JPS592226A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS592226A
JPS592226A JP57110208A JP11020882A JPS592226A JP S592226 A JPS592226 A JP S592226A JP 57110208 A JP57110208 A JP 57110208A JP 11020882 A JP11020882 A JP 11020882A JP S592226 A JPS592226 A JP S592226A
Authority
JP
Japan
Prior art keywords
recording medium
magnetic
magnetic recording
atoms
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57110208A
Other languages
Japanese (ja)
Inventor
Kazuo Iwaoka
和男 岩岡
Satoru Inoue
哲 井上
Yasuo Iijima
飯島 康男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57110208A priority Critical patent/JPS592226A/en
Publication of JPS592226A publication Critical patent/JPS592226A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium of a thin metallic film type which is usable as a discoid recording body for rotation, by controlling min. and max. incident angles, the amt. of the oxygen to be introduced and the thickness of a magnetic layer in forming a laminated structure of a nonmagnetic material and a magnetic material by a continuous vacuum deposition method. CONSTITUTION:A vessel 25 contg. cobalt 24 and a vessel 23 contg. aluminum 22 are disposed in the lower part of a cooling can 17, and both materials are heated and evaporated by heating sources 26. Metallic atoms 18, 19 evaporate from the respective evaporating sources and stick on a substrate 27, thereby forming a thin metallic film layer. A partiton plate 16 prevents the atoms 18, 19 from sticking on unwinding and winding systems, and a limiting plate 21 prevents the intersection of the atoms of the aluminum and the cobalt and limits the incident angles of the atoms 18, 19 to the substrate 27. The min. and max. incident angles, the amt. of the oxygen to be introduced and the thickness of the magnetic layer are adequately controlled and the magnetic recording medium is formed by a continuous vacuum deposition method in such a way that the ratio MD/TD of the coercive force and residual magnetization thereon in the longitudinal direction MD of the polymer substrate and the direction TD at a right angle to said longitudinal direction attains within 0.9-1.2 in both coercive force and residual magnetization.

Description

【発明の詳細な説明】 本発明は、真空蒸着法により形成される金属薄膜型の磁
気記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal thin film type magnetic recording medium formed by a vacuum evaporation method.

近年磁気記録分野は高密度記録化が進められている。こ
の高密度記録を行なうために、機器の開発と共に記録媒
体の改良も行なわれている。一般的に磁気記録媒体にお
いて高密度記録を行なうための記録媒体への要求には、
抗磁力(Ha)を大きくすること、磁束密度を上げかつ
飽和磁束密度(Bs)と残留磁束密度(Br)の比Br
/B、  (角形比)を1.0に近づけること、反磁場
の影響を少なくする磁性層とすることなどが云われてい
る。これらを実現するために塗布型の記録媒体において
は磁性粉の改良、磁性層中の充填率の向上や表面性の改
良などがなされている。また他の方法としては磁性層が
100%磁性体である金属薄膜による磁気記録媒体の研
究や開発も行なわれている。
In recent years, high-density recording has been progressing in the field of magnetic recording. In order to perform this high-density recording, not only equipment has been developed but also recording media have been improved. In general, requirements for recording media for high-density recording in magnetic recording media include:
Increasing coercive force (Ha), increasing magnetic flux density, and increasing the ratio Br of saturation magnetic flux density (Bs) and residual magnetic flux density (Br)
It is said that /B, (squareness ratio) should be made close to 1.0, and that the magnetic layer should be made to reduce the influence of demagnetizing fields. To achieve these goals, improvements have been made in coating type recording media, such as improving the magnetic powder, increasing the filling rate in the magnetic layer, and improving the surface properties. As another method, research and development are being carried out on magnetic recording media using metal thin films in which the magnetic layer is 100% magnetic.

この金属薄膜による記録媒体は現状では磁性層厚が塗布
型の1〜3ミクロンに比べて極めて薄く1、0605〜
1.0 ミクロン程度であるので反磁場の影響が少なく
、短波長記録に適した高密度記録媒体となりうる。
At present, the magnetic layer thickness of this metal thin film recording medium is extremely thin compared to the coated type, which is 1 to 3 microns.
Since it is approximately 1.0 microns, it is less affected by the demagnetizing field and can be a high-density recording medium suitable for short wavelength recording.

従来、金属薄膜の形成゛方法としては、メ・ツキ法、ス
パッター法、イオンブレーティング法、真空蒸着法等が
知られている。これらのどの方法を用いても薄膜の形成
手法や条件によって金属薄膜型で高密度記録に適する媒
体を形成することが可能である。
Conventionally, known methods for forming metal thin films include a plating method, a sputtering method, an ion blasting method, and a vacuum evaporation method. Regardless of which of these methods is used, it is possible to form a metal thin film type medium suitable for high-density recording, depending on the method and conditions for forming the thin film.

本発明は上述の金属薄膜の形成方法のうち真空蒸着法を
用い、特に真空槽内に長尺の高分子基板を巻出し、巻取
りなどを行なうための走行系と、蒸着用クーリングキャ
ン及び蒸着系を設け、長尺の高分子基板を連続的に走行
させながら高分子基板表面に金属を蒸着する連続式真空
蒸着法により金属簿膜型磁気記録媒体を形成したもので
あり、この連続式真空蒸着法による金属薄膜型磁気記録
媒体で高分子基板の長手方向(以下M、Dと称ずンと長
手方向に直角な方向(以下TDと称す)の抗磁力(Ha
)や残留磁化(Mr)などの緒特性のMD/TD  比
をほぼ1.0にした磁気記録媒体である。
The present invention uses a vacuum evaporation method among the above-mentioned metal thin film forming methods, and in particular, unwinds a long polymer substrate into a vacuum chamber and includes a running system for winding it, a cooling can for evaporation, and a vacuum evaporation method for evaporation. A metal film type magnetic recording medium is formed by a continuous vacuum evaporation method in which a long polymer substrate is continuously moved and metal is deposited on the surface of the polymer substrate. Coercive force (Ha
) and residual magnetization (Mr), which have an MD/TD ratio of approximately 1.0.

従来から知られている真空蒸着法は減圧された料を設置
し、この蒸着材料を加熱、溶融して原子となし、これを
蒸発させて蒸発原子が基板上に付着する手法である。近
年真空蒸着法も改良がなされ、長尺の基板に連続して蒸
着することが行なわれるようになって来た。
The conventionally known vacuum evaporation method is a technique in which a material under reduced pressure is installed, the evaporation material is heated and melted to form atoms, and the evaporated atoms are evaporated onto a substrate. Vacuum deposition methods have been improved in recent years, and continuous deposition on long substrates has become possible.

第1図に連続式真空蒸着の略図を示す。長尺の高分子基
板2(以下基板という)はクーリングキャン1の外周に
密着してクーリングキャン1と共に矢印入方向に走行さ
れる。このときクーリングキャン1の下部に設置された
蒸発源3から蒸発した原子群4が基板表面に刺着して蒸
着層を成す。
FIG. 1 shows a schematic diagram of continuous vacuum deposition. A long polymer substrate 2 (hereinafter referred to as a substrate) is in close contact with the outer periphery of the cooling can 1 and is moved together with the cooling can 1 in the direction indicated by the arrow. At this time, the atomic group 4 evaporated from the evaporation source 3 installed at the bottom of the cooling can 1 sticks to the substrate surface to form a vapor deposition layer.

この蒸着層の断面形状は、鉄、ニッケル、コバルトなど
の場合第2図に示すように、基板2上に蒸着層6が形成
される。この鉄、ニッケル、コバルトなどの場合の蒸着
層形状は蒸着速度や蒸発原子4と基板2との入射角、蒸
発レートナどにより変化するが、基本的には第1図に示
す連続真空蒸着法では第2図に示すように成長する。鉄
、ニッケル、コバルトなどの単一もしくは合金のこのよ
うな結晶成長は、これらの磁性材料を用いて金属薄膜型
の磁気記録媒体を形成した場合、記録媒体の持つ磁気特
性に形状効果が影響することが知られている。連続式真
空蒸着法において、基板2に対する金属原子4の入射角
を最大θ1−+90°とし、最小入射角 θ2−−90
°から約+90°寸で可変することにより形状効果によ
って磁気特性の抗磁力(Hc)や角形比を変えることが
できる。
The cross-sectional shape of this vapor deposited layer is as shown in FIG. 2 in the case of iron, nickel, cobalt, etc., and a vapor deposited layer 6 is formed on the substrate 2. The shape of the evaporated layer in the case of iron, nickel, cobalt, etc. changes depending on the evaporation rate, the angle of incidence between the evaporated atoms 4 and the substrate 2, the evaporation rate, etc., but basically the continuous vacuum evaporation method shown in Figure 1 It grows as shown in Figure 2. Such crystal growth of single or alloy materials such as iron, nickel, and cobalt has a shape effect that affects the magnetic properties of the recording medium when a metal thin film type magnetic recording medium is formed using these magnetic materials. It is known. In the continuous vacuum evaporation method, the maximum incident angle of the metal atoms 4 with respect to the substrate 2 is θ1−+90°, and the minimum incident angle is θ2−−90°.
By varying the dimensions from 0.degree. to about +90.degree., the coercive force (Hc) and squareness ratio of the magnetic properties can be changed by the shape effect.

一方このような形状効果は基板2のMDとTDの特性差
を生じる結果となる。このMDとTDの特性差は記録媒
体全長尺のテープ状にして使用する場合は好ましいもの
であるが、記録媒体を円板状として回転使用する場合は
好1しくない。すなわち、円籾状にして回転使用する場
合、その円板の一回転に対してMDとTDが各2回検出
゛器部分を通過する毎に、入力及び出力特性が変化する
ことになり、この入出力特性の湯度の差は排除されなけ
れば円板状の回転用記録媒体としての使用は困難となる
。例えば、デジタルオーディオディスクやフロッピーデ
スクの記録媒体として使用する(Aはトラック1個のう
ち最大出力を含む約2000磁束反転の平均出力、Bは
同じく最小出力を含む平均出力うが小さい方が望ましい
。従って連続式真空蒸着法で形成された金属薄膜型磁気
記録媒体を円板状にして回転させて使用する場合には、
MDとTDの特性をいかにしてMD/TD =1.0に
近づけるかが課題であった。
On the other hand, such a shape effect results in a difference in characteristics between the MD and TD of the substrate 2. This difference in characteristics between MD and TD is preferable when the recording medium is used in the form of a full-length tape, but is not preferable when the recording medium is used in the form of a disk and rotated. In other words, when the disk is rotated in a round shape, the input and output characteristics change each time MD and TD pass through the detector twice for one rotation of the disk. Unless the difference in temperature between input and output characteristics is eliminated, it will be difficult to use it as a disk-shaped rotating recording medium. For example, it is used as a recording medium for a digital audio disk or a floppy disk (A is the average output of about 2000 magnetic flux reversals including the maximum output in one track, and B is the average output including the minimum output, which is preferably smaller. Therefore, when a metal thin film magnetic recording medium formed by continuous vacuum evaporation is used in a rotating disk shape,
The challenge was how to bring the MD and TD characteristics closer to MD/TD = 1.0.

本発明は上述のような諸問題を解決することができる金
属薄膜型の磁気記録媒体を提供するものである。以下そ
の一実施例について説明する。
The present invention provides a metal thin film type magnetic recording medium that can solve the above-mentioned problems. An example of this will be described below.

第3図に本発明に用いた連続式真空蒸着装置の構成図を
示す。真空槽11は排気管12により排気装置13に接
続されている。前記真空槽11内には長尺のポリエチレ
ンテレフタレ=!・フィルム等からなる基板27を巻い
た巻出軸16及び巻取東1j14が設けられている。こ
の巻出2巻取軸は基板27の走行方向によって巻取軸1
巻出軸が入れ変わる。基板27は巻出軸16からクーリ
ングキャン17の外周に密着してこのクーリングキャン
17と共に回転走行した後巻取軸14に巻取られる。ク
ーリングキャン17の下部にはコバルト24を入れた容
器26及びアルミニウム22を入れた容器23が配置さ
れ、これらは加熱源26により加熱されて蒸発されるよ
うになっている。各々の蒸発餘から金属原子18.19
が蒸発して基板27上に付着し、金属薄膜層を形成する
。16は金属原子18.19が巻出2巻取系に付着する
のを防止するための仕切板、21はアルミニウムとコバ
ルトの原子が交わらないようにするとともに基板27へ
の金属原子18.19の入射角を制限する制限板であり
、20はガス導入口である。
FIG. 3 shows a configuration diagram of a continuous vacuum evaporation apparatus used in the present invention. The vacuum chamber 11 is connected to an exhaust device 13 via an exhaust pipe 12. Inside the vacuum chamber 11 is a long polyethylene terephthalate =! - An unwinding shaft 16 and a winding east 1j14 are provided on which a substrate 27 made of a film or the like is wound. This unwinding second winding shaft is connected to the winding shaft 1 depending on the running direction of the substrate 27.
The unwinding shaft is replaced. The substrate 27 is brought into close contact with the outer periphery of the cooling can 17 from the unwinding shaft 16, rotates together with the cooling can 17, and is then wound onto the winding shaft 14. At the bottom of the cooling can 17, a container 26 containing cobalt 24 and a container 23 containing aluminum 22 are arranged, and these are heated by the heat source 26 and evaporated. 18.19 metal atoms from each evaporator
is evaporated and deposited on the substrate 27 to form a metal thin film layer. 16 is a partition plate for preventing metal atoms 18 and 19 from adhering to the unwinding and winding system; 21 is a partition plate for preventing aluminum and cobalt atoms from intersecting and preventing metal atoms 18 and 19 from adhering to substrate 27; This is a restriction plate that limits the angle of incidence, and 20 is a gas inlet.

この蒸着系でθ9oはコバルト原子19の基板27への
最大入射角(90°Jを示し、θはその最小入射角を示
す。この最大入射角は図示していない他の遮へい板によ
り、また最小入射角θは制限板21あるいは容器26を
左右に移動させること等により任意に角度を設定するこ
とができるようになっている。なおこの入射角調整のた
めの具体的な機構は省略する。
In this vapor deposition system, θ9o indicates the maximum incident angle (90°J) of the cobalt atoms 19 onto the substrate 27, and θ indicates the minimum incident angle. The angle of incidence θ can be arbitrarily set by moving the limiting plate 21 or the container 26 left and right.The specific mechanism for adjusting the angle of incidence will be omitted.

第4〜7図に第3図の連続式真空蒸着装置により得られ
た一般的なコバルト原子体とした合金の金属薄膜型磁気
記録媒体の抗磁力(Ha)特性を示し、これらにおいて
真空槽11の真空Ifを5×=5 10  Torr とした。第4図は導入ガス酸素(0
2)を0.3 e / mi n、最大入射角=90°
として最小入射角を変えた場合のMDとTDの抗磁力(
Ha)も太きくなるが、最小入射角に対する抗磁力(H
ll−)のMD/TD比は約1゜5〜1.8であった。
4 to 7 show the coercive force (Ha) characteristics of a metal thin film type magnetic recording medium made of a general cobalt atom alloy obtained by the continuous vacuum evaporation apparatus shown in FIG. The vacuum If was set to 5×=5 10 Torr. Figure 4 shows the introduced gas oxygen (0
2) at 0.3 e/min, maximum angle of incidence = 90°
The coercive force of MD and TD when the minimum incident angle is changed as (
Ha) also becomes thicker, but the coercive force (H
The MD/TD ratio of ll-) was approximately 1°5-1.8.

また第5図には導入ガx 02==0.317 min
、最小入射角を一20°として最大入射角を変化させた
場合で、磁性層厚が1000八でのMD、TDの抗磁力
(Hc )特性を示す。この第5図においては最大入射
角が小さい領域においては抗磁力(Ha)のMD/TD
比はほぼ1.0に近づくが抗磁力(Hc)は約2000
eと小さい。
Also, in Figure 5, the introduction gas x 02 = = 0.317 min
, the coercive force (Hc) characteristics of MD and TD with a magnetic layer thickness of 1000° are shown when the minimum incidence angle is -20° and the maximum incidence angle is varied. In this Figure 5, in the region where the maximum angle of incidence is small, the MD/TD of coercive force (Ha)
The ratio approaches 1.0, but the coercive force (Hc) is about 2000
e and small.

第6図は最小入射角を一20°、最大入射角を900と
した場合の酸素導入量と抗磁力(Ha)との関係を示し
たもので、酸素導入量がO(1/ minにおいては抗
磁力のMD/TD比はほぼ1.0であるが抗磁力(Hc
)は約2000eと小さい。酸素導入ガス量によりMD
 、TDの抗磁力(Ha)はともに大きくなるがこの場
合は抗磁力(Ha)のMD/TD比は1.○からずれる
。この場合の磁性層厚は酸素導入量にかかわらず100
0八とした。
Figure 6 shows the relationship between the amount of oxygen introduced and the coercive force (Ha) when the minimum incident angle is -20° and the maximum incident angle is 900 degrees. The MD/TD ratio of coercive force is approximately 1.0, but the coercive force (Hc
) is small at about 2000e. MD depending on the amount of oxygen introduced gas
Both the coercive force (Ha) of TD become large, but in this case, the MD/TD ratio of coercive force (Ha) is 1. It deviates from ○. In this case, the magnetic layer thickness is 100 mm regardless of the amount of oxygen introduced.
I made it 08.

第7図に入射角を一20〜90°とし、酸素導入量を0
.3e/minとして磁性層の膜厚を変えた場合の抗磁
力(Ha)%性を示す。なお磁性層厚は蒸発レートを一
定にして基板の走行速度を変えて膜厚を制限I:た。こ
の場合磁性層が薄い領域で抗磁力(Ha)が犬きくかつ
MD/TD比が1.0に近づいている。
In Figure 7, the incident angle is -20 to 90°, and the amount of oxygen introduced is 0.
.. The coercive force (Ha)% properties are shown when the film thickness of the magnetic layer is changed at 3e/min. The thickness of the magnetic layer was limited by keeping the evaporation rate constant and changing the traveling speed of the substrate. In this case, in the region where the magnetic layer is thin, the coercive force (Ha) is strong and the MD/TD ratio approaches 1.0.

なお、第4〜7図において最小入射角全一20゜とした
が−60°の場合でも一20°の場合とほとんど同一の
特性であった。これらの結果から、最小、最大入射角、
導入酸素量、磁性層厚を適当に制御することにより第3
図に示した連続式真空蒸着法により抗磁力のMD/T 
D比及び角形比のMD/TDがほぼ1.0に近い金属薄
膜型の磁気記録媒体の形成ができたものである。
In FIGS. 4 to 7, the minimum incident angle was all 20 degrees, but the characteristics were almost the same in the case of -60 degrees as in the case of -20 degrees. From these results, the minimum and maximum angles of incidence,
By appropriately controlling the amount of oxygen introduced and the thickness of the magnetic layer, the third
MD/T of coercive force is obtained by continuous vacuum evaporation method shown in the figure.
A metal thin film type magnetic recording medium in which the D ratio and the squareness ratio MD/TD are close to 1.0 was successfully formed.

これまでの説明では各図とも基板上に磁性層を1層蒸着
した例を示したが、実用の記録媒体として使用する場合
は本説明中の1層厚では出方が低いため多層構造にする
。この場合1層当りの抗磁力(Ha)は多層にすること
により減少するが使用上問題の範囲であった。
In the explanations so far, each figure shows an example in which a single magnetic layer is deposited on the substrate, but when used as a practical recording medium, a multilayer structure is used because the thickness of one layer in this explanation is low. . In this case, the coercive force (Ha) per layer can be reduced by using multiple layers, but this is within the range of problems in use.

次に多層構造にした場合の例を示す。この場合の共通条
件は次のとおりである。
Next, an example of a multilayer structure will be shown. The common conditions in this case are as follows.

連続式真空蒸着法:真空度5 X 10−” Torr
、最小入射角−60°、最大入射角9oo、酸素導入量
0・51 / min 、磁性材料:コバルト80%、
ニッケル20%の合金、非磁性材料ニアルミニウム99
.9%、その他。、1%、蒸発レート:約1000 A
 /sec、加熱源: 電子ヒー ム、基板:ボリエテ
レンテレフタレート、厚す:10μm、長さ1000.
rL。
Continuous vacuum evaporation method: degree of vacuum 5 x 10-” Torr
, minimum incidence angle -60°, maximum incidence angle 9oo, oxygen introduction amount 0.51/min, magnetic material: 80% cobalt,
Alloy of 20% nickel, non-magnetic material Nialuminum 99
.. 9%, others. , 1%, evaporation rate: about 1000 A
/sec, heating source: electronic heat, substrate: polyethylene terephthalate, thickness: 10 μm, length 1000.
rL.

金属薄膜層二基板上に非磁性層と磁性層の交互積層。A non-magnetic layer and a magnetic layer are alternately laminated on two thin metal film substrates.

以下余白 この実施例における条件4のB−Hカーブを第8図に示
す。第8図(alはMDのB−Hカーブであり、(b)
はTDのB−Hカーブである。同様に条件5のB−Hカ
ーブを第9図に示し、゛第9図(a)はMD、(b)は
TDのB−1(カーブケ示す。
The following is a margin. The BH curve of condition 4 in this example is shown in FIG. Figure 8 (al is the MD B-H curve, (b)
is the BH curve of TD. Similarly, the B-H curve under condition 5 is shown in FIG. 9, where (a) shows the B-1 curve in MD and (b) shows TD.

上記表に示すように非磁性層と磁性層から成る積層構造
による金属薄膜型磁気記録媒体は、条件により磁気的、
電磁変換的、物理的に特性が変化する。従って本発明で
は磁性層の1層当りの厚さを約600八以下とし非磁性
層の1層当りの厚さを1000八以下で約8Q〇八以下
とし200八以上とすることで、円板状の記録媒体とし
て十分な緒特性を有した金属薄膜型磁気記録媒体が得ら
れる。
As shown in the table above, metal thin film magnetic recording media with a laminated structure consisting of a non-magnetic layer and a magnetic layer can be magnetically or
Characteristics change electromagnetically and physically. Therefore, in the present invention, the thickness per layer of the magnetic layer is about 6008 or less, and the thickness per layer of the nonmagnetic layer is about 10008 or less, about 8Q08 or less, and 2008 or more. A metal thin film type magnetic recording medium having sufficient magnetic properties as a magnetic recording medium can be obtained.

以上の説明から明らかなように本発明によれば、(1)
連続式真空蒸着法により、金属薄膜型磁気記録媒体でほ
ぼ無配向の記録媒体が得られる。
As is clear from the above description, according to the present invention, (1)
By continuous vacuum evaporation, a substantially non-oriented metal thin film magnetic recording medium can be obtained.

(2)  フロッピーディスク等の回転して使用する記
録装置の高密度記録媒体として使用できる。
(2) It can be used as a high-density recording medium for rotating recording devices such as floppy disks.

(本実施例の表中条件4i/i:示した金属薄膜型媒体
を5層インチに打抜き、5インチ型フロッピーディスク
の記録媒体として使用したところ、r−Fe203磁性
体による塗布型の従来の6インチフロッピーディスク用
記録媒体に比べて磁束反転周波数が126匹及び250
 kl(zの場合とも出力が約1.5〜1.8倍と大き
かった。〕(3)モジュレーイション特性が1.0〜7
.0%と優れている。
(Condition 4i/i in the table of this example: When the shown metal thin film type medium was punched into 5-layer inch pieces and used as a recording medium for a 5-inch type floppy disk, it was found that Compared to inch floppy disk recording media, the magnetic flux reversal frequency is 126 and 250
kl (In the case of z, the output was about 1.5 to 1.8 times larger.) (3) Modulation characteristics were 1.0 to 7.
.. It is excellent at 0%.

(4)工業性が高く量産効果が期待でき、安価な製品が
大量に供給できる。
(4) High industrial efficiency, mass production effects can be expected, and inexpensive products can be supplied in large quantities.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は連続式真空蒸着法の概略図、第2図は蒸着層の
成長形状を示す図、第3は本発明に供する連続式真空蒸
着装置の概略構成図、第4図、第6図、第6図、第7図
は連続式真空蒸着法による金属薄膜型磁気記録媒体の抗
磁力特性を示す図、第8図(a) 、 (blおよび第
9図(a) 、 (b)はそれぞれ本発明の実施例のB
−H特性を示す図である。 2.27−・・・・・基板、18,19・・・・・・金
属原子。 第1図 @ 3 !A 第4図    第5図 政小入lII穎白          辰入λ財TA(
°)第6図 第7図 月黄、8 (A) 第8図 鱈
Figure 1 is a schematic diagram of the continuous vacuum evaporation method, Figure 2 is a diagram showing the growth shape of the deposited layer, Figure 3 is a schematic diagram of the continuous vacuum evaporation apparatus used in the present invention, Figures 4 and 6. , Figures 6 and 7 are diagrams showing the coercive force characteristics of a metal thin film magnetic recording medium produced by continuous vacuum evaporation, Figures 8 (a) and (bl) and Figures 9 (a) and (b) are B of the embodiment of the present invention, respectively.
FIG. 3 is a diagram showing −H characteristics. 2.27-...substrate, 18,19...metal atom. Figure 1 @ 3! A Figure 4 Figure 5.
°) Fig. 6 Fig. 7 Gekiwang, 8 (A) Fig. 8 Cod

Claims (3)

【特許請求の範囲】[Claims] (1)真空槽内に長尺の高分子基板の巻取系、蒸着用ク
ーリングキャン等の蒸着系を設けた連続式真空蒸着法で
形成される金属薄膜型の磁気記録媒体であって、その金
属薄膜型の磁気記録媒体の抗磁ツバ残留磁化が高分子基
板の長手方向(MD)とその長手方向に直角方向(TD
)の比(MD/TD)が抗磁力、残留磁化ともに0.9
〜1.2以内としたことを特徴とする磁気記録媒体。
(1) A thin metal film type magnetic recording medium formed by a continuous vacuum evaporation method in which a winding system for a long polymer substrate and a evaporation system such as a cooling can for evaporation are provided in a vacuum chamber. The residual magnetization of the antimagnetic flange of a metal thin film type magnetic recording medium is the same as that in the longitudinal direction (MD) of the polymer substrate and in the direction perpendicular to the longitudinal direction (TD).
) ratio (MD/TD) is 0.9 for both coercive force and residual magnetization.
A magnetic recording medium characterized in that it is within 1.2.
(2)  高分子基板上に磁性層と非磁性層を少なくと
も2層以上積層し、磁性層は1層当り600八以下、非
磁性層は1層当9800A以下で200Å以上としたこ
とを特徴とする特許請求の範囲第1項記載の磁気記録媒
体。
(2) At least two or more magnetic layers and non-magnetic layers are laminated on a polymer substrate, and the magnetic layer is 600 Å or less per layer, and the non-magnetic layer is 200 Å or more and 9800 A or less per layer. A magnetic recording medium according to claim 1.
(3)母性材料がコバルト・ニッケルの単一もしくは合
金からなり、非磁性層がアルミニウムを主体とした金属
であることを特徴とする特許請求の範囲第1項または第
2項記載の磁気記録媒体。
(3) The magnetic recording medium according to claim 1 or 2, wherein the mother material is made of cobalt-nickel alone or an alloy, and the nonmagnetic layer is a metal mainly composed of aluminum. .
JP57110208A 1982-06-25 1982-06-25 Magnetic recording medium Pending JPS592226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57110208A JPS592226A (en) 1982-06-25 1982-06-25 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57110208A JPS592226A (en) 1982-06-25 1982-06-25 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS592226A true JPS592226A (en) 1984-01-07

Family

ID=14529791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57110208A Pending JPS592226A (en) 1982-06-25 1982-06-25 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS592226A (en)

Similar Documents

Publication Publication Date Title
JPS592226A (en) Magnetic recording medium
JPS59147422A (en) Formation of magnetic layer
JPS59157833A (en) Magnetic recording medium
JPS6255207B2 (en)
JPH0311531B2 (en)
JPH0581967B2 (en)
JP2843136B2 (en) CoCr perpendicular magnetic recording tape and method of manufacturing the same
JPH0337724B2 (en)
JPH0319617B2 (en)
JPH04328325A (en) Manufacture of magnetic recording medium
JPS59157829A (en) Magnetic recording medium
JPS5814326A (en) Production for magnetic recording medium
JPS59157827A (en) Magnetic recording medium
JPS59157830A (en) Magnetic recording medium
JPS61227222A (en) Magnetic recording medium
JPS6043915B2 (en) Vacuum deposition method
JPS60101711A (en) Magnetic recording medium
JPS59144032A (en) Magnetic recording medium
JPS60201521A (en) Magnetic recording medium
JPS59148122A (en) Magnetic recording medium
JPH0656650B2 (en) Magnetic recording medium
JPH0548530B2 (en)
JPS59148123A (en) Magnetic recording medium
JPH05159267A (en) Magnetic recording medium and production of the medium
JPH0315244B2 (en)