JPS59221951A - Irradiation system for electron beam system - Google Patents

Irradiation system for electron beam system

Info

Publication number
JPS59221951A
JPS59221951A JP58094905A JP9490583A JPS59221951A JP S59221951 A JPS59221951 A JP S59221951A JP 58094905 A JP58094905 A JP 58094905A JP 9490583 A JP9490583 A JP 9490583A JP S59221951 A JPS59221951 A JP S59221951A
Authority
JP
Japan
Prior art keywords
lens
electron beam
focusing lens
focusing
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58094905A
Other languages
Japanese (ja)
Inventor
Takashi Yanaka
谷中 隆志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INTERNATL PRECISION Inc
Original Assignee
INTERNATL PRECISION Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INTERNATL PRECISION Inc filed Critical INTERNATL PRECISION Inc
Priority to JP58094905A priority Critical patent/JPS59221951A/en
Publication of JPS59221951A publication Critical patent/JPS59221951A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

PURPOSE:To correct the astigmatism and to produce a good electronic probe by constructing such that image focusing onto the specimen surface will not shift even when the diameter of an electronic probe for irradiating onto the specimen surface is varied thereby reducing fluctuation of focus distance of lens. CONSTITUTION:When an electronic probe is not focusing accurately onto the specimen surface (Q), the focus distance of lens C3 is varied. In other word, focusing of actual image P2 of an electron beam source through lenses C1, C2 is performed by focusing an actual image P3 at the common point on the specimen face (Q) with respect to the lens system constituted with lenses C4 and L. The combined reduction rate of the lenses C4 and L is made to 1/20. In order to change the diameter of the electronic probe for irradiating onto the specimen surface (Q), Es in the control circuit is varied to vary the combined reduction rate of the lenses C1, C2.

Description

【発明の詳細な説明】 この発明は、試別に電子プローブを照射する電子線装置
の照射系に係り、特に非点収差の少ない電子プローブを
試別面上に結像づ−ることができる電子線装置の照射系
及び試A′)1面上の電子プローブの径を表示覆る電子
線装置の照射系に関する。試別の微小部分に電子線を照
射して試i81の極細部分の分析を行なう電子線装置、
例えば分析電子顕微鏡においては、電子線は試別面上に
、数ナノソー1−ル(nm)以下の経の電子線スポット
(電子)1」−ブと称する)を照q1づる必要があり、
この電子プローブの照射に用いられる照射系は、系全体
で約1/ 10,000の縮小率を達成しな()ればな
らない。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an irradiation system for an electron beam device that irradiates an electron probe to a specimen, and in particular to an electron beam device that can image an electron probe with little astigmatism onto a specimen surface. Irradiation system of an electron beam device and test A') An irradiation system of an electron beam device that displays and covers the diameter of an electron probe on one surface. An electron beam device that analyzes the extremely small portion of sample i81 by irradiating the minute portion of the sample with an electron beam;
For example, in an analytical electron microscope, it is necessary for the electron beam to illuminate an electron beam spot (referred to as an electron beam) with a diameter of several nanosols (nm) or less on the specimen surface.
The irradiation system used for irradiating this electron probe must achieve a reduction ratio of approximately 1/10,000 for the entire system.

このため、i*iu ′A’lに最近接したレンズとじ
Cは、短焦点レンズを用いることが必要であり、この短
焦点レンズどしでは、通常対物レンズの前側磁界〈以下
前方対物レンズ体という)が用いられ−Cいる。
For this reason, it is necessary to use a short focus lens for the lens stop C closest to i*iu ′A′l, and when using these short focus lenses, the front magnetic field of the objective lens (hereinafter referred to as the front objective lens body) is usually used. ) is used.

このにうな電子線装置の照射系としては、第1図に承り
ような集束レンズ系が用いられてぎた。
As the irradiation system of this type of electron beam device, a focusing lens system as shown in FIG. 1 has been used.

この電子線装置の照QJ系は、3段の集束レンズCi 
、 C2、C3’rJiii成されており、電子線は、
図中左方から照射されて、人々の集束レンズC+。
The illumination QJ system of this electron beam device consists of three stages of focusing lenses Ci.
, C2, C3'rJiii, and the electron beam is
The people's focusing lens C+ is illuminated from the left in the figure.

C2,C3によって電子線源の縮小された実像がPi、
P2.P3に順次結像され最終的に前方対物レンズ体り
によって試料Q面に電子線源の縮小像を結像することに
よって極微小径の電子プローブを照射りるJ、うにしで
いる。
The real image of the electron beam source reduced by C2 and C3 is Pi,
P2. A reduced image of the electron beam source is sequentially formed on P3 and finally a reduced image of the electron beam source is formed on the surface of the sample Q by the front objective lens body, thereby irradiating the electron probe with an extremely small diameter.

しかしながらこのような従来の電子線装置の照射系にお
いては、試別Qの凹凸に応じて正確に電子プローブを結
1ηSさμるためには、試別Qの前方対物レンズLにヌ
・jりる共役な点にレンズC3による実像[〕3を結像
する必要がある。しかし試別の凹凸による一V記ノ1.
役点の位置の変化量は、前方対物レンズ体りの倍率の自
乗に比例し、また前述のように前方対物レンズの47:
<率は人となっているから、たとえ試料面Qの凹凸が微
小であってもP3の位置の変化量は署しく大きくなる。
However, in the irradiation system of such a conventional electron beam device, in order to accurately connect the electron probe according to the unevenness of the sample Q, it is necessary to adjust the front objective lens L of the sample Q. It is necessary to form a real image []3 by the lens C3 on a conjugate point. However, due to the unevenness of the trial, 1.
The amount of change in the position of the role point is proportional to the square of the magnification of the front objective lens body, and as described above, the amount of change in the position of the front objective lens is proportional to the square of the magnification of the front objective lens body.
Since the ratio is human, even if the unevenness of the sample surface Q is minute, the amount of change in the position of P3 will be significantly large.

このため実像P3を結像する集束レンズC3の焦点距N
1の変化けも多大のものどり゛る必要がある。
Therefore, the focal length N of the condensing lens C3 that forms the real image P3
Even a single change requires a huge return.

また、試料Q面十にI−7)セされる電子プローブ径は
、分4fj部分の大小や、電子ブ1」−ブを用いた走査
像のS / N比のIυ〕の化のために変更でさること
か望まれる。
In addition, the diameter of the electron probe set on the Q surface of the sample (I-7) should be adjusted to accommodate the size of the fj portion and the S/N ratio Iυ of the scanned image using the electron beam. It is hoped that the change will make a difference.

この電子ブ1−ノーブ仔の変更は、照Ω1系レンズの縮
小率を変更してなされるが、専ら集束レンズC】と集束
レンズC2の焦点距離を変更4ることによっ−C行イ1
っれてJ5り一般には集束レンズc1もしくは集束レン
ズc2の−hを変化ざゼるが、又は、集束レンズc1と
集束レンズc2とを同一磁気回路としたダブルギ17ツ
ブレンズとして同11.1に変化させることによって行
なわれる。従っていずれの場合にも集束レンズc2によ
って結像される電子線源の縮小F& P 2の位置は、
当初の位置とは異なった位置に結像されることどなる。
This change in the electronic lens is made by changing the reduction ratio of the Ω1 system lens, but it is mainly done by changing the focal length of the focusing lens C] and the focusing lens C2.
Generally, the -h of the focusing lens c1 or c2 is changed to J5, but it is also changed to 11.1 as a double gear 17 double lens in which the focusing lens c1 and the focusing lens c2 have the same magnetic circuit. It is done by letting Therefore, in any case, the position of the reduction F&P 2 of the electron beam source imaged by the focusing lens c2 is:
The image is formed at a position different from the original position.

このため、集束レンズC3の焦点距離をこれに対応する
強庶に変化ざμな()ればならイTい。
Therefore, it would be difficult to change the focal length of the focusing lens C3 to a corresponding degree.

上記2つのに1的のため集束レンズc3は、ぞの焦点距
離を大幅に変更りる必要があるが、一般に集束レンズC
3は、焦点合U用として比較的長焦点のレンズ(例えば
20mm 〜50mm )を用いるため、このレンズで
発生Jる非点収差は人さく、非点隔差で表示ツれば41
11n+を越えるのが酉通であり、前方対物レンズ体り
の非点隔差()、5μmと比べで極めて大ぎく、この集
束レンズC3の焦点を大きく変えて用いれば、この非点
収乏1の宇も大きく変化することとなる。このような、
試料面Qへの電子プローブの焦点合i!−1b、電子プ
ローブ径の変更の際に発生づる非点収差の変化を非点収
差補正コイル(図示しでいない)でその度補止すること
は、極めて煩銘であるという不具合があった。
Because of the above two problems, it is necessary to significantly change the focal length of the focusing lens C3, but in general, the focusing lens C3
3 uses a lens with a relatively long focal length (for example, 20 mm to 50 mm) for focusing U, so the astigmatism generated by this lens is noticeable, and if expressed as an astigmatism difference, it will be 41
The astigmatism difference exceeding 11n+ is extremely large compared to the astigmatism difference () of the front objective lens body, which is 5 μm.If the focal point of this focusing lens C3 is changed significantly, this astigmatism 1 can be reduced. U will also undergo major changes. like this,
Focusing of the electron probe on the sample surface Q i! -1b. There is a problem in that it is extremely troublesome to compensate for changes in astigmatism that occur when changing the diameter of the electron probe using an astigmatism correction coil (not shown).

また、上記従来の電子線装置の照射系にJ3いては、集
束レンズC1と集束レンズC2どの合成縮小率を一定に
してム、集束レンズC3の調整にJ、る倍率も人きいか
ら、電子ブ【−1−ブの径は大きく変化し、集束レンズ
C1及び集束レンズc2の設定値から直接電子プローブ
径を読みどり表示することはできず、操作者は自己の望
む電子プローブ径を得るためには煩雑な操作をしな【ノ
ればならなかった。
In addition, in the irradiation system of the conventional electron beam apparatus described above, the combined reduction ratio of the focusing lens C1 and the focusing lens C2 is kept constant, and the magnification of the focusing lens C3 is also adjusted according to the user's preference. [-1- The diameter of the electron probe varies greatly, and it is not possible to read and display the electron probe diameter directly from the setting values of the focusing lens C1 and focusing lens C2. I had to do complicated operations.

してブl−1−ブの焦点合Uや、プローブ径の変更操作
を行なった場合にも非点収差の変動を充分補正できる程
度に小さり11−ることができ、また試料の凹凸に応じ
て電子ブ一−ブを結像さUても宙′子プローブの径が変
化しt’Lい電子線装置の照射系を提供することを目的
とづ゛る。また第3発明にあっては、上記目的に加え、
試料面上の電子プローブの径を表示する表示手段を右η
る電子線装置6:の照射系をIIE IJjりることを
目的とづる。
Even when changing the focus U of the probe or the diameter of the probe, the astigmatism can be made small enough to compensate for variations in astigmatism. It is an object of the present invention to provide an irradiation system for an electron beam device in which the diameter of a cosmic probe changes even when an electron beam is imaged accordingly. Moreover, in the third invention, in addition to the above object,
Turn the display means to display the diameter of the electron probe on the sample surface to the right η
The purpose is to develop the irradiation system of the electron beam device 6: IIE IJj.

この目的は、第1発明及び第2発明にあっては、電子線
源ど対物レンズとの間3段又(Jに4段の集束レンズか
らなる集束レンズ系を設置、:J、試料面上に電子プロ
ーブを結1ρ:りる電子線装置の照射系において、対物
レンズのうら6;)方対物レンズ体又はこれと上1、己
集束レンズ系の最終段集束レンズとの合成縮小率を1/
20以下に設定J−ると共に、上記謂へ畳 4    レンズ系内の電子線14’、H側の第1収集
束レンズ及び第2段集束1ノンズは、第2収集束レンズ
による電子線源の実像を常に一定11に置に結像りるよ
うに連動制御される電子線装置の照射系で達成される。
In the first and second inventions, a focusing lens system consisting of three stages or four stages of focusing lenses is installed between the electron beam source and the objective lens. Connect the electron probe to 1ρ: In the irradiation system of the electron beam device, the composite reduction ratio of the objective lens body behind the objective lens or the final stage focusing lens of the self-focusing lens system is 1 /
20 or less, and the electron beam 14' in the above-mentioned tatami 4 lens system, the first collecting lens on the H side, and the second stage focusing lens are set to This is achieved by an irradiation system of an electron beam device that is controlled in conjunction so that a real image is always formed at a constant position 11.

また第3光明にあつCは、電子線源と対物レンズどの間
に4段の集束レンズからなる集束レンズ系を設は試)′
+1面上に電子ブ1−1−プを結像する電子線装置の照
射系に13 ’v)(、Jz記集束レンズ系の最終段集
束レンズと対物レンズのうち前方対物レンズ体との合成
縮小率を1/20以下に設定して、上記4段の集束レン
ズ系内の電子線源側の第1収集束レンズ及び第2収集束
レンズは、第2収集束レンズによる電子線源の実像を常
に一定位Yに結像するように連動制御されると共に、こ
の連動制御される第1収集束レンズ及び第2収集束レン
ズによって定まる試料面上の電子プローブの系を表示り
る表示手段を右づ−る電子線装置の照射系で達成される
In addition, for C, which is in the third beam, a focusing lens system consisting of four stages of focusing lenses is installed between the electron beam source and the objective lens.
In the irradiation system of the electron beam device that images the electron beam 1-1-1 on the +1 plane, the final stage of the focusing lens of the focusing lens system described in Jz and the front objective lens body of the objective lens is combined. With the reduction ratio set to 1/20 or less, the first collecting lens and the second collecting lens on the electron beam source side in the four-stage focusing lens system capture a real image of the electron beam source by the second collecting lens. is interlocked and controlled so that the image is always focused at a constant position Y, and display means for displaying the system of the electron probe on the sample surface determined by the first and second collection lens, which are controlled in an interlocking manner. This is achieved using the irradiation system of the electron beam device.

次に第1及び第2発明の実施例を図面に基づいて説明す
る。
Next, embodiments of the first and second inventions will be described based on the drawings.

本実施例に係る電子装置の照Q4系は、第2図に承りよ
うに、図中h−力の電子線源側から、第1収集束レンズ
(以下集束レンズC1)、第2収集束レンズ(以下集束
レンズC2)、第3段集シ1シレンズ(以下集束レンズ
C3)及び第482集末レンズ(以下集束レンズC4)
′c構成される。この照q」系にJヅいて第48集末レ
ンズC4を取外し、又1ユゼ1]に励磁した態扛が第1
発明に(1当り゛る。1祠中)1一方から照射された電
子線は、集束レンズC1゜集束レンズC2,L東しンズ
C3によって、人々電子線源のf111小像1つ1.P
2.P3が順次結(にされ、更に1〕;)の1111小
1鍮が集束レンズ04と前方λ・j物しンズ捧りどによ
って最終的に61い′8IQ面七に結像されるようにな
つCいる。また集束レンズC3の近傍には、可動絞りと
非点収差補正=1イル(図示していない)とか−()ら
れており、試お1面(、:照射される電子線の収束角を
)JA ailJしたり、集束レンズC3の非1ia収
差の補正を行なっている。
As shown in FIG. 2, the illumination Q4 system of the electronic device according to this embodiment includes a first collecting lens (hereinafter referred to as focusing lens C1), a second collecting lens (hereinafter referred to as focusing lens C2), 3rd stage focusing lens (hereinafter referred to as focusing lens C3), and 482nd focusing lens (hereinafter referred to as focusing lens C4)
'c is constructed. The 48th condensing lens C4 was removed from this system, and the first position was excited.
In the invention (1 per 1. 1 shrine) 1. The electron beam irradiated from one side is focused by the focusing lens C1°, the focusing lens C2, and the L east lens C3 into one f111 small image of the electron beam source. P
2. P3 is sequentially focused (and further 1];) 1111 small 1 brass is finally imaged on the 61'8IQ plane 7 by the focusing lens 04 and the front λ・j object lens. Natsu C is here. In addition, near the focusing lens C3, there is a movable diaphragm and an astigmatism correction = 1 illumination (not shown). JA ailJ and non-1ia aberrations of the focusing lens C3 are corrected.

ここで、集束レンズC4と114方対物レンズ14\L
と(、i、合成縮小率が1/20となるように4r/I
成されている。また集束レンズCIと集束レンズC2f
ユ、その合成縮小率を変化覆ることがてさ′、かつ縮小
率を変化させても、集束レンズC2によって結像される
電子線源の縮小像[)2の結像位置は常に一定個所にな
るように連動制御され(いる。レンズC1とレンズC2
の制御は、例えば第3図に承りような制御回路で行なう
ことが(゛きる。第3図において、PSは電源、CL+
、C10は、夫々床束しンズC+、集束レンズC2の励
磁コイルを承り。また[Sは励磁電?gjf+、12を
決定するJ、14(電圧であり、この回路により東栄レ
ンズC1及び集束レンズC2にね;こされる励磁電流1
1゜12は、上記の如く合成η1を量率を変更しても集
束レンズC2の結像り′る電子線源像の位置は不変どな
るように制御される。この回路においては、ESの値を
変更することによって縮小率を変更するものである。集
束レンズC3は、その焦点距離を変えることによって集
束レンス′C1,東束レンスC2が定位置に結像づる電
子線源の縮小像P2を試料面Qの集束レンズC4ど前り
対物レンズ体1−とが構成するレンズ系に対する兵役点
に電子線源の実像[):1をf+I+1114Iす゛る
しのであり、最終的には、集束レンズC4と前方夕・1
物レンズ(−によって、電子線(、L試料面Q土に正i
I官に電子プローブどし”(?F+’+像されるもので
ある。
Here, the focusing lens C4 and the 114-way objective lens 14\L
and (, i, 4r/I so that the composite reduction rate is 1/20
has been completed. Also, the focusing lens CI and the focusing lens C2f
Even if the composite reduction ratio is changed, and even if the reduction ratio is changed, the imaging position of the reduced image [2] of the electron beam source formed by the focusing lens C2 will always remain at a constant location. The lenses C1 and C2 are interlocked and controlled so that
can be controlled, for example, by a control circuit as shown in Fig. 3. In Fig. 3, PS is a power supply, CL+
, C10 respectively accept the excitation coils of the floor bundle lens C+ and the focusing lens C2. Also [S is an exciting electric current? J, 14 (voltage, which determines gjf+, 12; excitation current 1 applied to Toei lens C1 and focusing lens C2 by this circuit)
1°12 is controlled so that even if the amount ratio of the composite η1 is changed as described above, the position of the electron beam source image formed by the focusing lens C2 remains unchanged. In this circuit, the reduction rate is changed by changing the value of ES. By changing the focal length of the focusing lens C3, the focusing lens 'C1 and the east focusing lens C2 focus the reduced image P2 of the electron beam source, which is focused at a fixed position, on the specimen surface Q, in front of the focusing lens C4 and the objective lens body 1. -, the real image of the electron beam source [):1 is placed at the military service point for the lens system constituted by f + I + 1114I, and finally, the focusing lens C4 and the front lens 1
By the object lens (-, the electron beam (, L sample surface Q soil is positive i
It is something that is imaged by an electronic probe (?F+'+).

次に第2光明の実施例について説明ザる。本発明の実施
例にd5いて、第1光明の上記実施例との相違は、集束
レンズC1と集束レンズC2の励磁の強さにJζつ−C
1試利而にお(ノる電子プローブの径を障出し、表示り
る表示装置を設けた点にある。
Next, an embodiment of the second light will be explained. In the embodiment of the present invention, the difference between the first light and the above embodiment is that the excitation strength of the focusing lens C1 and the focusing lens C2 is Jζ-C.
The first advantage is that a display device is provided to display the diameter of the electronic probe.

表示装置の表示方法は、CRT上に表示するしのぐあっ
ても、l−[1)や液晶を用いるものであつ−Cしよい
。例えば第3図に示1制御回路を使用した場合には、に
t 1(1−電J二LIT Sに応【して電子プローブ
の径が定まるから、「Sの(的に基づいて電子プローブ
径をc9出して表示づる表示具;6を段IJるJ、うに
する。
The display method of the display device may be one using l-[1) or liquid crystal, even if displaying on a CRT is possible. For example, when using the control circuit 1 shown in FIG. An indicator that displays the diameter by showing the diameter c9;

次に第1発明の実施例に係る電子′gi!装置の照04
系を用いて試別面Qトに電子プローブを結像する場合に
ついて説明する。
Next, an electronic 'gi! according to an embodiment of the first invention! Equipment light 04
A case will be described in which an electron probe is imaged on the sample surface Q using the system.

本実施+!IIIにおいて、電子プローブが正確に試斜
面Q上に1・^像していない場合には、M、東レンズC
3の焦点用N1を変えることによって行なう。つまり、
集束レンズCI、集束レンズC2にJ、って結IZ:さ
れた電子線源の実像P2Gさらに集束レンズC4ど前方
対物レンズ体1−どで474成されるレンズ系にr!I
する試料面Qの共役点(ご実像P3を結像することにJ
、ってイjなう。この際前述の如く、集束レンズC4ど
前方XI物レンズ体1−との合成縮小率はし/20どし
たから、試料面上の0.01111mの凹凸は、0.0
1mm X202 =4+nmの共役点の位置変化どじ
で現われるが、M、!、lシレンズC3の微小な焦点用
N1の調整で対応できる。次に試PI iV′riQ上
に照射づる電子ブl−]の径を変更りるには、制御回路
の[Sの値を変更し集束17ンズC1と集束レンズC2
どの合成縮小率を変更覆る1、この場合、集束レンズC
1と集束レンズC2どの合成縮小率が変化し−Cも、集
束レンズC2が結像づる実像P2の位置は変化しないか
ら、集束レンズC3を全く調整することなく試料Q面上
に任忌仔の電子プローブを結像することができる。史に
試別Qの凹凸に応して集中1ノンズC3の焦点用1iI
I+の調整を行なってしこの調整j讐]は僅かC′ある
し、J、た集束レンズC4ど前方対物レンズ体1との合
成縮小率を1/20としたから電子プローブの仔の変化
は、実用−Jl 71[(視C′さる稈庶の変化となる
Main implementation +! In III, if the electronic probe is not accurately imaged on the test surface Q, M, east lens C
This is done by changing the focal point N1 of No. 3. In other words,
A real image P2G of the electron beam source is formed by the focusing lens CI, the focusing lens C2, IZ:, and the lens system formed by the focusing lens C4, the front objective lens body 1, and the like. I
The conjugate point of the sample surface Q (J to form the real image P3)
, now. At this time, as mentioned above, the composite reduction ratio of the focusing lens C4 and the front XI object lens body 1- was about 20/20, so the unevenness of 0.01111 m on the sample surface is 0.0
This appears due to the change in the position of the conjugate point of 1mm x 202 = 4+nm, but M,! , can be handled by finely adjusting the focus N1 of the lens C3. Next, to change the diameter of the electronic beam irradiated onto the test PI iV'riQ, change the value of S in the control circuit and set the focusing lens C1 and the focusing lens C2.
1, in this case, the focusing lens C
No matter which composite reduction ratio of 1 and the focusing lens C2 changes, the position of the real image P2 formed by the focusing lens C2 does not change. The electronic probe can be imaged. Concentration 1 Nons C3 focus 1iI depending on the unevenness of the trial Q
After adjusting I+, this adjustment is only C', and the combined reduction ratio of J, focusing lens C4, and front objective lens 1 is set to 1/20, so the change in the electron probe size is , Practical-Jl 71 [(Visual C' is a change in the culm.

更に第2発明の実施例に係る電子線装置の照射系では、
第1発明で任意に変更された試料Q上の電子プローブ径
を制υ11装厘の基準電圧Fsの値から搾u1シて表示
リ−るものである。
Furthermore, in the irradiation system of the electron beam apparatus according to the embodiment of the second invention,
The diameter of the electron probe on the sample Q, which has been arbitrarily changed in the first invention, is expressed by compressing it from the value of the reference voltage Fs of the control υ11.

なJ3、第1光明、第2発明の双方の発明において、集
束レンズC4は、一定の1.(、点用IIIを右づるも
のとして、前号対物レンズ1ホ1−との合成縮小率か 
L/20としたが、集束レンズC4の励7i+iをA]
状態どして前号対物レンズ1ホしのみの柑J量率の1直
を1./’20どして、集束しンズC+、集束レンズC
2,集朱レンスC3と共に照射系を形成し−CもJ:い
。また本実施例では、集束レンズC4ど前方対物レンズ
fホ1−どの合成縮小率を1/20としたが、1/20
以下の縮小率であればJ:い(例λぽ1/15゜1/1
0等)。
In both inventions of J3, the first Komei, and the second invention, the focusing lens C4 has a constant 1. (, Assuming that point III is right-handed, is the composite reduction ratio with the previous objective lens 1-ho 1-?
L/20, but the excitation 7i+i of the focusing lens C4 is A]
Due to the condition, the first shift of the amount rate of the previous objective lens is 1. /'20 Then, focusing lens C+, focusing lens C
2. Form an irradiation system with the focusing lens C3 and -C also J: Yes. In addition, in this embodiment, the composite reduction ratio of the focusing lens C4 and the front objective lens fH1 is set to 1/20.
If the reduction rate is below, J: Yes (example: λpo 1/15° 1/1
0 etc.).

また本実施例にJ、iいては、H4s束レンズC1及び
集束レンズC2の連動制ill <x電池とポテンショ
メータ等を用いて行なっ−Cいるが、人々コンピュータ
を用いメモリをKJLみ出して行なうようにしてもよい
In addition, in this embodiment, the interlocking control of the H4s flux lens C1 and the focusing lens C2 is performed using a battery and a potentiometer, etc., but it is possible to perform the interlock control using a computer and extracting the memory from the KJL. You can also do this.

以上説明したJ、うに、本願の第1発明にあっては、電
子線装置の照射系において、試料面に照射づ−べぎ電子
プローブの径を変化さμでも試料面上への結像は焦点が
すれイヱいように(を成し、また試331面上の凹凸に
対応しく電子10−ブの結像イCt首を変化さぜるにあ
たっ゛(のl−束レンズの焦点距離変化量を少なくりる
J、う)j11成し1.:から、非点収差の補正が充分
になされC1良好な電子ブ[1−ブをiiすることがで
さ、また電子ブ1」−ツの径(J、試fi1面の凹凸に
対応して結像してbはと/Vど変化しなイカラ、ii 
Fl +/) q:r定11!J 所L: 特i f!
 (1) 電;T 7 ロー/’を照Q・jする場合に
J5いて、従31ζに比べて操作が簡単となり、OL率
的な操1′1がでいるという効果を炎する。
As explained above, in the first invention of the present application, in the irradiation system of the electron beam device, even if the diameter of the electron probe is changed while irradiating the sample surface, the image formation on the sample surface is not possible. The focal length of the l-bundle lens was adjusted so that the focal point was sharp, and the focal length of the l-bundle lens was changed to correspond to the unevenness on the surface of the sample. Since the amount of change is reduced, the astigmatism is sufficiently corrected and C1 is able to produce a good electronic beam [1-b ii], and the electronic beam 1''- diameter (J, the image is formed corresponding to the unevenness of the test fi 1 surface, and b and V do not change, ii
Fl +/) q: r constant 11! J Tokoro L: Special if!
(1) Electric; When performing Q-j on T7 Low/', it is easier to operate compared to J5 and J31ζ, and it has the effect of being able to perform OL-efficient operation 1'1.

また、4〜願の第2発明にあっては、4二記第1発明の
奏づる効果に加えて、試料白土に実際に照射されCいる
電子プローブの径を表示りるよう414成したから、操
作者は自己の望む電子ゾL」−ブ径を速やかに選択でさ
るという効果を奏りるものて゛ある。
In addition, in the second invention of Application No. 4-4, in addition to the effect produced by the first invention of Paragraph 42, the diameter of the electron probe that is actually irradiated onto the white clay sample is displayed. This has the effect that the operator can quickly select the diameter of the electronic laser beam that he/she desires.

4、図面の筒中4f置明 第1図は従来の電′:F線装置の1(α射光を示ず説明
御に用いられる制御回路を示ザ回路図である。
4. Figure 1, located at 4f in the drawing, is a circuit diagram showing a control circuit of a conventional electric ':F-ray device (1 (not showing alpha radiation) and used for explanation control.

C1,C2、C3、、C4・・・集束レンズL・・・前
方対物レンズ Q・・・試料性 几′[出願人  株式
会社国際精工代  (、lJl   人    弁]j
lj士  土  橋    0;II第1図 第2図 第3図
C1, C2, C3,, C4...Focusing lens L...Front objective lens Q...Sample quality 几' [Applicant Kokusai Seikoyo Co., Ltd.
ljshi Dobashi 0; II Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1) 電子線源ど対物レンズとの間に3段の集束レンズ
からなる集束レンズ系を設り、試料面上に電子プローブ
を結像りる電子線装置の照射系にJ3いて、り・j物し
ンズのうち前方対物レンズ体の縮小率を1/20以下に
設定Jるど共に、上記3段の集束レンズ系内の電子線源
側の第1膜束束レンズ及び第2段束束レンズは、第2膜
束束レンズににる電子線源の実像を常に一定位置に結像
覆るように連動制御されることを特徴とり−る電子線装
置のIQ剣系。 2) 電子線源と対物レンズとの間に4段の集束レンズ
からなる集束レンズ系を設(プ、試斜面トに電子プロー
ブを結像覆る電子線装置6の照射系にJ3い−(、上記
集束レンズ系の最終段集束レンズと、対物レンズのうら
前方対物レンズ体との合成縮小率を1/20以下に設定
η−ると共に、上記4段の果東レンズ系内の電子線j源
側の第1段束束レンズ及び第2膜束束レンズは、第2段
束束レンズによる電子線源の実1象を常に一定位置に結
像りるように連動制御されることを特徴とηる電子線装
置の照射系。 3) 上記前方対物レンズ体は、短焦点距離であること
を特徴とする特許請求の範囲第2項記載の電子線装置の
照射系。 4) 電子線源と対物レンズとの間に4段の集束レンズ
からなる集束レンズ系を設(プ試第31面上に電子プロ
ーブを結像1−る電子線装置の照射系において、上記集
束レンズ系の最終段集束レンズど対物レンズのうら前り
対物レンズ体との合成縮小率を1/20以下に設定して
、上記4段の集束レンズ系内の電子線源側の第1段束束
レンズ及び第2段束束レンズは、第2段束束レンズによ
る電子線源の実像を富に一定位置に結像するように連動
制御されると共に、この連動制御される第1段束束レン
ズ及び第2段束束レンズににつて定まる試料面上の電子
プローブの径を入示覆−る表示手段を右することを特徴
どりる電子−:(3i1装置の照口1系。
[Scope of Claims] 1) An irradiation system of an electron beam device in which a focusing lens system consisting of three stages of focusing lenses is provided between an electron beam source and an objective lens, and an electron probe is imaged on a sample surface. In J3, the reduction ratio of the front objective lens among the lenses is set to 1/20 or less.In addition, the first film converging lens on the electron beam source side in the three-stage converging lens system and the second stage focusing lens is controlled in conjunction with each other so that the real image of the electron beam source on the second film focusing lens is always formed at a fixed position. . 2) A focusing lens system consisting of four stages of focusing lenses was installed between the electron beam source and the objective lens. The composite reduction ratio of the final stage focusing lens of the focusing lens system and the front objective lens body behind the objective lens is set to 1/20 or less, and the electron beam source in the four stages of the Kato lens system is set to 1/20 or less. The first stage bundle lens and the second film bundle lens on the side are characterized in that they are interlocked and controlled so that the second stage bundle lens always images the real image of the electron beam source at a fixed position. 3) The irradiation system for an electron beam device according to claim 2, wherein the front objective lens body has a short focal length. 4) An electron beam source and A focusing lens system consisting of four stages of focusing lenses is installed between the objective lens and the final stage of the focusing lens system. The first stage focusing lens and the second stage on the electron beam source side in the four stage focusing lens system are set to have a composite reduction ratio of 1/20 or less with the front objective lens at the back of the objective lens. The focusing lens is interlocked and controlled so that the real image of the electron beam source is formed at a fixed position by the second stage focusing lens, and the first stage focusing lens and the second stage focusing lens are Electron: (Illumination port 1 system of 3i1 apparatus.
JP58094905A 1983-05-31 1983-05-31 Irradiation system for electron beam system Pending JPS59221951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58094905A JPS59221951A (en) 1983-05-31 1983-05-31 Irradiation system for electron beam system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58094905A JPS59221951A (en) 1983-05-31 1983-05-31 Irradiation system for electron beam system

Publications (1)

Publication Number Publication Date
JPS59221951A true JPS59221951A (en) 1984-12-13

Family

ID=14123032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58094905A Pending JPS59221951A (en) 1983-05-31 1983-05-31 Irradiation system for electron beam system

Country Status (1)

Country Link
JP (1) JPS59221951A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533716A (en) * 1978-09-01 1980-03-10 Internatl Precision Inc Electron microscope focusing lens system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533716A (en) * 1978-09-01 1980-03-10 Internatl Precision Inc Electron microscope focusing lens system

Similar Documents

Publication Publication Date Title
DE69728572T2 (en) MICRO IMAGE SYSTEM
DE112010002918B4 (en) A charged particle beam apparatus and image display method
DE19626261A1 (en) IC pattern and metal surface test object observation differential interference microscope
DE2437984B2 (en) METHOD FOR IMPROVING THE CONTRAST OF AN OPTICAL MICROSCOPE
US20030001102A1 (en) Method for detecting geometrical-optical abberations
EP1183525B1 (en) Method for detecting the light coming from a sample
DE1927038A1 (en) Stereoscopic electron scanning microscope
JPS614142A (en) Illumination lens system in electron microscope or the like
JPS59221951A (en) Irradiation system for electron beam system
DE102018123781B4 (en) Method for performing shading correction and observation optical system
US6720558B2 (en) Transmission electron microscope equipped with energy filter
JP4449573B2 (en) Element mapping apparatus, scanning transmission electron microscope, and element mapping method
JPS62180241A (en) Tomographic image observing device
DE112008002044T5 (en) Device for the spatial representation of samples in real time
TWI288423B (en) Lens arrangement comprising a laterally displaceable optical axis for particle beams
DE2462110A1 (en) System to augment magnification of optical microscope - has sets of plane convex and concave mirrors reflecting UV light to electronic receiver
US6586737B2 (en) Transmission electron microscope equipped with energy filter
JPS605503Y2 (en) Transmission scanning electron microscope
DE2530844C3 (en) Transmission Scanning Corpuscular Beam Microscope and Method of Operation
JPS585321Y2 (en) electronic microscope
WO2003012822A1 (en) Phase retrieval from focused and defocused electron beam images
JPH0545011Y2 (en)
Li et al. Elliptical mirror applied in TIRF microscopy
Page The chromatic field aberrations and their correction in a three lens reflexion electron microscope
JPH0619964B2 (en) electronic microscope