負極性に帯電さ
れる。
The paint is held at a negative potential of, for example, -60 kV via a conductor 102 by a suitable high voltage electrostatic voltage source 100. The conductor 102 is in electrical contact with the paint in the tank 54. If tank 54 is itself constructed of a conductive material, it is electrically isolated from ground potential by insulative supports 54a and 54b. When the paint is stored in the tank 54 of -60 kV,
The conductive paint is negatively charged by contact charging before being atomized.

第6図のシステムに関して使用される帯電処理は、導電
性塗料を電源100で負に接触帯電させる処理の外に、
更に別の処理として霧化微粒子を誘導帯電により負に帯
電させることが行われる。この誘導帯電処理は、誘電体
20を負電圧源100よりも絶対値でわずかに小さい負
電位の電源106に接続して、微粒子流14の霧化微粒
子をその誘導体20によって誘導帯電させるものである
。この電源106が導体84、ブラシ82、リング80
およびワイヤ78を介して誘導体20を一57kV に
帯電させることが好ましい。誘導体20は、−57kV
の負電位に保持されているので、微粒子流14の霧化粒
子に更に、負電荷を電気誘導する。更に詳説すると、導
電性塗料は一60kVに保持されているだめ、この塗料
にとって一57kVの誘導体20は+3kVの誘導体と
なる。この+3 kVの誘導体20は塗料に反対の極性
の電荷、すなわち負の電荷を誘導する。この誘導電荷は
−6(] kVの電源での接触帯電によって既に発生し
た負電荷に更に加えられる。負帯電微粒子流14は物体
24に吸引される。もちろんこの物本24は微粒子を吸
引し付着できるように微粒子の電荷と異った電位に電源
74により保持されている。
The charging process used in connection with the system of FIG.
Furthermore, as another treatment, the atomized fine particles are negatively charged by induction charging. In this induction charging process, the dielectric body 20 is connected to a power source 106 with a negative potential slightly smaller in absolute value than the negative voltage source 100, and the atomized fine particles in the fine particle flow 14 are inductively charged by the dielectric body 20. . This power source 106 includes a conductor 84, a brush 82, a ring 80
Preferably, the dielectric 20 is charged to -57 kV via the wire 78. Derivative 20 is -57kV
, which further electrically induces a negative charge in the atomized particles of the particulate stream 14. More specifically, since the conductive paint is held at -60 kV, the -57 kV dielectric 20 becomes a +3 kV dielectric for this paint. This +3 kV dielectric 20 induces a charge of opposite polarity in the paint, ie, a negative charge. This induced charge is further added to the negative charge already generated by contact charging with a -6 (] kV power supply. The negatively charged particulate stream 14 is attracted to the object 24. Of course, this object 24 attracts the particulates and adheres to them. A power source 74 holds the particles at a different potential from the charge of the particles.

微粒子流14の霧化微粒子は負電荷を有するので、その
帯電微粒子は反発リング90と誘導体20との両方に反
発され、従って微粒子が誘導体20や反発リング90に
付着することは最小に押さえられる。更に、反発リング
90は放出ゾーン16の後方に配置されているので、ス
プレバック、すなわち負帯電塗料粒子のハウジング26
への付着を最小にできる。
Since the atomized fine particles of the fine particle stream 14 have a negative charge, the charged fine particles are repelled by both the repulsion ring 90 and the dielectric 20, and therefore, the adhesion of the fine particles to the dielectric body 20 and the repulsion ring 90 is suppressed to a minimum. Additionally, because the repulsion ring 90 is located behind the ejection zone 16, sprayback, i.e., the housing 26 of negatively charged paint particles, is eliminated.
can minimize adhesion to

第3図の実施例でも、牙1図および牙2図の実施例と同
様に、誘導体20はカップ12と共に回転し、誘導体2
0に付着した塗料微粒子を遠心力によシ放出するので、
誘導体に塗料が蓄積されるのを防止できる。
In the embodiment of FIG. 3, as in the embodiments of Fang 1 and Fang 2, the inductor 20 rotates together with the cup 12, and the inductor 20
Since the paint particles attached to the paint are released by centrifugal force,
It is possible to prevent paint from accumulating on the derivative.

第1図、乃至第3図のスプレ式塗装システムには、非常
に重要な利点が多数ある。例えば、塗料を霧化前に予め
帯電する先行接触帯電を行った場合もそうでない場合も
導電性微粒子の静電帯電は誘導によシ行われるので、帯
電電位に保持された導電性霧化カップを使用した公知の
静電帯電システムに生ずるコロナ放電は本発明では発生
しない。この結果、霧化カップを不導電性材料で構成で
き、そのシステムに容量の形で貯えられたエネルギの放
電速度を大きく減少でき、もし霧化カップが電気的に接
地されているか、または接地された物体に接近している
ときに生ずる電撃や着火の危険を大幅に減少できる。
The spray coating system of FIGS. 1-3 has a number of very important advantages. For example, whether electrostatic charging of conductive fine particles is performed by induction, whether or not contact charging is performed to charge the paint in advance before atomizing it, electrostatic charging of conductive fine particles is performed by induction, so a conductive atomizing cup held at a charging potential is used. Corona discharges, which occur in known electrostatic charging systems using 300 volts, do not occur in the present invention. As a result, the atomizing cup can be constructed of non-conductive materials, which greatly reduces the rate of discharge of the energy stored in capacitive form in the system, and if the atomizing cup is electrically grounded or This greatly reduces the risk of electric shock and ignition when approaching objects.

更に、コロナ放電が生じないので、所定の塗料移送効率
のために必要な帯電電圧レベルをスプレ塗料微粒子を帯
電するのに導電性ベルを使用する、公知のベル型静電塗
装システムの代表的な値よりも非常に低下できる。こ(
2/J の静電電圧の大きさを低下できると、システムのコスト
を以下の理由によシ低減できる。
Furthermore, since no corona discharge occurs, it is typical of known bell electrostatic coating systems that use conductive bells to charge spray paint particles to the charging voltage level required for a given paint transfer efficiency. The value can be much lower than that. child(
If the magnitude of the electrostatic voltage can be reduced by 2/J, the cost of the system can be reduced for the following reasons.

すなわち、本発明の誘導帯電電極に高電圧源を接続する
ケーブルは、コロナ放電を用いる従来の回転噴霧器の代
表的値と同じ電圧に対して絶縁する必要性が無いからで
ある。
That is, the cable connecting the high voltage source to the inductively charged electrode of the present invention does not need to be insulated to the same voltages that are typical of conventional rotary atomizers using corona discharge.

また、帯電用誘導体が霧化微粒子流のほぼ環状横断面の
内であって、霧化カップの前方端に接近して配置されて
いる点に起因する別の利点がある。この利点とは微粒子
流の後方で番って、その外側に配置される反発電極をリ
ングのような比較的簡単な形状とすることができる点で
ある。
There is also another advantage due to the fact that the charging dielectric is located within the generally annular cross-section of the atomized particulate stream and close to the forward end of the atomizing cup. The advantage of this is that the repelling electrode placed outside the particle stream behind it can be formed into a relatively simple shape such as a ring.

第1図及び第2図の実施例の別の利点は、誘導体電極に
よシ微粒子に生ずる電荷がかなシ高いため、反発電極を
かなシ低い電圧源に接続してもスプレバックを最小にで
きる。
Another advantage of the embodiments of FIGS. 1 and 2 is that the dielectric electrode produces a relatively high charge on the particulates, so that sprayback can be minimized even when the repelling electrode is connected to a relatively low voltage source. .

本発明、特に第1図と第2図の実施例の利点は、誘導微
粒子帯電を利用しているので電力をあまシ必要としない
ことである。例えば(28) 誘導帯電電極20.22と、これに接続される高電圧源
70と、ワイヤ78と、リング80と、ブラシ82と、
ワイヤ84とを含む誘導帯電回路では電力消費は無い。
An advantage of the present invention, and particularly the embodiment of FIGS. 1 and 2, is that no additional power is required because of the use of induced particulate charging. For example, (28) an inductively charged electrode 20, 22, a high voltage source 70 connected thereto, a wire 78, a ring 80, a brush 82,
The inductive charging circuit including wire 84 consumes no power.

第1図と第2図のシステムに流れる唯一の電流は接地電
源27と、導体25と、物体24と、帯電された塗料微
粒子流14と、塗料フィルムFと、ホース48中の塗料
流と、タンク54中の塗料と、接地タンク54とからな
る導路を通って接地から流れる負電荷の流れだけである
The only current flowing in the system of FIGS. 1 and 2 is through the ground power supply 27, the conductor 25, the object 24, the charged paint particulate stream 14, the paint film F, and the paint stream in the hose 48. There is only a flow of negative charge from ground through the conduit consisting of the paint in tank 54 and the grounded tank 54.

第3図に示す実施例では、誘導体20とワイヤ78と、
リング80とブラシ82と導体84と接地された電源1
06とから成る誘導帯電回路には電流は流れない。もち
ろん接地された電源100と、導体102と、タンク5
4内の帯電された塗料と、電源100によって接地帯電
されたホース48内の帯電塗料と、誘導体20によシ誘
導帯電された電荷量が増加した霧化帯電微粒子流14と
、物体24と、導体25と、接地された電源74とから
成る導路には電荷が流れる。
In the embodiment shown in FIG. 3, the inductor 20 and the wire 78,
Ring 80, brush 82, conductor 84 and grounded power source 1
No current flows through the inductive charging circuit consisting of 06 and 06. Of course, a grounded power source 100, a conductor 102, and a tank 5
4, the charged paint in the hose 48 that is grounded by the power supply 100, the atomized charged fine particle stream 14 with an increased amount of charge induced by the dielectric 20, and the object 24. Charge flows through the conductor path consisting of the conductor 25 and the grounded power source 74.

本発明の別の利点は、特に内部誘導体20のドーム形外
形状に起因するもので、回転カップによる渦流の結果と
して誘導体20に霧化微粒子流14が付着する傾向を大
幅に減少できる。
Another advantage of the present invention is due in particular to the dome-shaped profile of the inner conductor 20, which can significantly reduce the tendency of the atomized particulate stream 14 to stick to the conductor 20 as a result of swirling by the rotating cup.

本発明の実施例は、不導電性霧化カップによる導電性塗
料の誘導帯電について説明してきたが、本発明の誘導帯
電原理は霧化カップを導電性材料で構成した場合にも使
用できるものである。しかし、この場合には容量的に貯
えられた電気エネルギの放電の速度が増加してしま込、
そのため電撃や着火の危険も増大すると共に、誘導帯電
プロセスの効率も低下してしまう。
Although the embodiments of the present invention have described the inductive charging of conductive paint with a non-conductive atomizing cup, the inductive charging principles of the present invention can also be used when the atomizing cup is constructed of a conductive material. be. However, in this case the rate of discharge of the capacitively stored electrical energy increases and
This increases the risk of electric shock and ignition, and also reduces the efficiency of the inductive charging process.

固定の反発リング90の代りに、第4図に明示するよう
に霧化カップ12のまわりに円状に配列された複数の導
電性固定球体を用いることもできる。これらの球体11
0の各々は、不導電性スポーク92によって噴霧器ハウ
ジング26に取付けられ、個々の抵抗112を介して噴
霧器ハウジング26上の共通導体116に接続されてお
り、この共通導体116は適宜の静電電圧源に接続され
ている。
Instead of a fixed repulsion ring 90, a plurality of fixed conductive spheres arranged in a circle around the atomization cup 12, as shown clearly in FIG. 4, can also be used. These spheres 11
0 are attached to the atomizer housing 26 by non-conductive spokes 92 and connected through individual resistors 112 to a common conductor 116 on the atomizer housing 26, which is connected to a suitable electrostatic voltage source. It is connected to the.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による一実施例の導電性塗料用スプレ
式塗装システムの主要部材を概略的に示す一部断面とし
た正面図、 第2図は、第1図に示したシステムの回転式噴霧器およ
び電極の側面図、 第3図は、本発明による別の実施例の導電性塗料用静電
スプレ式塗装システムを示す一部断面とした正面図、 第4図は、噴霧器ハウジングに取付けられた反発電極の
変形例を示す斜視図である。 〔主要部分の符号の説明〕 噴霧器−−−−−−−−−−−−−−−−−−−−−−
一−−−−−−−−−−−−−−−−−10回転式カッ
プ・−一−−−−−−−−−−−−−−−−一−−−−
−−−−−−−−−12塗料微粒子流−−−−−−−−
−−一−−−−−−−−−−−−−−−−−−−−−−
14内部電荷誘導電極−−−−−−−−−−−−−−−
−−−−−−−−一−−20外部電荷誘導電極−−−−
−−−−−−−−−−−−−−−−−−−−−−22被
塗装物体−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−24電圧源−−−−−一
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−27加圧塗料供給源−−−−−一
−−−−−−−−−−−−−−−−−−−−−−−−5
4空気供給源、−−−−−−−−−一−−−−−−−−
−−−−−−−−−−−−−−−−−62高電圧源−−
−一−−−−−−−−−−−−−−−−−一一一−−−
−−−−−−−−−−・70反発電極−−−−−−−−
−−−−−−−−−−−−−−−−−一−−−−−−−
−−−−90高電圧源 −−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−100
高電圧源 −−−−−−−一−−−−−−−−−−−−
−−−−−−−−−−−−−−= 106反発電極−−
−−−−−−−−−−−−一−−−−−−−−−−−−
−−−−−−−−−110手続補正書 昭和59年6月 夕日 特許庁長官若杉和夫殿 を誘導帯電する方法及び装置 3 補正をする者 事件との関係 特許出願人 4代理人 (1)別紙の通り、印書せる全文明細書を1通提出致し
ます。 (2)別紙の通り、正式図面1通を提出致します。 上申:出願当初手書の明細書を提出致しましたが、この
たびタイプ印書明細書と差替えます。
FIG. 1 is a partially sectional front view schematically showing the main components of a spray coating system for conductive paint according to an embodiment of the present invention, and FIG. 2 is a rotation of the system shown in FIG. 1. FIG. 3 is a partially sectional front view of another embodiment of an electrostatic spray coating system for conductive paint according to the present invention; FIG. 4 is a side view of the atomizer and electrode; FIG. FIG. 6 is a perspective view showing a modified example of the repelling electrode. [Explanation of the symbols of the main parts] Sprayer---------------
1-------------------10 rotary cup -1----------1--
----------12 Paint particle flow------
−−1−−−−−−−−−−−−−−−−−−−−−−
14 Internal charge induction electrode
−−−−−−−−−−−20 External charge induction electrode−−−−
------
−−−−−−−−−−−−−−−24 voltage source−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−27 Pressurized paint supply source −−−−−−−−−−−−−−−−−−−−5
4 air supply source, ------------1----------
−−−−−−−−−−−−−−−−62 High voltage source−−
−1−−−−−−−−−−−−−−−−−111−−−
−−−−−−−−−・70 repulsion electrode−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−90 high voltage source −−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−100
High voltage source −−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−= 106 repulsion electrode−−
−−−−−−−−−−−−−−−−−−−−−−−−−−
----------110 Procedural Amendment June 1980 Method and device for inductively charging Mr. Kazuo Wakasugi, Commissioner of the Sunset Patent Office 3 Relationship with the case of the person making the amendment Patent applicant 4 representative (1) As shown in the attached sheet, we will submit one copy of the complete statement that can be printed. (2) As shown in the attached document, we will submit one official drawing. Report: At the time of application, I submitted a handwritten statement, but I will now replace it with a typed statement.

Claims (1)

【特許請求の範囲】 1、 静電的に帯電されているスプレ塗料の静電電位と
実質的に異った静電電位に保持された物体を塗装する静
電スプレ式塗装システムにおいて、 導電性塗料の供給源に接続可能であって、霧化微粒子放
出ゾーンに、霧化された塗料微粒子流を流出させる回転
噴霧器と、 上記システムに霧化微粒子を誘導帯電させる関係に配置
された電荷誘導体とを具備し、該電荷誘導体は静電電圧
源に接続可能であり、霧化微粒子流を誘導的に帯電させ
て、上記帯電されている微粒子の電位と実質的に異なる
静電電位に保持された被塗装物体への上記微粒子流の吸
引を促進させると共に、上記回転噴霧器は上記電荷誘導
体と上記静電電圧源とから絶縁されていることを特徴と
するスプレ式塗装システム。 2、 上記噴霧器は回転式ベル形部材を含み、霧化され
ていない塗料が遠心力により上記ベル形部材の表面を流
れて、上記微粒子放出ゾーン近傍のベル形部材外縁部の
方へ流出し、上記微粒子放出ゾーンから霧化微粒子が遠
心的に放出されて上記霧化塗料流を作り、上記回転式部
材は実質的に不導電性であって、上記電荷誘導体および
これと接続された静電電圧源とから絶縁されており、上
記回転式噴霧器によって容量的に貯えられる電気エネル
ギの放電の速度を最小にすることを特徴とする特許請求
の範四牙1項に記載のシステム。 3、上記流の満断面は上記放出ゾーンの領域においてほ
ぼ円形であり、上記システムは上記円形横断面流の外方
に位置する反発電極を含み、該反発電極は上記帯電微粒
子と同一極性の静電電圧源と接続可能であシ、上記帯電
機粒子が上記被塗装物体から離反する方向へ移動するの
を抑制することを特徴とする特許請求の範囲第1項に記
載のシステム。 4、上記流の横断面は上記放出ゾーンの領域においてほ
ぼ円形であり、上記電荷誘導体は、上記円形横断面流の
内方および外方にそ ′れぞれ配置された内部および外
部電荷誘導部材を含むことを特徴とする特許請求の範囲
第1項に記載のシステム。 5、上記流の横断面は、上記放出ゾーンの領域において
ほぼ円形であり、上記電荷誘導体は上記円形横断面流の
内方に配置され、上記システムは更に上記円形横断面流
の外方に配置する反発電極を含み、該反発電極は上記帯
電微粒子と同一極性の静電電圧源と接続可能であり、上
記被塗装物体から離反方向への上記帯電微粒子の移動を
抑制することを特徴とする特許請求の範囲第1項に記載
のシステム。 6、 上記システムは、上記電荷誘導体を回t ス ) 転する手段を含み、該手段は」1記電荷誘導体に付着し
た塗料微粒子を遠心力によりそれから放出し、それによ
って上記電荷誘導体」二の塗料蓄積を抑制することを特
徴とする特許請求の範囲第1項に記載のシステム。 Z 上記流の横断面は、」1記放出ゾーンの領域におい
てほぼ円形であシ、上記電荷誘導体は上記円形横断面流
の内方および外方にそれぞれ配置された内部および外部
電荷誘導部材を含み、上記システムは更に上記内部およ
び外部電荷誘導体を回転する手段を含み、該手段は上記
内部および外部電荷誘導体に付着した塗料微粒子を遠心
力によシそれから放出し、それによって上記内部および
外部電荷誘導体上の塗料蓄積を抑制することを特徴とす
る特許請求の範囲第1項に記載のシステム。 8、上記システムは更に加圧ガス源を含み、そこからの
加圧ガスは霧化塗料微粒子流に衝突し、該微粒子流の形
を定めることを特徴とする特許請求の範囲第1項に記載
のシステム。 9 上記流の横断面は、上記放出ゾーンの領域において
ほぼ円形で4.D、上記回転部材はト記円形横断面流の
中心の方へ静電帯電微粒子の渦流を作り出す傾向があり
、上記電荷誘導体は上記円形横断面流の内方に配置され
、かつほぼドーム形の外表面る有し、上記誘導体の方へ
上記静電帯電微粒子渦流を減少させ、これにより、上記
誘電体への帯電塗料微粒子の付着を最小にすることを特
徴とする特許請求の範囲第2項に記載のシステム。 10、上記流の横断面は、上記放出ゾーンの領域におい
てほぼ円形であり、上記電荷誘導体は上記円形横断面流
の内方に配置されており、上記システムは更に、上記円
形横断面流の外方に配置された複数個の球状反発電極を
含み、該複数の反発電極は互に離間されており、それぞ
れ別個の抵抗を介して一つの静電電圧源に接続可能であ
シ、該電圧源は上記帯電微粒子と同一極性を有し、上記
被塗装物体から離反する方向への帯電微粒子の移動を抑
(4) 制することを特徴とする特許請求の範囲第1項に記載の
システム。 11、  静電的に帯電されているスプレ塗料の静電電
位と実質的に異った静電電位に保持された物体を塗装す
る静電スプレ式塗装システムにおりて、 霧化されていない導電性塗料の供給源と、上記導電性塗
料供給源に接続され、霧化微粒子放出ゾーンにおいて、
横断面がほぼ円形である霧化塗料微粒子流を作成する回
転式噴霧器と、 上記システムに霧化微粒子を誘導帯電させる関係に配置
され、かつ上記回転式噴霧器から絶縁されている電荷誘
導体と、 上記霧化されていない導電性塗料と電気的に接触され、
上記回転式噴霧器による霧化の前に上記霧化されていな
い導電性塗料を予め帯電させる第1靜電電圧源手段と、 上記第1電圧源手段と同一極性であるが、それよシも低
電圧である第2静電電圧源手段と、 被塗装物体を所定の極性電位に保持する手段とを具備し
、 上記第2電圧源手段は上記電荷誘導体に接続され、上記
予帯電霧化微粒子流を上記第1および第2電圧源手段と
同極性であって、両電圧源手段の電位差に関連した大き
さに誘導帯電させることによって上記予帯電微粒子の電
荷を増大させ、これによって、上記誘導帯電微粒子を上
記誘導体から反発させて上記誘導帯電微粒子の上記誘導
体への付着を最小にすると共に、上記保持手段の上記所
定極性電位は上記誘導帯電霧化微粒子が上記物体の方へ
静電吸引されるように定めることを特徴とするスプレ式
塗装システム。 12、塗料で物体を静電塗装する方法において、 回転式不導電性部材で導電性液体塗料を遠心力によシ霧
化し、霧化塗料微粒子流を、霧化微粒子放出ゾーンに発
生するステップと、霧化微粒子を電荷誘導する関係に配
置され、かつ上記微粒子に誘導される電荷と反対の極性
に保持される電荷誘導電極でもって上記霧化微粒子に静
電電荷を誘導するステップと帯電された上記微粒子の電
位とは実質的に異った静電電位に被塗装物体を保持して
、上記微粒子を上記物体に吸引し付着させるステップと
を含むことを特徴とする塗装方法。 16、  上記電荷誘導電極よシも大きい静電電圧に保
持され、かつ導電性塗料と接触している接触電極によっ
て、上記遠心力霧化前に、上記導電性塗料を予め帯電さ
せるステップを更に具備し、上記電荷誘導電極によるそ
の後の誘導帯電が、上記接触電極と上記電荷誘導電極と
にそれぞれ接触した電源の電位差に関連した量だけ上記
予帯電微粒子の電荷を増加させることを特徴とする特許
請求の範囲第12項に記載の方法。 14、  上記電荷誘導電極の反対側の霧化部材の側面
に配置された反発電極を上記帯電微粒子と同−極性に保
持し、帯電微粒子を上記反発電極から反発させて上記物
体から離反するような帯電微粒子の移動を抑制し、これ
によって上記回転式霧化部材を保持する非回転ハウジン
グ上に帯電微粒子の付着やスプレバックを最小にするス
テップを更に含むことを特徴とする特許請求の範囲第1
2項に記載の方法。 15、上記電荷誘導電極の反対側の霧化部材の側面に配
置された反発電極を上記帯電微粒子と同一極性に保持し
、帯電微粒子を上記反発電極から反発させて、上記物体
から離反するような帯電微粒子の移動を抑制し、これに
よって上記回転式霧化部材を保持する非回転ハウジング
上に帯電微粒子の付着やスプレバックを最小にするステ
ップと、 上記電荷誘導電極を回転し、該電極上に付着した帯電微
粒子を遠心力によシ放出させ、それによシ上記電荷誘導
電極上の塗料蓄積を最小にするステップとを更に具備す
ることを特徴とする特許請求の範囲第12項に記載の方
法。
[Claims] 1. In an electrostatic spray painting system for painting an object held at an electrostatic potential substantially different from the electrostatic potential of an electrostatically charged spray paint: a rotary atomizer connectable to a supply of paint for discharging a stream of atomized paint particles into an atomized particulate discharge zone; and a charge dielectric disposed in relation to inductively charge the atomized particulates in the system. , the charge dielectric being connectable to an electrostatic voltage source to inductively charge the atomized particulate stream to hold it at an electrostatic potential substantially different from the potential of the charged particulates. A spray coating system which facilitates the attraction of said particulate stream to an object to be coated and wherein said rotary atomizer is insulated from said charge dielectric and said electrostatic voltage source. 2. The atomizer includes a rotating bell-shaped member, and the un-atomized paint flows on the surface of the bell-shaped member due to centrifugal force and flows out toward the outer edge of the bell-shaped member near the particulate emission zone; Atomized particulates are centrifugally ejected from the particulate discharge zone to create the atomized paint stream, the rotatable member being substantially non-conductive and having an electrostatic voltage connected to the charge conductor and the rotary member being substantially non-conductive. 2. The system of claim 1, wherein the system is insulated from a source to minimize the rate of discharge of electrical energy capacitively stored by the rotary atomizer. 3. The full cross section of the flow is approximately circular in the region of the ejection zone, and the system includes a repelling electrode located outside the circular cross-sectional flow, the repelling electrode having a static electrode of the same polarity as the charged particles. 2. The system according to claim 1, wherein the system is connectable to an electric voltage source and suppresses the charging particles from moving in a direction away from the object to be coated. 4. The cross-section of the flow is approximately circular in the region of the emission zone, and the charge director is provided with internal and external charge-directing members arranged respectively inside and outside the circular cross-section flow. A system according to claim 1, characterized in that the system comprises: 5. The cross-section of the flow is approximately circular in the region of the discharge zone, the charge dielectric being arranged inside the circular cross-section flow, and the system further arranged outside the circular cross-section flow. A patent characterized in that the repulsion electrode includes a repulsion electrode that can be connected to an electrostatic voltage source having the same polarity as the charged fine particles, and suppresses movement of the charged fine particles in a direction away from the object to be coated. A system according to claim 1. 6. The system comprises means for rotating the charge dielectric, said means ejecting the paint particles adhering to the charge dielectric from it by centrifugal force, thereby causing the charge dielectric to pass through the paint. A system according to claim 1, characterized in that accumulation is suppressed. Z the cross-section of said flow is substantially circular in the region of said emission zone, and said charge director comprises internal and external charge-directing members disposed respectively inward and outward of said circular cross-sectional flow; , the system further includes means for rotating the internal and external charge conductors, the means centrifugally discharging paint particles adhering to the internal and external charge conductors, thereby rotating the internal and external charge conductors. 2. A system as claimed in claim 1, characterized in that it inhibits paint build-up on paint. 8. The system further includes a source of pressurized gas from which the pressurized gas impinges on and shapes the stream of atomized paint particles. system. 9. The cross-section of the stream is approximately circular in the region of the discharge zone; 4. D. The rotating member tends to create a vortex of electrostatically charged particles toward the center of the circular cross-sectional flow, and the charge conductor is located inside the circular cross-sectional flow and has a generally dome-shaped shape. Claim 2, further comprising an outer surface for reducing the electrostatically charged particulate swirl towards the dielectric, thereby minimizing the adhesion of charged paint particulates to the dielectric. system described in. 10. The cross-section of the flow is substantially circular in the region of the ejection zone, the charge dielectric being arranged inside the circular cross-section flow, and the system further comprising: a plurality of spherical repelling electrodes disposed on one side, the plurality of repelling electrodes being spaced from each other and each connectable to a single electrostatic voltage source through a separate resistor; 4. The system according to claim 1, wherein: (4) has the same polarity as the charged fine particles and suppresses movement of the charged fine particles in a direction away from the object to be coated. 11. In an electrostatic spray painting system that paints an object held at an electrostatic potential substantially different from the electrostatic potential of the electrostatically charged spray paint, non-atomized conductive a supply of electrically conductive paint, and an atomized particulate emission zone connected to the electrically conductive paint supply;
a rotary atomizer for creating a stream of atomized paint particulates having a generally circular cross-section; a charge dielectric disposed in relation to inductively charge the atomized particulates in said system and insulated from said rotary atomizer; electrically contacted with non-atomized conductive paint;
a first static voltage source means for pre-charging the non-atomized conductive paint before atomization by the rotary atomizer; and means for holding the object to be coated at a predetermined polar potential, the second voltage source means being connected to the charge dielectric and directing the stream of pre-charged atomized particles. The electric charge of the pre-charged fine particles is increased by inductively charging the pre-charged fine particles to a magnitude that is of the same polarity as the first and second voltage source means and is related to the potential difference between the two voltage source means, thereby increasing the electric charge of the pre-charged fine particles. is repelled from the dielectric to minimize adhesion of the inductively charged fine particles to the dielectric, and the predetermined polar potential of the holding means is such that the inductively charged atomized fine particles are electrostatically attracted toward the object. A spray painting system characterized by the following. 12. A method for electrostatically painting an object with paint, including the step of atomizing the conductive liquid paint by centrifugal force using a rotating non-conductive member to generate a stream of atomized paint particles in an atomized particle emission zone. inducing an electrostatic charge on the atomized particulates with a charge inducing electrode placed in a charge-inducing relationship on the atomized particulates and held at a polarity opposite to the charge induced on the particulates; A coating method comprising the step of holding an object to be coated at an electrostatic potential substantially different from the potential of the fine particles, and attracting and adhering the fine particles to the object. 16. The method further comprises the step of pre-charging the conductive paint before the centrifugal atomization by means of a contact electrode in which the charge-inducing electrode is also held at a large electrostatic voltage and is in contact with the conductive paint. and the subsequent inductive charging by the charge-inducing electrode increases the charge of the pre-charged fine particles by an amount related to the potential difference between the power sources that are in contact with the contact electrode and the charge-inducing electrode, respectively. The method according to item 12. 14. A repulsion electrode disposed on the side surface of the atomizing member opposite to the charge-inducing electrode is held in the same polarity as the charged fine particles, and the charged fine particles are repelled from the repulsion electrode and separated from the object. Claim 1 further comprising the step of suppressing the movement of charged particulates, thereby minimizing adhesion or sprayback of charged particulates onto a non-rotating housing holding said rotary atomizing member.
The method described in Section 2. 15. A repulsion electrode disposed on the side surface of the atomizing member opposite to the charge induction electrode is held to have the same polarity as the charged fine particles, and the charged fine particles are repelled from the repulsion electrode and separated from the object. controlling the movement of charged particulates, thereby minimizing adhesion or sprayback of charged particulates onto a non-rotating housing holding said rotating atomizing member; 13. The method of claim 12, further comprising the step of centrifugally discharging adherent charged particles, thereby minimizing paint buildup on the charge-inducing electrode. .
JP59054584A 1983-03-24 1984-03-23 Method and device for induction-charging conductive paint atomized by centrifugal force Pending JPS59225762A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US47859583A 1983-03-24 1983-03-24
US478595 1983-03-24

Publications (1)

Publication Number Publication Date
JPS59225762A true JPS59225762A (en) 1984-12-18

Family

ID=23900562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59054584A Pending JPS59225762A (en) 1983-03-24 1984-03-23 Method and device for induction-charging conductive paint atomized by centrifugal force

Country Status (2)

Country Link
EP (1) EP0120648A3 (en)
JP (1) JPS59225762A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118545U (en) * 1986-01-17 1987-07-28
JPH0375856U (en) * 1989-11-17 1991-07-30
JP2006272221A (en) * 2005-03-30 2006-10-12 Nissan Motor Co Ltd Electrostatic coating machine

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4589597A (en) * 1983-10-03 1986-05-20 Graco Inc. Rotary atomizer spray painting device
GB8432274D0 (en) * 1984-12-20 1985-01-30 Ici Plc Electrostatic spraying
US4601921A (en) * 1984-12-24 1986-07-22 General Motors Corporation Method and apparatus for spraying coating material
US4887770A (en) * 1986-04-18 1989-12-19 Nordson Corporation Electrostatic rotary atomizing liquid spray coating apparatus
GB2190606B (en) * 1986-05-19 1990-02-14 Graco Inc A rotary spray atomizer
DE3709508A1 (en) * 1987-03-23 1988-10-06 Behr Industrieanlagen Apparatus for the electrostatic coating of workpieces
US5100057A (en) * 1990-03-30 1992-03-31 Nordson Corporation Rotary atomizer with onboard color changer and fluid pressure regulator
EP0519191B1 (en) * 1991-05-03 1995-02-15 Ppv-Verwaltungs-Ag Device for spraying electric conductive liquids and very fine powders
FR2692501B1 (en) * 1992-06-22 1995-08-04 Sames Sa DEVICE FOR ELECTROSTATIC PROJECTION OF LIQUID COATING PRODUCT WITH ROTATING SPRAY HEAD.
DE19611369A1 (en) * 1996-03-22 1997-09-25 Duerr Gmbh & Co Rotary atomizer for electrostatically assisted coating of objects with paints or varnishes
US6322011B1 (en) * 2000-03-14 2001-11-27 Illinois Tool Works Inc. Electrostatic coating system and dual lip bell cup therefor
DE10233197A1 (en) 2002-07-22 2004-02-05 Dürr Systems GmbH Equipotential bonding arrangement for an electrostatic rotary atomizer
US20060219816A1 (en) 2005-04-05 2006-10-05 Durr Systems Rotary atomizer component
DE102005015604B4 (en) * 2005-04-05 2007-04-12 Dürr Systems GmbH Rotationszerstäuberbauteil
DE102005044154B4 (en) * 2005-09-15 2007-09-27 Dürr Systems GmbH Rotationszerstäuberbauteil
DE102006057596A1 (en) 2006-12-06 2008-06-19 Dürr Systems GmbH Lenkluftring with a ring trough and corresponding bell plate
RU2483254C1 (en) * 2011-11-25 2013-05-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет природообустройства" Device for air humidification
DE102014019309A1 (en) * 2014-12-20 2016-06-23 Eisenmann Se Nozzle head and rotary atomizer with such
CN107638969A (en) * 2017-11-07 2018-01-30 西安智水环境科技有限公司 One kind disappears haze system shower nozzle special-purpose electrostatic loading device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1154014A (en) * 1966-08-12 1969-06-04 Mueller Ernst Kg Process for Electrostatically Coating Objects with Paint and means for carrying the process into effect
US3900000A (en) * 1973-11-28 1975-08-19 Thomas J Gallen Apparatus for spray coating articles
HU173207B (en) * 1976-11-10 1979-03-28 Hajtomuevek Es Festoekeszuelek Rotary head paint sprayer with multi-layer electrode
GB1599303A (en) * 1977-09-20 1981-09-30 Nat Res Dev Electrostatic spraying
DE3069773D1 (en) * 1979-11-19 1985-01-17 Ici Plc Electrostatic spraying process and apparatus
US4337895A (en) * 1980-03-17 1982-07-06 Thomas Gallen High speed rotary atomizers
GB2093734B (en) * 1981-02-27 1984-12-19 Nat Res Dev Inductively charged spraying apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118545U (en) * 1986-01-17 1987-07-28
JPH0415310Y2 (en) * 1986-01-17 1992-04-07
JPH0375856U (en) * 1989-11-17 1991-07-30
JP2006272221A (en) * 2005-03-30 2006-10-12 Nissan Motor Co Ltd Electrostatic coating machine
JP4568631B2 (en) * 2005-03-30 2010-10-27 日産自動車株式会社 Electrostatic coating machine

Also Published As

Publication number Publication date
EP0120648A3 (en) 1985-10-16
EP0120648A2 (en) 1984-10-03

Similar Documents

Publication Publication Date Title
JPS59225762A (en) Method and device for induction-charging conductive paint atomized by centrifugal force
US5358182A (en) Device with rotating atomizer head for electrostatically spraying liquid coating product
US4221339A (en) Liquid spraying device
EP0157872B1 (en) Rotary atomizer spray painting device
JP3184455B2 (en) Rotary atomizing head type coating equipment
US4215818A (en) Induction charging electrostatic spraying device and method
US4664315A (en) Electrostatic spray nozzle
US4171100A (en) Electrostatic paint spraying apparatus
CN100512976C (en) Electrostatic coating system
US4347984A (en) Electrostatic spray coating apparatus
JPH11104527A (en) Electrostatic rotary atomizing spray device provided with atomizer cup
JPS63200855A (en) Electrostatic spray for powder
JP2001000021U (en) Liquid spray coating device of electrostatic rotary atomization type
US3121533A (en) Electrostatic atomizing head
JPS6250192B2 (en)
US3913523A (en) Powder coating apparatus
US6659367B2 (en) Sprayer device for spraying a liquid coating product
US3111266A (en) Spray painting gun for electrostatic spray painting
US3057558A (en) Electrostatic atomizing head
US5156880A (en) Space charge electrostatic coating method and apparatus
US3010428A (en) Spraying devices
US6276618B1 (en) Electrostatic powder spray gun
GB1209653A (en) Apparatus for electrostatic spray coating
US3692241A (en) Spray apparatus with atomization device
JP2001113207A (en) Electrostatic coating device