JPS5922501Y2 - radiation thermometer - Google Patents

radiation thermometer

Info

Publication number
JPS5922501Y2
JPS5922501Y2 JP251476U JP251476U JPS5922501Y2 JP S5922501 Y2 JPS5922501 Y2 JP S5922501Y2 JP 251476 U JP251476 U JP 251476U JP 251476 U JP251476 U JP 251476U JP S5922501 Y2 JPS5922501 Y2 JP S5922501Y2
Authority
JP
Japan
Prior art keywords
measured
heat
heat absorbing
absorbing plate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP251476U
Other languages
Japanese (ja)
Other versions
JPS5295474U (en
Inventor
敬二 吉村
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP251476U priority Critical patent/JPS5922501Y2/en
Publication of JPS5295474U publication Critical patent/JPS5295474U/ja
Application granted granted Critical
Publication of JPS5922501Y2 publication Critical patent/JPS5922501Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Description

【考案の詳細な説明】 本考案は放射温度計の改良に関する。[Detailed explanation of the idea] The present invention relates to improvements in radiation thermometers.

従来の温度計には、光高温計型、熱電雄型、自動平衡型
等がある。
Conventional thermometers include optical pyrometer types, thermoelectronic types, and self-balancing types.

光高温型は測定温度が非常に高い場合に限られ、本考案
が対象としている室温〜150°Cの温度域では使えな
い。
The optical high-temperature type can only be used when the measurement temperature is very high, and cannot be used in the temperature range of room temperature to 150°C, which is the target of the present invention.

熱電雄型は第1図に示すように、被測定面1からの輻射
熱を円錐鏡2により熱電離3に集め、円錐鏡2の温度を
パラメータとして熱電離3の指示値から被測定面1の温
度を計るものであるが、円錐鏡2の表面の反射率により
指示値が変化し、経時変化が起り長期間使えない。
As shown in Fig. 1, the thermoelectric type collects the radiant heat from the surface to be measured 1 into the thermal ionization 3 using the conical mirror 2, and calculates the temperature of the surface to be measured 1 from the indicated value of the thermal ionization 3 using the temperature of the conical mirror 2 as a parameter. Although it measures temperature, the indicated value changes due to the reflectance of the surface of the conical mirror 2, and changes over time, making it unusable for a long period of time.

被測定面1の輻射率の変化により指示値が変化し、その
都度修正が必要となる等の欠点がある。
There is a drawback that the indicated value changes due to a change in the emissivity of the surface to be measured 1, and correction is required each time.

自動平衡型は第2図に示すように、センサ5内部に被測
定面4と類似した表面状態の参照面7と参照面7の加熱
用ヒータ8及び対6A、6Bをなすサーミスタボロメー
タ6を備えており、被測定面4からの輻射率を6Aで受
けて電気信号(電圧等)に変え、参照面7からの輻射率
を6Bで変える。
As shown in FIG. 2, the self-balancing type is equipped with a reference surface 7 having a surface condition similar to the surface to be measured 4, a heater 8 for heating the reference surface 7, and a thermistor bolometer 6 forming a pair 6A and 6B inside the sensor 5, as shown in FIG. The emissivity from the surface to be measured 4 is received at 6A and converted into an electrical signal (voltage, etc.), and the emissivity from the reference surface 7 is changed at 6B.

しかして、6Aと6Bの出力(電気信号)が等しくなる
ように参照面加熱ヒータ8の入力を制御し、参照面7の
温度を図示しない熱電対で計測し、被測定面4の温度を
知るのであるが、被測定面4からの輻射受光部の反射率
の変化、汚れ等により指示値が変化し、また、被測定面
4の輻射率の変化により指示値が変化し、その都度修正
が必要である。
Then, the input of the reference surface heater 8 is controlled so that the outputs (electrical signals) of 6A and 6B are equal, and the temperature of the reference surface 7 is measured with a thermocouple (not shown), and the temperature of the surface to be measured 4 is determined. However, the indicated value changes due to changes in the reflectance of the radiation receiving part from the surface to be measured 4, dirt, etc. Also, the indicated value changes due to changes in the emissivity of the surface to be measured 4, and corrections are required each time. is necessary.

更に、装置が高価である等の欠点がある。本考案は上記
の不具合を解消したもので、実施例の対象としているの
はウラン濃縮用遠心分離機の回転胴の表面温度測定であ
る。
Furthermore, there are drawbacks such as the equipment being expensive. The present invention solves the above-mentioned problems, and the object of the embodiment is the measurement of the surface temperature of the rotating barrel of a centrifugal separator for uranium enrichment.

機械の使用上回転胴表面の輻射率は変化する。The emissivity of the rotating drum surface changes as the machine is used.

従って、ある程度の範囲の輻射率の変化に指示値が依存
しない輻射温度計が必要となり、本温度計が考案された
Therefore, there was a need for a radiation thermometer whose indicated value does not depend on changes in emissivity within a certain range, and this thermometer was devised.

本考案を第3図の実施例について説明すれば、11は吸
熱板、12は反射板、13は支持片、14は支持板、1
5及び16は支柱、17は取付フランジ、18は熱電対
(温接点)、19及び20は熱電対素線で、本考案温度
計の各要素であり、21は被測定面、22は温度計取付
座、23は絶縁気密材である。
The present invention will be explained with reference to the embodiment shown in FIG.
5 and 16 are pillars, 17 is a mounting flange, 18 is a thermocouple (hot junction), 19 and 20 are thermocouple wires, each element of the thermometer of the present invention, 21 is the surface to be measured, and 22 is the thermometer. The mounting seat 23 is an insulating airtight material.

吸熱板11の表面は黒体塗料等で黒体化しておき、熱電
対素線19.20で構成する熱電対18を取り付ける。
The surface of the heat absorbing plate 11 is made black with black body paint or the like, and a thermocouple 18 composed of thermocouple wires 19 and 20 is attached.

熱電対素線19.20は夫々、例えば銅とコンスタンタ
ンであり、支柱15及び16は夫々、熱電対素線19及
び20と同一金属とし、取付フランジ17に電気的絶縁
、気密材23を介して取り付ける。
The thermocouple wires 19 and 20 are made of copper and constantan, respectively, and the struts 15 and 16 are made of the same metal as the thermocouple wires 19 and 20, respectively. Attach.

支柱15.16の両端の電圧は吸熱板11の表面温度を
表わすことになる。
The voltage across the struts 15, 16 represents the surface temperature of the heat absorbing plate 11.

反射板12は吸熱板11からの輻射放熱を極力少なくす
るものであり、支持板13はできるだけ薄く幅も小さく
した熱伝導の悪い材料を用い、吸熱板11からの熱伝導
量を極力少なくする。
The reflecting plate 12 is used to minimize the amount of heat radiated from the heat absorbing plate 11, and the supporting plate 13 is made of a material with poor thermal conductivity that is as thin and narrow as possible to minimize the amount of heat conducted from the heat absorbing plate 11.

そして、対流により測定部以外に伝達される熱量をゼロ
とするため測定装置内は真空状態にする。
Then, the inside of the measuring device is kept in a vacuum state so that the amount of heat transferred to areas other than the measuring section due to convection is zero.

しかして、かかる放射温度計により被測定面21の温度
を測定する場合は、被測定面21から吸熱板11へQl
なる熱量が輻射されるが、吸熱板11の表面が黒体化さ
れ、かつ、該吸熱板11の背部に反射板12を設けであ
るため、吸熱板11から取付座22側へ向って輻射され
る熱は反射板12によって反射され、再び吸熱板11に
吸収されることになり、最終的に被測定面21から吸熱
板11を経て取付座22に輻射される熱量Q2□は上記
Q1に較べて非常に小さくなる。
Therefore, when measuring the temperature of the surface to be measured 21 with such a radiation thermometer, Ql is transferred from the surface to be measured 21 to the heat absorption plate 11.
However, since the surface of the heat absorbing plate 11 is a black body and the reflective plate 12 is provided on the back of the heat absorbing plate 11, the amount of heat is radiated from the heat absorbing plate 11 toward the mounting seat 22. The heat is reflected by the reflecting plate 12 and absorbed by the heat absorbing plate 11 again, and the amount of heat Q2□ finally radiated from the surface to be measured 21 via the heat absorbing plate 11 to the mounting seat 22 is smaller than Q1 above. becomes very small.

更に、吸熱板11と反射板12とを支持する支持部材1
3がステンレス鋼等の熱伝導率の低い材料から成り、そ
の断面積も極力小さく形成しであるため、吸熱板11か
ら支持部材13を経て取付座22に伝導される熱量Q2
□ひもQlに較べて非常に小さくなる。
Furthermore, a support member 1 that supports the heat absorbing plate 11 and the reflecting plate 12 is provided.
3 is made of a material with low thermal conductivity such as stainless steel, and its cross-sectional area is made as small as possible.
□It is very small compared to the string Ql.

よって、被測定面21から吸熱板11を経て取付座22
に伝達される熱量、即ち、Q2□とQ22の和Q2もQ
lに較べて非常に小さくなるので、結果的には被測定面
21から放射された熱量Q1の大部分は吸熱板11に吸
収されることになり、温度測定用熱電対18を取付けた
吸熱板11の表面温度T1は被測定面21の温度Txと
殆んど等しくなる。
Therefore, from the surface to be measured 21 through the heat absorbing plate 11 to the mounting seat 22
The amount of heat transferred to Q2, that is, the sum of Q2□ and Q22, is also Q2
As a result, most of the heat Q1 radiated from the surface to be measured 21 is absorbed by the heat absorbing plate 11, and the heat absorbing plate to which the temperature measuring thermocouple 18 is attached 11 is almost equal to the temperature Tx of the surface to be measured 21.

従って吸熱板110表面温度T1を測定することにより
、これを被測定面の温度Txとみなすことができる。
Therefore, by measuring the surface temperature T1 of the heat absorbing plate 110, this can be regarded as the temperature Tx of the surface to be measured.

尚、上記実施例の説明は真空状態において温度測定をす
る場合について行なったか、被測定面21から取付座2
2への対流熱伝達による放熱を許容するならば、必ずし
も、真空状態でなくてもよいことは勿論である。
It should be noted that the above description of the embodiment was made with reference to the case where temperature measurement is performed in a vacuum state.
Of course, it is not necessarily necessary to be in a vacuum state as long as heat dissipation by convective heat transfer to 2 is allowed.

なお、本考案装置を真空状態にすれば対流熱伝導がなく
なり、更に好結果が得られる。
Note that if the device of the present invention is placed in a vacuum state, convection heat conduction is eliminated, and even better results can be obtained.

以上述べたように本考案は、黒化化した被測定面に対向
して設けられ表面を黒体化された吸熱板と吸熱板の背部
に設けた反射板と吸熱板と反射板とを支持する熱伝導率
の低い材料からなる支持部材と吸熱板の表面温度を測定
する熱電対とを具備し、吸熱板から支持部材を経て放射
される熱量を極力少なくし、吸熱板の表面温度を被測定
面に極力近付ける放射温度計であるので、 1 被測定面の輻射率の変化があっても正しい温度計測
ができ、経年変化がない。
As described above, the present invention supports a heat absorbing plate with a black body surface facing a blackened surface to be measured, a reflecting plate provided on the back of the heat absorbing plate, a heat absorbing plate, and a reflecting plate. It is equipped with a supporting member made of a material with low thermal conductivity and a thermocouple for measuring the surface temperature of the heat absorbing plate. Since this is a radiation thermometer that can be placed as close as possible to the measurement surface, 1. Accurate temperature measurement is possible even if there are changes in the emissivity of the measurement surface, and there is no change over time.

2 感度は理論上、被測定面の温度変化と同一であり実
用上充分高い。
2 Sensitivity is theoretically the same as the temperature change of the surface to be measured, and is sufficiently high for practical use.

3 構造が極めて簡単で安価であり、こわれ難い。3. The structure is extremely simple, inexpensive, and difficult to break.

等のすぐれた効果がある。It has excellent effects such as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の温度計の概略図で、第1図は
熱電離型、第2図は自動平衡型、第3図は本考案の一実
施例の構造図である。 11:吸熱板、12:反射板、13:支持片、14:支
持板、15,16:支柱、17:取付フランジ、18:
熱電対、19,20:熱電対素線、21:被測定面、2
2:取付部、23:絶縁気密材。
1 and 2 are schematic diagrams of conventional thermometers; FIG. 1 is a thermoionization type thermometer, FIG. 2 is a self-balancing type thermometer, and FIG. 3 is a structural diagram of an embodiment of the present invention. 11: Heat absorption plate, 12: Reflector plate, 13: Support piece, 14: Support plate, 15, 16: Support column, 17: Mounting flange, 18:
Thermocouple, 19, 20: Thermocouple wire, 21: Surface to be measured, 2
2: Mounting part, 23: Insulating airtight material.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 黒体化した被測定面に対向して設けられ表面を黒体化さ
れた吸熱板と該吸熱板の背部(熱線の下流部)に設けた
反射板と、前記吸熱板と反射板とを支持する熱伝導率の
低い材料からなる支持部材と前記吸熱板の表面温度を測
定する熱電対とを具備し、前記の吸熱板から前記支持部
材を経て放射される熱量を極力少なくし、前記吸熱板の
表面温度を前記被測定面に極力近付けることを特徴とす
る放射温度計。
A heat absorbing plate having a black body surface and facing the black body surface to be measured, a reflecting plate provided on the back of the heat absorbing plate (downstream of the heat ray), and supporting the heat absorbing plate and the reflecting plate. a support member made of a material with low thermal conductivity, and a thermocouple for measuring the surface temperature of the heat absorption plate; A radiation thermometer characterized in that the surface temperature of the surface is brought as close as possible to the surface to be measured.
JP251476U 1976-01-16 1976-01-16 radiation thermometer Expired JPS5922501Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP251476U JPS5922501Y2 (en) 1976-01-16 1976-01-16 radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP251476U JPS5922501Y2 (en) 1976-01-16 1976-01-16 radiation thermometer

Publications (2)

Publication Number Publication Date
JPS5295474U JPS5295474U (en) 1977-07-16
JPS5922501Y2 true JPS5922501Y2 (en) 1984-07-05

Family

ID=28463163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP251476U Expired JPS5922501Y2 (en) 1976-01-16 1976-01-16 radiation thermometer

Country Status (1)

Country Link
JP (1) JPS5922501Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3445677A1 (en) * 1984-12-14 1986-06-19 Uranit GmbH, 5170 Jülich RADIATION MEASURING PROBE FOR CONTACTLESS, EMISSION DEGREE-INDEPENDENT TEMPERATURE MEASUREMENT

Also Published As

Publication number Publication date
JPS5295474U (en) 1977-07-16

Similar Documents

Publication Publication Date Title
US5178464A (en) Balance infrared thermometer and method for measuring temperature
US2837917A (en) Radiation systems for measuring temperature
JP2001527644A (en) Thermopile sensor and radiation thermometer equipped with thermopile sensor
JPS57113332A (en) Compensating thermopile detector
US3277715A (en) Method of and apparatus for measuring the emittance of a radiation-emitting surface
US2611541A (en) Radiation pyrometer with illuminator
US2357193A (en) Radiation pyrometer
US3492869A (en) Means of measuring surface temperature by reflection
US2921972A (en) Heat sensing apparatus
US4063095A (en) Balancing radiometer
JPS5922501Y2 (en) radiation thermometer
US3355589A (en) Constant sensitivity differential radiometer
JPH0666639A (en) Infrared thermometer
US3489008A (en) Radiation temperature sensor
US3427882A (en) Contact-free temperature-sensing device
US3285069A (en) Instrument for measuring temperature of extended surfaces
JPH0367137A (en) Surface temperatude controller
JP3090728B2 (en) Calorimeter for thermal vacuum test
US3529473A (en) Non-contact temperature measuring device
JPH0476060B2 (en)
Ishii et al. Radiation thermometry standards at NMIJ from− 30° C to 2800° C
Gaviot et al. Thin foil planar radiometers: application for designing contactless sensors
GB2107455A (en) Apparatus for contactless measurement of temperature
Benzinger et al. A 4π‐Radiometer
JP3176798B2 (en) Radiant heat sensor